Cu-Sn/Sb及Pb-Bi/Sb合金熔体结构转变的可逆性及其对凝固的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝固现象及规律的研究,既涉及基础学科的发展又关系到材料研发和加工工艺的革新。人们认识到液态物质结构及基本性质对固体材料最终组织与性能具有重要影响,即液-固相关性,这一领域的研究引起了越来越多的关注,并被认为是凝固理论及技术发展的新突破口之一。过去人们多集中于采用熔体热处理工艺改变熔体热历史,籍以改变材料的组织和性能。但由于对其本质和规律的认知不足,其效果及人们对其认识往往大相径庭。
     近年,液态物质多型性得到了科学界普遍关注,很多物质的液态结构被发现随温度或压力而发生异常变化。随着温度诱导液-液结构转变在越来越多的纯金属和合金中被发现,使得人们对熔体结构变化的规律和机理有了进一步的认识,同时也为液-固相关性的研究提供了一个新的切入点。本文从探索温度诱导液-液结构转变的可逆性入手,运用多种实验及分析手段研究了不同类型(不可逆型与可逆型)的液-液结构转变对Cu-Sn/Sb、Pb-Bi/Sb等系统不同成分合金的凝固行为和组织的影响,期望能够进一步深化对液-固相关性的本质、规律及作用机制的认识,从而为采用不同熔体处理方法来操控熔体状态,进而为更有效地控制材料凝固行为及最终组织与性能提供科学与技术依据。本文取得的创新性工作进展及主要结论如下:
     (1)选取InSn49.1(wt.%)共晶合金熔体作为研究对象,通过高温XRD实验证实了采用电阻率、热电势和内耗这些间接方法来探索温度诱导液-液结构转变是非常有效的。此外,应用近自由电子模型(NFE)和液体内耗、粘度相关理论,本文初步探讨了熔体内部的结构参数如何影响电阻率、热电势、内耗和粘度等物性参数发生变化。结果表明,在熔体发生液-液结构转变期间,电子密度n_e和导电电子平均自由程L_0的突变导致了电阻率和热电势发生了异常变化,而内耗和粘度的突变则可能与近邻原子间距等结构参数的异常变化有关。
     (2)利用直流四电极电阻法和热电势法研究了Cu-Sn/Sb、Pb-Bi/Sb等合金的液态电阻率、热电势随温度的变化关系,并与DSC/DTA和内耗实验结果作对比,发现这些熔体的物性参数在一些特定温度区间内发生了不连续变化,这揭示了这几种熔体在相应的温度范围内发生了温度诱导的液-液结构转变。此外,不同的合金系或同一合金系不同成分的合金熔体的结构转变具有自身的特点,表现为转变模式、类型和发生温度区间不同。
     对于CuSn30、PbBi56.1、PbBi80和PbSb5.8熔体来说,它们的电阻率在升温过程中发生了突变,而在降温过程中则呈线性变化,这揭示了熔体在升温过程中发生了不可逆的液-液结构转变。分析认为,这种不可逆液-液结构转变主要是由低温时残留于熔体中的类固型原子团簇在高温时被打破引起的。
     CuSn80和CuSb70合金熔体的多轮升降温电阻实验结果表明,两种合金熔体在首轮升温过程中都发生了不可逆的液-液结构转变,并且经过首轮升温过程中的不可逆结构转变之后,熔体由原先的结构状态变为另一种新的结构状态,新的熔体所发生的温度诱导结构转变具有自身的可逆性。通过对比各轮ρ-T曲线的变化模式和参考凝固实验结果可知:CuSn80熔体在首轮升温过程中发生的两次不可逆结构转变可能与对应于固体中的η相(Cu_6Sn_5)及ε相(Cu_3Sn)的熔体异类原子团簇被破坏有关,可逆结构转变则可能与新形成的Cu_(33)Sn_(67)或者Sn原子团簇具有可逆性有关;CuSb70熔体的结构转变可逆性与Cu_2Sb化学短程序具有可逆性有关。
     (3)由于熔体结构转变类型不同,其对合金的凝固过程影响不同。实验结果表明,不可逆型液-液结构转变对亚包晶成分合金CuSn30、共晶合金PbBi56.1和过共晶合金PbBi80的凝固组织和凝固行为产生了明显影响,例如会导致形核过冷度增大、凝固体积分数增长速率的峰值增大、枝晶搭接阶段提前、晶粒尺寸细化和凝固组织形态等参数的变化。
     对于可逆结构转变来说,则需分两种情况来讨论。若可逆原子团簇能够在降温过程中重新建立,则可逆型液-液结构转变对合金的凝固行为和凝固组织没有明显的影响。如果可逆原子团簇不能够在该冷却速度下重新建立,那么可能会对合金的凝固行为和组织产生明显的影响。
     这两方面的结果揭示了“固体结构和性能与其母相液体热历史相关”的物理本质,同时也表明,工艺上要达到有效地运用熔体处理方法来操控材料的凝固行为和组织,需要预先掌握熔体结构是否、如何发生变化。否则,存在一定的盲目性,也可能达不到预期目的。
     (4)考察了不可逆型液-液结构转变对PbSb5.8(wt.%)合金定向凝固的影响,发现结构转变对溶质再分配和枝晶生长过程有显著影响。研究结果表明:液-液结构转变会导致溶质分配系数k减小,进而引起界面前沿的溶质富集程度和成分过冷加剧,一次枝晶芯部溶质含量降低(除后期液淬区外),并在不同抽拉速度下对成分偏析产生不同程度影响;此外,液-液结构转变还导致液淬区二次枝晶间距明显减小。在不同抽拉速度条件下,液-液结构转变对试样的一次枝晶间距λ_1有着不同的影响,但呈现出一定的规律性。
Researches on the phenomena and regularities of solidifications are not only realted to the development of basic subjects, by also to the inovations of development and processing technolgies of materials. It has been recognized that melt structures have great effects on solidified microstructures and properties of solids, namely "the correlations between liquid to solid". This field attracts more and more attentions and become a new breaktrough of solidification theories and techniques. In the past, people changed the melt thermal history by melt overheating treatments, and further improved the solidified microstructures and properties of materials. However, due to the exact mechanism of the melt overheating is still not fully understood, the actual effects of melt overheating treatments are tend to not as good as the expectations.
     Recently, more and more attentions have been paid to liquid polyamorphism, and the liquid structure transitions are observed and verified to occur with temeperature or pressure. With the fact that temperature-induced liquid-liquid structure transitions (TI-LLSTs) have been found in more and more liquid metals and alloys, the regularity and mechanism of liquid structure changes have been understood more and more clearly. At the same time, the above mentioned facts provide a new viewpoint to investigate the liquid-solid correlation. In the present paper, the reversibility of TI-LLSTs of Cu-Sn, Pb-Bi and Pb-Sb alloys was explored, and the influences of TI-LLSTs with different characteristics (reversible and irreversible) on the solidified behaviors and solidified microstructures of those alloys were investigated. The present work aimed at deepening the understand of the essence and mechanism of the liquid-solid correlationship, and furthermore, providing a scientific and technical basis for controlling the solidified beaviors, solified microstructures and properties of as-cast by manipulating the liquid structural states. The innovative points and mian results of this paper are listed below.
     (1) The high temperature XRD results of InSn49.1(wt.%) melt proved that the methods of exploration the liquid structure by measuring their resistivity, thermal power, and internal friction are effective. In addition, in present paper, a theoretical discussion on the correlation between structure and physical properties of InSn49.1 melt was also given. It is believed that, during the TI-LLST, the sudden changes of electron density n_e and mean free path of conduction electrons L_0 lead to the abnormal change of resistivity and thermal power, and anomalous changes of internal friction and viscosity might related to the discontious variation of pair distribution functions and mean nearest neighbor distance.
     (2)The temperature dependences of resistivity(p-T) and thermal power(S-T) of Cu-Sn/Sb and Pb-Bi/Sb melts were investigated with the DC four probes method, and compared with the results of DSC/DTA and internal friction(Q~(-1)). The p-T, S-T, DSC/DTA and Q~(-1)-T curves of those melts also changed within certain temperatures, which suggested the TI-LLSTs occurred in those melts. In addition, the structure changes of different alloys have different features, which reflected on the occurring temperature ranges, pattern and types of those TI-LLSTs were different.
     Theρ-T curves of CuSn30, PbBi56.1, PbBi80 and PbSb5.8 melts changed unlinearly in the heating procedure, but changed linearly in the cooling process, which suggested the irreversible TI-LLSTs occurred in the heating procedure of those melts. It is believed that the TI-LLSTs were resulted from the destruction of solid-like clusters in the certain high temperature ranges.
     The results of resisitivity experiments show that the reversible TI-LLSTs were occurred in the heating process of CuSn80 and CuSb70 melts. After the melts experienced irreversible TI-LLSTs, the structures of them changed into new ones, and the TI-LLSTs occurred in new melt are reversible. By analysis the pattern ofρ-T curves and the results of solidification experiments, it is believed that the irreversible TI-LLSTs is related to the destruction of the solid-like clusters corresponding to Cu_6Sn_5 and Cu_3Sn, but the reversible TI-LLST may be related to Cu_(33)Sn_(67) or Sn clusters. The reversible TI-LLST occurred in CuSb70 melt may be related to the rebuliting/destruction of Cu_2Sb clusters.
     (3) Different types of TI-LLSTs have different influences on the solidification of alloy. The results of solidification experiments show that, the irreversible TI-LLSTs have great effects on solidification of CuSn30, PbBi56.1 and PbBi80 melts, such as the enlarged undercooling, increased nucleation rate, advanced dendrite coherency point, refined microstructures, and modified morphologies.
     However, to the melt which experienced reversible TI-LLST, we should discuss it from two aspects. If the reversible clusters return to the state of beforehand, then the reversible TI-LLST has no obvious effects on solidification behaviors and microstructures. If we can prevent the reversible clusters not return to the state of beforehand, the solidification behaviors and microstructures would be apparently changed.
     These results revealed the physical nature of "correlation between solidified microstructures and the melt thermal history", and also suggested that, to control the solidification behaviors and solidified microstructures more effectively by manipulating the melt thermal history, whether and how the melt structures change should be kwown in advance. Or else, due to the blindness, the melt thermal treatments may not be effective for controlling solidification.
     (4) We also investigated the influences of TI-LLST on the directional solidification microstructures and the composition segregation patterns of the alloy PbSb5.8. It was found that the TI-LLST affected greatly on the solute redistribution and the dendrite growth. Firstly, the TI-LLST would lead to the reduction of solute redistribution coefficient. Secondly, it results in the aggravation of solute enrichment and composition undercooling in front of the liquid-solid interface. Furthermore, TI-LLST gives rise to an obvious reduction of the secondary dendrtic spacing and composition decrease along the dendrite core. The effects of TI-LLST on the primary dendrtic spacing revealed some regularities, although the TI-LLST has different effects on the primary dendrtic spacing under different drawing velocitys.
引文
[1]傅恒志,魏炳波,郭景杰.凝固科学技术与材料.中国工程科学,2003,5(8):1-15.
    [2]W.Kurz,D.J.Fisher.Fundamentals of Solidification.Switzerland:Trans Tech Pub Ltd,1998.
    [3]M.C.Fleming,Solidification Processing.NewYork:McGraw-Hill Book Co,1974.
    [4]胡汉起.金属凝固原理(第二版).北京:机械工业出版社,2007.
    [5]傅恒志.凝固科学技术与材料发展.北京:国防工业出版社,2005.
    [6]P.Duwez,R.H.Willens,W.Klement Jr.Continuous series of metastable solid solutions in silver-copper alloys.J.Appl.Phys,1960,31:1136-1137.
    [7]D.Shechtman,I.Blech,D.Gratias,J.WCahn.Metallic phase with long-range orientational order and no translational symmetry.Phys.Rev.lett,1984,53(20):1951-1953.
    [8]陈光.熔体热历史对定向凝固界面稳定性的影响.西北工业大学博士学位论文,1999.
    [9]丛红日,金属熔体中程有序结构的计算机模拟.山东大学硕士学位论文,2001.
    [10]胡汉起,金属凝固.北京:冶金工业出版社,1985.
    [11]马幼平,许云华.金属凝固原理及技术.北京:冶金工业出版社,2008.
    [12]W.E.Morrell,J.H.Hildebrand,The distribution of molecules in a model liquid,J.Chem.Phys,1936,4:224-227.
    [13]J.D.Bernal,A Geometrical approach to the structure of liquids,Nature,183(1959) 910-914.
    [14]J.D.Bernal,Geometry of the structure of monatomic liquids,Nature,1960,185:68-70.
    [15]M.H Cohen,D.Turnbull.Metastability of amorphous structures.Nature,1964,203:964-965.
    [16]G.S.Cargill,Dense random packing of hard spheres as a structural model for noncrystalline metallic solids.J.Appl.Phys,1970,41(5):2248-2250.
    [17]P.Chaudhari,D.Turnbull.Structure and properities of metallic glasses.Science,1978,199:11-21.
    [18]刘全坤,材料成形基本原理.北京:机械工业出版社,2005.
    [19]赵岩,二元合金熔体凝固过程中的结构演化及团簇行为.山东大学博士论文,2007.
    [20]程素娟,金属熔体原子团簇的微观热收缩现象.山东大学博士论文,2004.
    [21]T.Kurosawa.On the Melting of Ionic Crystals.J.Phys.Soc.Japan,1957,12:338-346.
    [22]郭丽君,合金液态结构及其变化规律的研究.合肥工业大学硕士学位论文,2002.
    [23]R.M.J.Cotterl.Molecular dynamics studies of melting Ⅲ.Spontaneous dislocation generation and dynamics of melting.Philo.Mag,1974,30:245-263.
    [24]S.Mitzushima.Dislocation model of liquid structure.Journal of Physics Society of Japan,1960,5:70-77.
    [25]E.Thiele.Equation of State for Hard Spheres.J.Chem.Phys.1963,39:474-479.
    [26]M.S.Wertheim,Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres.Phys.Rev.Lett.1964,10:321-323.
    [27]W.W.Warren Jr.,Concluding remarks:Summary-experiment,J.Non-crystal solids,1996,205-207:930-933.
    [28]D.Turnbull,The gram-atomic volumes of alloys of transition metals with Al and Si,Acta Metall.Mater,1990,38:243-249.
    [29]S.Steeb,H.Entress,Atom distribution and electrical resistivity of molten magnesium-tin alloys.Z.Metallkunde,1966,57:803-807.
    [30]E.J.Enderby.Direct methods for the determination of atomic-scale structure of amphous solidus(X-ray,Electron and Neutron Scattering),.J.Non-Cryst.Solids,1978,31:1-40.
    [31]陆坤权.液态物理进展概述.物理,1994,23:257-265.
    [32]X.F.Bian,M.H.Sun,X.Y.Xue,X.B.Qin.Medium-range order and viscosity of molten Cu-23%Sn alloy.Mater.Lett,2003,57:2001-2006.
    [33]下地光雄(日),液态金属,郭淦钦译,北京:科学出版社,1987.
    [34]S.R.Elliott,Medium-range structural order in covalent amorphous solids,Nature,1991,354:445-452.
    [35]B.P.Alblas,W.Vander Lugt,J Dijkstra,W Geertsma and C Van Dijk.Structure of liquid Na-Sn alloys,J.Phys F:Metal.Phys,1983,13:2465-2477.
    [36]秦敬玉,液体Al-Fe合金的微观不均匀结构研究.山东工业大学博士学位论文,同998.
    [37]祖方遒,液态合金结构变化的研究.中国科学院博士学位论文,2002.
    [38]滕新营,刘含莲,铈对液态共晶Fe-C合金粘度的影响.中国稀土学报,2001,19:435-438.
    [39]洪新国,熔体性质与测量方法的研究.中国科学院博士学位论文,1994.[
    40]Y.Xi,F.Q.Zu,X.F.Li,et al,High-temperature abnormal behavior of resistivities for Bi-In melts.Phys.Lett.A,2004,329:221-225.
    [41]X.F.Li,F.Q.Zu,H.F.Ding,et al.,Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys,Physica B,2005,358:126-131.
    [42]T Iida,R.Guthrie.The physical properties of liquid metal.New York:Clarendon Press,1988.
    [43]P.M Nasch,S.G Steinemann.Density and Thermal Expansion of Molten Manganese,Iron,Nickel,Copper,Aluminum and Tin by Means of the Gamma-Ray Attenuation Technique.Phys Chem Liq,1995,29:43-58.
    [44]P.M Smith,J.W Elmer,G.F Gallegos.Measurement of the density of liquid aluminum alloys by an X-ray attenuation technique.Scripta Mater,1999,40(8):93 7-941.
    [45]Y.Yagodzinskyy,L.Straka and H.H(a|¨)nninen,Forced torsion pendulum for studies of interactions at solid-liquid interface.Mater Sci & Eng.A.2006,442(1-2):538-542.
    [46]L.J.Guo,A.Q.Wu,Z.G.Zhu.Internal friction behavior of liquid AsxTel-x mixtures,J.Non-Cryst.Solid.2007,353:1631-1634.
    [47]A.Q.Wu,L.J.Guo,C.S.Liu,et al.Internal friction behavior of liquid Bi-Sn alloys,PHYSICA B.2005,369:51-55.
    [48]F.Q.Zu,z.G.Zhu,L.J.Guo,et al.Liquid-liquid phase transition in Pb-Sn melts,Phys.Rev.B,2001,64:180-203.
    [49]P.Vashishta,R.K.Kalia,I.Ebbsj(o|¨),Structure correlations and phonon density of states in GeSe2:A molecular-dynamics study of molten and amorphous states,Phys.Rev.B,1989,39:6034-6047.
    [50]G.A.de Wijs,G.Pastore,A.Selloni,W.Van der Lugt.First-principles molecular-dynamics simulation of liquid CsPb,J.Chem.Phys.1995,103:5031-5040.
    [51]B.Sadigh,M.Dzugutov,S.R.Elliott,Vacancy ordering and medium-range structure in a simple monatomic liquid,Phys.Rev.B,1999,59:1-4.
    [52]M.Dzugutov,B.sadigh,S.R.Elliott,Medium-range order in a simple monatomic liquid,J.Non-Cryst.Solids 1998,232-234:20-24.
    [53]H.S.Nam,N.M.Hwang,B.D.Yu,J.K.Yoon,Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters:Surface-Induced Mechanism,Phys.Rev.Lett,2002,89:275502-4.
    [54]K.Y.Chen,H.B.Liu,Z.Q.Hu,Sucture features in binary liquid Li-Tl alloys,J.Chem.Phys,1995,103:9083-9090.
    [55]易双萍,刘让苏,郑采星.液态凝固过程Al的微观结构转变特性,金属学报,2000,36:1030-1032.
    [56]易双萍,刘让苏,李基永等,液态金属Ga的快速凝固模拟,中国有色金属学报,2001,11S2:257-260.
    [57]刘让苏,覃树萍,侯兆阳,等.液态金属In凝固过程中微观结构转变的模拟研究物理学报,2004,53:3119-3114.
    [58]李基永,刘让苏,周征,等,液态金属的初始状态对凝固微结构影响的模拟研究,原子与分子物理学报,1998,15:193-1917.
    [59]刘让苏,李基永,液态金属高温结构转变特性的模拟研究,物理学报,1995,44:1582-1587.
    [60]郑采星,刘让苏,董科军,等,液态金属急冷过程中原子团簇结构形成与转变特性模拟,中国科学(A)辑,2001,31:754-760.
    [61]H.Li,F.Ding,G.H.Wang,J.Zhang,X.F.Bian,Evolution of small nickel cluster during solidification,Solid State Communications 2001,120:41-46.
    [62]H.Li,F.Ding,X.F.Bian,G.H.Wang,Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses,Chem.Phys.Lett,2002,354:466-473.
    [63]H.Li,G.H.Wang,J.J.Zhao,X.F.Bian,Cluster structure and dynamics of liquid aluminum under cooling conditions,J.Chem.Phys,2002,116:10810-10815.
    [64]H.Li,X.F.Bian,G.H.Wang,Molecular dynamics study of the local order and defects in quenched states,Phys.Rev.B,2003,67:094202-7.
    [65]H.Li,F.Ding,J.L.Wang,X.F.Bian,G.H.Wang,Structural studies of clusters in melt of FeAl compound,J.Chem.Phys,2001,114:6413-6416.
    [66]王丽,金属固液间相变热力学及微结构分子动力学模拟,山东大学博士论文,济南,2001.
    [67]陈魁英,李庆春,深过冷液态Mg-Ca合金的微观动力学行为,物理学报,1993,42:8-12.
    [68]P.S.Popel,M.Calvo-Dahlborg,and U.Dahlborg.Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy,J.Non-Cryst.Solids,2007,353:3243-3253.
    [69]U.Dahlborg,M.Calvo-Dahlborg,P.S.Popel,and V.E.Sidorov:Structure and properties of some glass-forming liquid alloys.Eur.Phys.J.B,2000,14:639-648.
    [70]E.G.Jia,A.Q.Wu,L.J.Guo,et al.Experimental evidence of the transformation from microheterogeneous to microhomogeneous states in Ga-Sn melts,Phys.Lett.A,2007,364:505-509.
    [71]P.S.Popel,O.A.Chikova,V.M.Matveev.Metastable colloidal states of liquid metallic solutions,High Temperature Materials and Processes,1995,14:219 -233.
    [72]U.Dahlborg,M.Besser,M.Calvo-Dahlborg,et al.Structure of molten Al-Si alloys,J.Non-Cryst.Solids,2007,353:3005 -3010.
    [73]M.Dutkiewicz and E.Dutkiewicz;Study of microheterogeneous structure of non-aqueous mixed solvents by non-linear dielectric and viscometric methods.Electrochimica Acta.2006,51:2346-2350.
    [74]S.Mudry,I.Shtablavyi.The influence of doping with tin on the structure of Cu0.70Si0.30eutectic melt.J.Non-Cryst.Solids,2006,352:4287-4291.
    [75]S.V.Prokhorenko.The Structure-Thermodynamic State and the Mechanism of Crystallization of Gallium-Based Melts,High Temperature,2005,43:700-705.
    [76]P.S.Popel,O.A.Chikova,V.M.Matveev.Metastable colloidal states of liquid metallic solutions,High Temperature Materials and Processes,1995,14:219-233.
    [77]R.L(u|¨)ck.Magnetothermal analysis of the decagonal phases Al65Cu20Co15 and Al70Ni15Co15.J.Non-Cryst.Solids,1993,153-154:329-333.
    [78]李培杰,桂满昌.Al-16%Si合金的液态相结构转变.铸造,1995,23(9):15-20.
    [79]田学雷,陈熙琛,Ilinsky AG.过冷状态下的Cu70Ni30合金的液态结构.中国科学,A辑,2000.30(9):842-846.
    [80]A.R Ubbelohde,The Molten State of Matter:Melting and Crystal Structure.New York:WILEY,1978.
    [81]P.G.Debenedetti,Metastable Liquids,Princeton University Press,Princeton,1997.
    [82]C.A.Angell,Formation of Glasses from Liquids and Biopolymers,Science,1995,267:1924-1935.
    [83]P.H.Poole,T.Grande,C.A.Angell,et al.Polymorphic Phase Transitions in Liquids and Glasses,Science,1997,275:322-323.
    [84]Y.Katayama,T Mizutani,W Utsumi,et al,A first-order liquid-liquid phase transition in phosphorus,Nature,2000,403:170-3.
    [85]Y.Senda,F.Shimojo,K.Hoshino,The liquid-liquid phase transition of liquid phosphorus studied by ab initio molecular-dynamics simulations,J.Non-Cryst.Solids,2002,312-314:80-84.
    [86]P.McMillan,Phase transitions:Jumping between liquid states,Nature,2000,403:151-152.
    [87]P.H.Poole,T.Grande,C.A.Angell,et al.Polymorphic Phase Transitions in Liquids and Glasses,Science,1997,275:322-323.
    [88]M.Yao and H.Endo,Structure and physical properties of liquid chalcogens.J.Non-Cryst.Solids,1996,205-207:85-88.
    [89]S.Sastry,C.Austen,Liquid-liquid phase transition in supercooled silicon.Nature Mater,2003,2:739-743.
    [90]C.J.Roberts,A.Z.Panagiotopoulos,and P.G.Debenedetti,Liquid-Liquid Immiscibility in Pure Fluids:Polyamorphism in Simulations of a Network-Forming Fluid.Phys.Rev.Lett.,1996,77:4386-4389.
    [91]P.H.Poole,M.Hemmati,and C.A.Angell,Comparison of Thermodynamic Properties of Simulated Liquid Silica and Water.Phys.Rev.Lett.1997,79:2281-2284.
    [92]S.Harrington,R.Zhang,P.H.Poole,et al.,Liquid-Liquid Phase Transition:Evidence from Simulations.Phys.Rev.Lett,1997,78:2409-2412.
    [93]O.Mishima,L.D.Calvert,and E.Whalley,An apparently first-order transition between two amorphous phases of ice induced by pressure.Nature,1985,314:76-78.
    [94]P.H.Poole,F.Sciortino,U.Essmann,and H.E.Stanley,Phase behaviour of metastable water.Nature,1992,360:324-328.
    [95]P.H.Poole,F.Sciortino,T.Grande,et al.,Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water.Phys.Rev.Lett.,1994,73:1632-1935.
    [96]O.Mishima and H.E.Stanley,Decompression-induced melting of ice Ⅳ and the liquid-liquid transition in water,Nature,1998,392:164-168.
    [97]O.Mishima and H.E.Stanley,The relationship between liquid,supercooled and glassy water,Nature,1998,396:329-335.
    [98]F.Q.Zu,L.J.Guo,Z.G.Zhu,et al,Relative Energy Dissipation:Sensitive to Structural Changes of Liquids,Chin.Phys.Lett.2002,19:94-97.
    [99]F.Q.Zu,Z.G.Zhu,L.J.Guo,et al,Observation of an Anomalous Discontinuous Liquid-Structure Change with Temperature,Phys.Rev.Lett.2002,89:125505.
    [100]F.Q.Zu,Z.G.Zhu,B Zhang,et al,Post-melting anomaly of Pb-Bi alloys observed by internal friction technique.J.Phys.:Condens.Matt.2001,13:11435.
    [101]朱震刚,祖方道,郭丽君,等,液态金属结构研究新进展,物理,2003,32(5):283-285.
    [102]F.Q.Zu,X.F.Li,L.J.Guo,et al,Temperature dependence of liquid structures in In-Sn20:diffraction experimental evidence.Physics Letters A,2004,324:472-478.
    [103]Z.G.Zhu,F.Q.Zu,L.J.Guo,et al,Internal friction method:suitable also for structural changes of liquids.Mater.Sci.Eng.A.2004,370:427-430.
    [104]郭丽君,祖方遒,朱震刚,以内耗技术探索Pb-Sn合金熔体的结构变,物理学报,2002,51(2):300-304.
    [105]L.Wang,X.F.Bian,J.T.Liu,Discontinuous structural phase transition of liquid metal and alloys(1),Phys.Lett.A,2004,,326:429-435.
    [106]W.M.Wang,X.F.Bian,H.R.Wang,et al.,Origin of the anomalous volume expansion in Al-Si alloys above liquidus.J.Mater.Res.2001,16:3592-3598.
    [107]X.F.Bian,W.M.Wang.Thermal-rate treatment and structure transformation of Al-13 wt.%Si alloy melt.Mater.Lett.,2000,44:54-58.
    [108]C.S.Liu,Z.G.Zhu,J.C.Xia,et al.Molecular dynamics simulation of the local inherent structure of liquid silicon at different temperatures.Phys.Rev.B.1999,60(5):3194-3199.
    [109]Z.H.Chen,F.Q.Zu,X.F.Li,et al.Temperature-induced liquid-liquid transition process in eutectic Pb-Sn melt explored from kinetic viewpoint,J.Phys.:condens.Matt.,2007,19:116106.
    [110]Z.H.Chen,F.Q.Zu,X.F.Li,et al.Kinetics of the liquid-liquid transition of Pb-Sn melts,Kovove Mater,2007,45(6):299-303.
    [lll]F.Q.Zu,Z.H.Chen,L.Zou,et al.Kinetic property of temperature induced liquid-liquid structure transition in In-Sn and In-Pb melts,Phys.& Chem.Liq.,2008,46(4):433-441.
    [112]边秀房,刘相法,马家骥.铸造金属遗传性.济南:山东科学技术出版社,1999.
    [113]GH Vineyard.Liquid metal and solidification.ASM,Cleveland,1958.
    [114]R Stephen Berry.熔点和凝固点不同.科学(Scientific American中文版),1990,12:33-38.
    [115]Matthias Brack.金属团和幻数.(Scientific American中文版),1998,3:1-7.
    [116]蔡英文,范新会,李建国等.原子簇在熔体晶体生长中的作用.西北工业大学学报,1996,14:323-324.
    [117]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究.北京科技大学博士学位论文,1995.
    [118]Vineyard G H.Liquid Metals and Solidification.Cleveland:ASM,1958.
    [119]徐达鸣,李庆春,陈洪升.利用重熔控制技术细化铸件晶粒组织.铸造1996,23(2):27-31.
    [120]桂忠楼.镍基高温合金BTOP工艺的发展.航空制造工程,1995,4:12-14.
    [121]坚增运.净化和熔体温度处理对铝合金凝固过程、组织和性能的影响,西北工业大学博士学位论文,1995.
    [122]魏朋义.合金凝固新技术及理论的研究-熔体处理组织改性及高梯度单晶制备.西北工业大学博士学位论文,1993.
    [123]殷凤仕.熔体处理和热处理对M963合金微观结构及力学性能的影响.中国科学院金属研究所博士学位论文,2002.
    [124]P.Rudolph,N.Schaefer,T.Fukuda.Crystal growth of ZnSe from the melt,Materials Science and Engineering R-Report.199:5,15:85-133.
    [125]J.F.Wang,A.Omino,M.Isshiki.Bridgman growth of twin-free ZnSe single crystals,Mater.Sci.& Engin.B.2001,83:185-191.
    [126]Y.L.Tang,M.J.Kramer,K.W.Dennis,et al,On the control of microstructure in rapidly solidified Nd-Fe-B alloys through melt treatment,Journal of Magnetism and Magnetic Materials.2003,267:307-15.
    [127]陈光,傅恒志等,非平衡凝固新型金属材料,北京:科学出版社,2004.
    [128]GI Eskin,DG Eskin.Some control mechanisms of spatial solidification in light alloys.Zeitschrift Fur Metallkunde.2004,95:682-690.
    [129]P.S.Popel,M.Calvo-Dahlborg,U.Dahlborg.Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy.J.Non-Cryst.Solids 2007,353:3243-3253.
    [130]李培杰,桂满昌,贾均,等.Al-16%Si合金熔体的电阻率及其结构遗传.铸造,1995,9:15-20.
    [131]P.J.Li,V.I.Nikitin,E.G.Kandalova,K.V.Nikitin,Mater.Sci.Eng.A,2002,332:371-374.
    [132]C.L.Xu,Q.C.Jiang.Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate.Mater.Sci.& Engin.A,2006,437:451-455.
    [133]T.Ohmi,M Kudoh.Refinement of primary silicon crystals in hypereutectic Al-Si alloys by the duplex casting process.J.Japan Inst.Metals,1990,54(6):700-705.
    [134]T.Ohmi,M Kudoh.Effect of casting condition on refinement of primary crystals in hypereutectic Al-Si alloy ingots produced by duplex casting process.J.Japan Inst.Metals,1992,56(9):1064-1071.
    [135]T.Ohmi,K Minoguchi,M Kudoh,et al.Control of primary silicon crystal size of semi-solid hypereutectic Al-Si alloy by slurry-melt mixing process.J.Japan Inst.Metals,1994,58(11):1311-1317.
    [136]T.Ohmi,K Matsuura,M Kudoh,et al.Modeling of primary solidification of hypereutectic Al-Si alloy with dynamic undercooling.J.Japan Inst.Light Metals,1997,47(2):71-76.
    [137]坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理.中国有色金属学报,1995,5(4):133-135.
    [138]关绍康,沈宁福,石广新.熔体处理对过共晶Al-Si合金组织及性能的影响.郑州工业大学学报,2000,20(2):5-7.
    [139]何树先,孙宝德,王俊,等.熔体温度处理工艺对A319合金组织和性能的影响.中国有色金属学报,2001,11(5):834-839.
    [140]张蓉,沈淑娟,刘林.过热处理对Al-Si过共晶合金耐磨性能的影响.摩擦学学报,2000,20(5):344-347.
    [141]X.F.Li,F.Q.Zu,J Yu,et al.Effect of liquid-liquid transition on solidification of Bi-Sb10 wt%alloy' Phase Transitions,2007,81:43-50.
    [142]耿浩然,马家骥,王拥军.高强度铸造铝合金的熔体过热处理.中国有色金属学报,1994,4(4):73-77.
    [143]周振平,李荣德,马建超.热速处理对Al2Fe合金组织与性能的影响.中国有色金属学报,2004,14(8):1420-1425.
    [144]V.P.Manov,S.I.Popel,P.I.Buler,et al.The influence of quenching temperature on the structure and properties of amorphous alloys.Mater.Sci& Eng.A.1991,133:535-540.
    [145]F.Shahri,A.Beitollahi.Effect of super-heat treatment and quenching wheel speed on the structure and magnetic properties of Fe-Si-Nb-Cu-B-Al-Ge melt spun ribbons.J.Non-Cryst.Solids.2008,354:1487-1493.
    [146]关绍康,沈宁福,汤亚力,胡汉起.快凝Al-Fe-M-Si合金的显微结构对熔体热历史的敏感性.金属学报,1996,32(8):823-828.
    [147]Cang Fan,Muneyuki Imafuku,Hiroshi Kurokawa,et al.Investigation of short-range order in nanocrystal-forming Zr60Cu20Pd10A110 metallic glass and the mechanism of nanocrystal formation.Appl.Phys.Lett.,2001,79(12):1792-1794.
    [148]Z.Altounian,J.O.Strom-Olsen and J.L.Walter.A search for phase separation in amorphous NiZr2,J.Appl.Phys.,1984,55:1566-1571.
    [149]G Chen,J W Yu,H Z Fu.Influence of the melt heat history on the solid/liquid interface morphology evolution in unidirectional solidification.Mater.Sci.lett.,1999,18:1571-1573.
    [150]陈光,俞建成,孙彦臣,等.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响.材料研究学报,1999,13(5):497-500.
    [151]Y.W.Cai,G.L Zhang,J.S.Li,et al.Effect of melt heat treatment on the solid/liquid interface morphology of directional solidification.Sci.and Tech.of Advanced Mater.,2001,2:169-172.
    [152]陈光,俞建成,谢发勤,等.熔体过热历史对Ni基高温合金定向凝固界面形态的影响.金属学报,2001,37(5):478-492.
    [153]耿兴国,傅恒志,陈光.熔体过热对定向凝固界面形态稳定性的影响.金属学报.2002,38(3):225-229.
    [154]陈光,傅恒志.过热合金熔体的几种物性滞后效应.材料科学与工程,2002,20(4):549-551.
    [155]邹敏明,张军,刘林,傅恒志.熔体过热对镍基高温合金凝固组织及性能的影响研究.材料工 程,2008,5:71-74.
    [156]邹敏明,张军,刘林,等.熔体超温处理对DD3单晶高温合金凝固组织的影响.金属学报,2008,44(1):59-63.
    [157]邹敏明,张军,刘林,等.熔体过热时间对DD3单晶高温合金凝固组织的影响.金属学报,2008,44(2):150-154.
    [158]邹敏明,张军,刘林,傅恒志,熔体超温处理对DD3单晶高温合金二次枝晶间距的影响.金属学报,2008,44(2):155-158.
    [159]Zou Min-ming,Zhang Jun,Liu lin,Fu Heng-zhi.Microstructure evolution of Ni-base single crystal superalloy under different melt holding time.材料科学与工艺,2008,16,增刊 1:86-90.
    [160]司乃潮,孙克庆,刘海霞.熔体过热处理对定向凝固界面形态及稳定性的影响.铸造.2005,54(5):429-432.
    [161]孙克庆,司乃潮,陈庆福.熔体过热温度对Al-4.7%Cu合金定向凝固组织和性能的影响.铸造技术.2006,27(1):52-56.
    [162]司乃潮,孙克庆,吴强.熔体过热处理对Al-4.7%Cu合金定向凝固组织的影响.中国有色金属学报,2007,17(4):547-553.
    [1]Q.Wang,K.Q.Lu,Y.X.Li.The relationship between electrical resistivity,thermopower and temperature for liquid InSb.Acta Physica Sinica,2001,50:1355-1358.
    [2]F.Q.Zu,X.F.Li,L.J.Guo,et al.Temperature dependence of liquid structures in In-Sn20:diffraction experimental evidence.Phys.Lett.A.,2004,324:472-478.
    [3]F.Q.Zu,Z.G.Zhu,L.J.Guo,et al.Liquid-liquid phase transition in Pb-Sn melts.Phys.Rev.B.,2001,64:180203.
    [4]F.Q.Zu,Z.G.Zhu,B.Zhang,et al.Post-melting anomaly of Pb-Bi alloys observed by internal friction technique.J.Phys.:Condens.Matter.,2001,13:11435-11442.
    [5]A.Q.Wu,L.J.Guo,C.S.Liu,et al.The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys.Physica B:Condensed Matter.2007,392:323-326.
    [6]C.S.Liu,G.X.Li,Y.F.Liang,et al.Quantitative analysis based on the pair distribution function for understanding the anomalous liquid-structure change in In20Sn80.Phys.Rev.B.,2005,71:064204.
    [7]X.F.Li,F.Q.Zu,H.F.Ding,et al.High-temperature liquid-liquid structure transition in liquid Sn-Bi alloys:experimental evidence by electrical resistivity method.Phys.Lett.A.,2006,354:325-329.
    [8]L.Wang,X.F.Bian,J.Liu.Discontinuous structure phase transition of liquid metal and alloys.Phys.Lett.A.,2004,326:429-435.
    [9]X.F.Li,F.Q.Zu,H.F.Ding,et al.Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys.Physica B:Condensed Matter.,2005,358:126-131.
    [10]F.Q.Zu,R.R.Shen,Y.Xi,et al.Electrical resistivity of liquid Sn-Sb alloy.J.Phys.:Condens.Matter.,2006,18:2817-2823.
    [11]G.Zhao,C.S.Liu,and Z.G.Zhu.Ab initio molecular-dynamics simulations of the structural properties of liquid In_(20)Sn_(80) in the temperature range 798-1193 K.Phys.Rev.B.,2006,73:024201.
    [12]F.Q.Zu,Z.G.Zhu,L.J.Guo,et al.Observation of an anomalous discontinuous liquid-structure change with temperature.Phys.Rev.Lett.,2002,89:125505.
    [13]韩秀君,王楠,魏炳波.Pb-Bi亚共晶和包晶合金的快速凝固.金属学报,2000,36:573-578.
    [14]J.M.Ziman,A theory of electrical properties of liquid metals.1.the monovalent metals.Phil.Mag.,1961,6:1013-1034.
    [15]沈融融,电阻率法研究二元合金温度诱导不连续液-液结构转变,合肥工业大学硕士论文, 2006.
    [16]田莳,金属物理性能,北京:国防工业出版社,1985.
    [17]Keithley Instruments,Inc.,Model 2182 Nanovoltmeter User's Manual,Cleveland,Ohio,U.S.A.Fifth Printing,April 2002
    [18]郭丽君,祖方遒,朱震刚,以内耗技术探索Pb-Sn合金熔体的结构变化,物理学报,2002,51(2):300-303
    [19]J.Enderby,Direct method for the determination of atomic-scale structure of amorphous solids (X-ray,Electron and Neutron Scattering),J.Non-Cryst.Solids,1978,31:1-40
    [20]Y.Waseda,The Structure of Non-Crystalline Materials,McGraw-Gill,New York,1980.
    [1]F.Q.Zu,Z.G.Zhu,L.J.Guo,et al.Observation of an anomalous discontinuous liquid-structure change with temperature.Phys.Rev.Lett.,2002,89:125505.
    [2]F.Q.Zu,X.F.Li,L.J.Guo,et al.Temperature dependence of liquid structures in In-Sn20:diffraction experimental evidence.Phys.Lett.A.,2004,324:472-478.
    [3]F.Q.Zu,Z.G.Zhu,L.J.Guo,et al.Liquid-liquid phase transition in Pb-Sn melts.Phys.Rev.B.,2001,64:180203.
    [4]X.F.Li,F.Q.Zu,H.F.Ding,et al.High-temperature liquid-liquid structure transition in liquid Sn-Bi alloys:experimental evidence by electrical resistivity method.Phys.Lett.A.,2006,354:325-329.
    [5]X.F.Li,F.Q.Zu,H.F.Ding,et al.Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys.Phys.B.,2005,358:126-131.
    [6]F.Q.Zu,R.R.Shen,Y.Xi,et al.Electrical resistivity of liquid Sn-Sb alloy.J.Phys.:Condens.Matter.,2006,18:2817-2823.
    [7]H.Ocken,C.N.J.Wagner,Temperature dependence of the structure of liquid indium,Phys.Rev.,1966,149:122o130.
    [8]S.J.Cheng,X.F.Bian,J.X.Zhang,et al.Correlation of viscosity and structural changes of indium melt Mater.Lett.,2003,57:4191-4195.
    [9]S.J.Cheng,X.B.Qin,X.F.Bian,et al.Thermal contraction phenomenon of cluster structure of indium melt,Trans.Nonferrous Met.Soc.China,2002,12:493-497.
    [10]侯增寿,卢光熙,金属学原理.上海科学技术出版社,上海,1993.
    [11]秦敬玉,边秀房,王伟民,S.I.Sliusarenko,Al和Sn液态结构的温度变化特性,物理学报,1998,47:438-444.
    [12]祖方遒,液态合金结构变化的研究.中国科学院物理研究所博士学位论文,2002.
    [13]T.Itami,S.Munejiri,T.Masaki,et al.,Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation:A comparison to liquid Pb.Phys.Rev.B,2003,67:064201.
    [14]杨中喜,耿浩然,陶珍东,孙春静,液态Sn的粘度及其熔体微观结构的变化.原子与分子物理学报.2004,21:663-666.
    [15]赵岩,二元合金熔体凝固过程中的结构演化及团簇行为.山东大学博士学位论文,2007.
    [16]Y.Waseda,The Structure of Non-Crystalline Materials,McGraw-Hill,New York,1980.
    [17]I.Kaban,W.Hoyer,Interplay between atomic and electronic structure in liquid noble-polyvalent metal systems,J.Non-Crystal.Solids,2002,312-314:41-46.
    [18]P.S.Popel,M.Calvo-Dahlborg,and U.Dahlborg.Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy.J.Non-Crystal.Solids,2007,353:3243-3253.
    [19]I.Kaban,Th.Halm,W.Hoyer.Structure of molten copper-germanium alloys.J.Non-Cryst.Solids,2001,288:96-102.
    [20]A.H.Narten,Liquid Water:Atom Pair Correlation Functions from Neutron and X-Ray Diffraction.J.Chem.Phys,1972,56:1185.
    [21]Y.Kita,J B Van Zytveld,Z Morita,et al.,Covalency in liquid Si and liquid transition-metal-Si alloys:X-ray diffraction studies.J.Phys.:Condens.Matter,1994,6:811-820.
    [22]T.B.Massalski,Binary Alloys Phase Diagrams,vol.3,Metals Park,OH,1993.
    [23]T.E.Faber,An introduction to the theory of liquid metals,Cambridge University,Cambridge,London,1972.
    [24]下地光雄,液态金属,科学出版社,1987.
    [25]P Si,X Bian,J Zhang,et al.,The fragility of Al-Ni-based glass-forming melts,J.Phys.:Condens.Matter,2003,15:5409-5415.
    [26]T.Iida and R.I.L.Guthrie,The Physical Properties of Liquid Metals.Clarendon,Oxford,1988.
    [1]F.Q.Zu,X.Yi,X.F.Li,et al.Observation of a reversible liquid-liquid structural change in PbSn melts with electrical resistivity method.Inter.J.Moderu Phys.B,2008,22:3683-3693.
    [2]X.F.Li,F.Q.Zu,L.J.Liu,et al.Effect of Sn on reversibility of liquid-liquid transition in Bi-Sb-Sn alloys.J.Alloys& Comp.2008,453:508-512.
    [3]I.Kaban,W.Hoyer,Y.Plevachuk,and V.Sklyarchuk:Atomic structure and physical properties of liquid Pb-Bi alloys.J.Phys.:Condens.Matter,2004,16:6335-6341.
    [4]Y.Waseda,The Structure of Non-crystalline Materials,Liquid and Amorphous Solid.New-York:ASM,1980.
    [5]H.Reichert,Observation of five-fold symmetry in liquid lead,Nature,2004,08:839.
    [6]JX Hou,HZ Guo,JJ Sun,et al.Structure change of Pb melt.Phys.Lett.A.,2006,358:171-175.
    [7]S.I.Mudry.The structure of liquid Bi2Te3 alloys near the stoichiometric region,J.Alloys&Comp.,1998,267:100-104.
    [8]S.V.Prokhorenko.The Structure-Thermodynamic State and the Mechanism of Crystallization of Gallium-Based Melts.High Temperature,2005,43:700-705.
    [9]B.C.Anusionwu,O.Akinlade,and L.A.Hussain:A theoretical study of structure and ordering in Pb-Bi molten alloys.Phys.Chem.liq.,1997,34:1-13.
    [10]Yu.Plevachuk,V.Sklyarchuk,S.Eckert,et al.,Some physical data of the near eutectic liquid lead-bismuth.J.Nuclear Mater.,2008,373:335-342.
    [11]H.Neumann,W.Hniz,and W.Hoyer:X-Ray investigations on molten Bi-Pb alloys.Phys.Chem.liq.,1995,29:211-222.
    [12]D.Yagodin,G.Sivkov,S.Volodin,et al.Temperature dependences of density and ultrasound velocity of the eutectic Bi-44.6 wt.%Pb melt.J.Mater.Sci.,2005,40:2259-2261.
    [13]V.Sklyarchuk,Yu.Plevachuk,G.Gerbeth,et al.Melting-solidification process in Pb-Bi melts.J.Phys.:Conference Series,2007,79:012019.
    [14]B.C.Anusionwu,Partial Coordination Numbers in Pb-Bi Molten Alloys,Phys.Chem.liq.,2002,41:65-71.
    [15]V.Sobolev.Thermophysical properties of lead and lead-bismuth eutectic.Journal of Nuclear Materials,2007,362:235-247.
    [16]F.Q.Zu,Z.G.Zhu,B.Zhang,Y Feng,and J P Shui:Post-melting anomaly of Pb-Bi alloys observed by internal friction technique.J.Phys.:Condens.Matter,2001,13:11435-11442.
    [17]Q Li,FQ Zu,XF Li,et al.The electrical resistivity of liquid Pb-Bi alloy,Modern Physics Letters B,2006,20:151-158.
    [18]李先芬.共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响.合肥工业大学博士论文,2006.
    [19]X.F.Li,F.Q.Zu,L.J.Liu,et al.Hump phenomenon on resistivity-temperature curve in liquid Bi,Sb and their alloys.Physics and Chemistry of Liquids 2007,45:531-539
    [20]D M North,J E Enderby and P A Egelstaff.The structure factor for liquid metals Ⅱ.Results for liquid Zn,Tl,Pb,Sn and Bi.J.Phys.C:Solid State Phys.,1968,1:1075-1087.
    [21]N.C.Halder,D.M.North,C.N.J.Wagner,Temperature Dependence of the Total Interference Functions of Liquid Cu-Sn Alloys.Phys.Rev.,1969,177:47-51.
    [22]D.M.North,C.N.J.Wagner.Atomic distribution in liquid copper-tin alloy.Phys.Chem.liq.,1970,2:87-113.
    [23]S.Gruner,l.Kahan,R.Kleinhempel,et al.Short-range order and atomic clusters in liquid CuSn alloys,J.Non-Cryst.Solids.,2005,351:3490-3496.
    [24]X.Bian,X.Pan,X.Qin,et al.Medium-range order clusters in metal melts.Sci.China,2002,45(2):113-119.
    [25]X.Bian,J.Zhang,Y.Jia,et al.Viscosity characteristic in metallic melts with medium/short-range order structures.Chin.Phys.Lett.,2005,22(3):644-647.
    [26]X.Bian,M.Sun,X.Xue,X.Qin,Medium-range order and viscosity of molten Cu-23%Sn alloy.Mater.Lett.,2003,57:2001-2006.
    [27]X.Xue,X.Bian,H.Geng,et al.Relativity of medium range order in molten Cu-Sn alloys and phase diagram.Mater.Sci.Technol,2003,19:557-560.
    [28]X.Xue,X.Bian,H.Geng,et al.Structural evolution of medium range and short-range order with temperature in Cu-25 wt.%Sn.Mater.Sci.Eng.A,2003,363:134-139.
    [29]T Mao,X.F.Bian,X.Y.Xue,et al.Correlation between viscosity of molten Cu-Sn alloys and phase diagram.Phys.B,2007,387:1-5.
    [30]Y Zhao,X.X.Hou,X.F.Bian.Phase transition in liquid Cu60Sn40 alloy.Mater.Lett.,2008,62:3542-3544.
    [31]郭丽君,祖方遒,朱震刚.以内耗技术探索Pb-Sn合金熔体的结构变化,物理学报,2002,51:300-303.
    [32]V.V.Berezutski,M.I.Ivanov.Electrical resistivity of liquid Cu-Eu and Cu-Gd alloys.J.Alloys & Comp.,1999,282:1-4.
    [33]I.Kaban,W.Hoyer.Interplay between atomic and electronic structure in liquid noble-polyvalent metal systems.J.Non-Cryst.Solids,2002,312-314:41-46.
    [34]KQ Lu,Q Wang.The structures,electronic states and properties in liquid Ga-Sb and In-Sb systems.J.Non-Cryst.Solids,2002,312-314:34-40.
    [35]M.P.Tosi.Structure of covalent liquids.J.Phys.:Condens.Matter,1994,6:A13-28.
    [36]P.S.Popel,V.E.Sidorov.Microheterogeneity of liquid metallic solutions and its influence on the structure and properties of rapidly quenched alloys.Mater.Sci.Eng.A,1997,226-228:237-244.
    [37]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究.北京科技大学博士学位论文,1995.
    [38]T Mao,X Bian,X Xue,et al.Correlation between viscosity of molten Cu-Sn alloys and phase diagram.Physica B,2007,387:1-5.
    [39]W Knoll,S Steeb.Structure of Molten Copper-Antimony Alloys by Combination of Neutron and X-ray Diffraction.Phys.Chem.Liq,1973,4:39-60
    [1]傅恒志.凝固科学技术与材料发展.北京:国防工业出版社,2005.1
    [2]U.Ekpoom,R.W.Heine.Thermal Analysis by Differential Heat Analysis(DHA) of Cast Iron.AFS Trans.,1981,89:27-38.
    [3]SL Backerud,GK.Sigworth.Recent Development in Thermal Analysis of Aluminum Casting Alloys.AFS Trans.,1989,97:459-464.
    [4]I.G.Chen,D.M.Stefanescu.Computer-aided differential thermal analysis of spheroid and compacted graphite cast irons,AFS Trans.,1984,92:947-962.
    [5]X.J.Sun,Y.X.Li,X.Chen.Identification and evaluation of modification level for compacted graphite cast iron,Journal of materials processing technology,2008,200:471-480.
    [6]D.Emadi,L.V.Whiting,S.Nafisi,et al.Applications of thermal analysis in quality control of solidification processes.Journal of Thermal Analysis and Calorimetry,2005,81:235-242.
    [7]Yanxiang Li,and QiangWang,Intelligent evaluation of melt iron quality by pattern recognition of thermal analysis cooling curves.J.Mater.Proc.Tech.,2005,161:430-434.
    [8]M.Djurdjevic,H.Jiang,J.Sokolowski.On-line prediction of aluminum-silicon eutectic modification level using thermal analysis.Materials Characterization,2001,46:31-38.
    [9]周婷嫣,周尚祥,华勤等,铸造热分析的新发展,铸造技术,2003,24(6):482-484.
    [10]魏喆良,陈宇,张水珠,热分析法在铸造生产中的应用,现代铸铁,2003,2:58-62.
    [11]朱彦方,洪沙德,热分析法在铁液质量在线控制中的应用,现代铸铁,2004,4:33-35.
    [12]孙业赞,曹刚,姚寿山,于敞,张国伟.Al-Si合金凝固相变热的Fourier算法,上海交通大学学报,2001,35(3):473-476.
    [13]D.Apenlian,G K.Sigworth,K.R.Whaler.Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis.AFS Trans.,1984,92:297-307.
    [14]N Tenekedjiev,JE Gruzleski.Thermal Analysis of Strontium Treated Hypoeutectic and Eutectic Aluminum-Silicon Casting Alloys.AFS Trans.,1991,98:1-6.
    [15]D Emadi and L.V.Whiting,Determination of solidification characteristics of Al-Si alloys by thermal analysis,AFS Trans.,2002,110:285-296.
    [16]Frost,DM Stefanescu.Melt quality assessment of SG iron through computer-aided cooling curve analysis.AFS Trans.,1992,100:189-199.
    [17]Fras,W Kapturkiewicz,A Burbielko,et al.A new conception in thermal analysis of casting.AFS trans.,1993,101:505-511.
    [18]Fras,W.Kapturckiewicz,A.Burbielko,et al..Numerical simulation and fourier thermal analysis of solidification kinetics in high-carbon Fe-C alloys.Metall.& Mater.Trans.B,1997,28:115-123.
    [19]崔忠圻.金属学与热处理.机械工业出版社,1999
    [20]陈光,傅恒志.非平衡凝固新型金属材料.北京:科学出版社,2004.
    [21]胡汉起.金属凝固.北京:冶金工业出版社,1985.
    [22]俞佐平,陆煜.传热学(第三版),北京:高等教育出版社,1995.
    [23]薛宪营,Cu-Sn合金熔体中程有序结构及其与快凝组织相关性.山东大学硕士学位论文, 2004.
    [24]N.Kuwano,C.M.Wayman.Microstructural changes in an afed Cu-15.0at%Sn shape memory alloy.Transactions of the Japan Institute of Metals,1983,24:504-509.
    [25]周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998
    [26]李先芬.共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响.合肥工业大学博士学位论文,2006.
    [1]王猛.Zn-Cu包晶合金定向凝固组织及相选择.西北工业大学博士论文,2002
    [2]H.W.Kerr,W.Kurz,Solidification of Peritectic Alloys,Inter.Mater.Rev.,1996,41:129-164.
    [3]毛丽娜.Cu-Sb合金熔体结构转变及其凝固相关性.合肥工业大学硕士学位论文,2009.04
    [1]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998.
    [2]卢百平,定向凝固技术的若干进展.铸造.2006.55(08):767-771
    [3]T Ohmi,K Minoguchi,M Kudoh,et al.Control of primary silicon crystal size of semi-solid hypereutectic Al-Si alloy by slurry-melt mixing process.J.Japan Inst.Metals,1994,58(11):1311
    [4]X.F.Bian,W.M.Wang.Thermal-rate treatment and structure transformation of Al-13 wt.%Si alloy melt.Mater.Lett.2000,44:54-58.
    [5]周振平,李荣德,马建超.热速处理对Al2Fe合金组织与性能的影响.中国有色金属学报,2004,14(8):1420-1425.
    [6]G Chen,J W Yu,H Z Fu.Influence of the melt heat history on the solid/liquid interface morphology evolution in unidirectional solidification.Mater.Sci.lett.,1999,18:1571-1573.
    [7]Y.W.Cai,G.L.Zhang,J.S.Li,et al.Effect of melt heat treatment on the solid/liquid interface morphology of directional solidification.Science and Technology of Advanced Materials,2001,2:169-172.
    [8]邹敏明,张军,刘林,等.熔体超温处理对DD3单晶高温合金凝固组织的影响.金属学报,2008,44(1):59-63.
    [9]殷凤仕.熔体处理和热处理对M963合金微观结构及力学性能的影响.中国科学院金属研究所博士学位论文,2002.
    [10]W.Kurz,D.J.Fisher.Fundamentals of solidification.New Hampshire:Trans.Tech.publications LTD.
    [11]M.C.Fiemings.Solidification processing.Metall.&Mater.Trans.B.5(1974)2121-2134.
    [12]边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社.
    [13]李先芬.共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响.合肥工业大学博士学位论文,2006.
    [14]H.Jaccobi,K.Schwerdtfeger,Dendrite morphology of steady state unidirectional solidified steel.Metall.Trans.A.1976,7:811-8:20.
    [15]陈光,傅恒志.非平衡凝固新型金属材料.北京:科学出版社,2004.
    [16]W Kurz,D J Fisher.Fundermentals of solidification.4th revised edition.Switzerland:Trans.Tech.Publications Ltd,1998.
    [17]J.D.Hunt.Solidification and castings of metals.London:The metals society,1979.
    [18]J.D.Hunt,S.Z.Lu.Numerical modeling of cellular/dendritic array growth:spacing and structure predictions.Mater Sci.Eng.Metall.Trans.A.1996,27:611-623.
    [19]霍裕平,郑久仁.非平衡态统计理论.北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700