无热化设计效果检测仪自动调焦系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无热化设计效果检测仪是检测红外光学系统的无热化设计效果是否符合要求的设备。本文进行无热化设计效果检测仪中自动调焦系统的研究,其自动调焦系统由红外成像探测器、位移控制组件、信号处理电路和计算机控制软件组成,控制软件由图像处理模块、运动控制模块、自动调焦模块和无热化检测模块组成。
     分别对空间域、信息域和频域中的自动聚焦算法进行了理论研究。针对于红外图像的特点,以检测仪在不同条件下采集的三组红外图像作为分析对象,对各种自动聚焦算法的性能进行了研究。基于差分绝对值之和(SMD)算子和拉普拉斯算子的自动聚焦算法由于实时性、稳定性和准确性较好,分别作为检测仪粗调焦和细调焦的自动聚焦算法。研究并解决了无热化设计效果检测仪系统自动调焦的实现中的一系列关键技术,包括聚焦位置的搜索算法、最佳调焦区域的划分、自动调焦策略和调焦曲线拟合等。提出了一种图像调焦区域划分的方法,该方法首先对调焦图像利用区域生长的方法进行目标识别,再将识别出来的目标区域作为调焦运算区域,提高了自动调焦的精度和速度。
     设计了无热化设计效果检测仪的系统控制软件。根据检测仪的硬件组成,分别实现了温度调节系统和位移控制组件的控制、红外成像探测器图像的采集和处理、自动调焦以及无热化设计效果检测等功能。在进行图像采集和预处理时,根据无热化测试效果检测仪采集的图像的特点,提出了一种基于自适应阈值的图像增强方法,该方法根据图像本身的亮度生成灰度转换函数,对不同响应度的图像均有良好的增强效果。
     系统软硬件安装完成后,针对无热化设计效果检测仪需要使用的短波、中波、长波红外成像探测器以及多种检测目标,进行了多次系统实验。实验表明,系统的各个模块运行正常,均能正确实现自动调焦以及设计要求的其他各项功能。最后进行了运动控制模块定位精度、自动调焦重复性误差和自动调焦精度测试,各项指标均符合设计要求。
The Effect of Athermalization Tester was an equipment that used to measure whether the effect of IR optical system’s athermalization met the requirement. In this paper, auto-focusing system for the Effect of Athermalization Tester was researched, which was composed by the infrared image detection system, position controlling component, signal processing circuit and controlling software. The controlling software was make up by the image processing module, the motion control module, the auto-focus module and the athermalization testing module.
     The automatic focusing algorithms on spatial domain, information domain and frequency domain were researched. According to the features of the infrared image, performances of many auto-focusing algorithms were researched, using there groups of infrared images of the Effect of Athermalization Tester that were gathered from different conditions as researching candidates. Auto-focusing algorithms based on Sum Modulus Difference(SMD) operator and Laplacian operator were used as cursory focusing algorithm and accurate focusing algorithm, because of their well real-time performance, high stability and accuracy. Some key technologies and problem in system auto-focusing realization, such as system image preprocessing, focus strategy, focus point searching algorithm, the division of image focusing region, and the focus curve fitting, were researched and solved. An image focusing region divided algorithm was proposed to improve the focusing accuracy and speed, which identified the target of the focus image using region growing at first, then used the identified target region as operating focus region.
     The software of the Effect of Athermalization Tester was designed. According to the hardware of the tester, the thermo-regulating system and position controlling component controlling, infrared image acquisition and processing, auto-focusing, and effect of athermalization measuring were achieved. During image acquisition and preprocessing, an image enhanced method based on adaptive threshold was proposed according to different responsiveness of the system image, which generated gray scale transferring function based on the image brightness.
     When system hardware and software were installed completely, experiments of the Effect of Athermalization Tester were conducted with infrared detectors of short wave, medium wave and long wave, and a variety of targets, which the system was required to use. Experiments proved that every module of the tester run properly, and the system implemented auto-focusing and other required functions correctly. Finally the locating accuracy of the motion controlling module, the auto-focusing repeatability accuracy and the auto-focusing accuracy were measured. According to the testing result, all of the there performance parameters were meet to the design requirements.
引文
[1]葛文奇.红外探测技术的进展、应用及发展趋势[J].红外技术与应用.2007,(4):33-37.
    [2]罗海波,史泽林.红外成像制导技术发展现状与展望[J].红外与激光工程.2009,39(4):565-573.
    [3]周建民,周其显,刘燕德.红外热成像技术在农业生产中的应用[J].农机化研究.2010,2:1-5.
    [4] Jones H G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces[J]. Plant , Cell and Environment. 1999,22:1043-1055.
    [5]王莹,冯介一,李军.红外技术在工业设备中的应用[J].重庆文理学院学报(自然科学版) .2009,28(1):67-69.
    [6]陈胜哲,陈彪.红外技术在军事上的应用[J].光学技术.2006,32:581-586.
    [7]林武文,徐锦,徐世录.红外探测技术的发展[J].激光与红外.2006,36(9):840-843.
    [8]黄其昆.自动摄影20年[J].大众摄影.2001,2(25):52-55.
    [9]原育凯.光学系统的自动调焦方法[J ].红外.2004,(6):15-21.
    [10]梁翠萍,李清安,乔彦峰,等.简析光学系统自动调焦的方法[J].电光与控制. 2006,13(6):93-96.
    [11]祝永坚,陈钱.新型红外探测系统通信模块的设计[J].现代电子技术. 2005,(10):4-6.
    [12]陆剑鸣,蔡毅,黄晖.俄罗斯红外热成像技术的现状、特点、发展趋势及不足之处[J].红外技术.2006,28(2):68-73
    [13]辜璐.发展中的红外成像制导技术[J].红外与激光工程.2008,37:686-690.
    [14]贾晓飞,李宜斌,陈德智,等.非制冷红外热像仪的快速自动调焦算法设计[J].激光与红外. 2009,39(6):688-690.
    [15]李文恩,陈海清,李俊,等.红外导引头成像光斑图像处理及自动调焦[J].量子电子学报.2003,20(3):364-369.
    [16] Seung Hun Jin,Jung Uk Cho,Jae Wook Jeon. FPGA based Passive Auto Focus System using Adaptive Thresholding[C]. SICE-ICASE International Joint Conference. 2006:2290-2295.
    [17] M. Rahman,N. Kehtarnavaz. Real-Time Face-Priority Auto Focus for Digital andCell-Phone Cameras[J]. IEEE Trans. 2008,54(4):1506-1513.
    [18]刘焕雨,熊文卓,等.基于图像处理方法的自动调焦系统的研制[J].测试技术学报.2007,21(1):13-16.
    [19]戴景民,汪子君.红外热成像无损检测技术及其应用现状[J].自动化技术与应用.2007,26(1):1-7.
    [20] Chen Guojin,Zhu Miaofen,Qiu Xiaoguang. Image Auto-focus System Based on Remote Web Monitor[C]. IEEE International Workshop on Imaging Systems and Techniques-IST.2007:1-4.
    [21] Chih-Ming Chen,Chin-Ming Hong,Han-Chun Chuang. Efficient Auto-Focus Algorithm Utilizing Discrete Difference Equation Prediction Model for Digital Still Cameras. IEEE Trans. on Consumer Electronics[J]. 2006,52(4):1135-1143.
    [22] V. Peddigari,M. Gamadia,N. Kehtarnavaz. Real-time implementation issues in passive automatic focusing for digital still cameras[J]. Journal of IS&T. 2005, 49(2):114-123.
    [23] Mark Gamadia,Nasser Kehtarnavaz. Performance Metrics for Auto-Focusing Digital and Cell-Phone Cameras[C]. IEEE CONFERENCE. 2010:69-70.
    [24] J. Ebbinghaus. A study of focus measures and search algorithms for passive autofocusing in ir-range cameras[D]. Master’s Thesis, Royal Institute of Technology. 1999:21-28.
    [25]李开端,赵育良,李英杰,等.基于面阵CCD的相机自动调焦技术[J].传感器技术.2002,21(6):46-49.
    [26]周贤.自动调焦算法研究与验证平台设计[D].济南:山东大学硕士学位论文,2006:15-16.
    [27] Xiaocui Wu, Siyu Guo, Meihua Bao. A New Focus Measure Using Block Maxima of Image Gradients[C]. IEEE Third International Symposium on Intelligent Information Technology Application. 2009:27-30.
    [28] Toshiaki Kondo, Pramuk Boonsieng, Waree Kongprawechnon. Improved Gradient-Based Methods for Motion Estimation in Image Sequences[C]. SICE Annual Conference 2008. 2008:1120-1123.
    [29] Hakan Guray Senel. Image Gradient Estimation with Wide Support Kernels[C]. IEEE CONFERENCE. 2008:132-137.
    [30]孙杰,袁跃辉,王传永.数字图像处理自动图像聚焦算法的分析和比较[J].光学学报. 2007,27(1):35-39.
    [31] Mohammad T. Rahman, Nasser Kehtarnavaz, Qolamreza R. Razlighi. Usingimage entropy maximum for auto exposure[C]. IEEE Journal of Electronic Imaging. 2011,20(1):013007-1-013007-10.
    [32] David Atkinson, Derek L. G. Hill, Peter N. R. Stoyle, etc. Automatic Correction of Motion Artifacts in Magnetic Resonance Images Using an Entropy Focus Criterion[J]. IEEE Transactions on Medical Imaging. 1997,16(6):903-910.
    [33]李奇.数字自动对焦技术的理论及实现方法研究[D].杭州:浙江大学博士学位论文,2004:37-39.
    [34] Diansheng Cao, Yunguo Gao, Huanli Li. Auto-focusing Evaluation Functions in Digital Image System[C]. IEEE 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE). 2010:V5-331-V5-334.
    [35] Chen Guojin, Zhu Miaofen, Li Yongning, etc. Research on Image Focusing Method and System with Wavelet Filtering[C]. IEEE 2010 International Conference on Optoelectronics and Image Processing. 2010:236-239.
    [36] C. E. Shannon. Communication in the presence of noise. Proc. IRE,1949,37 (1):10
    [37] H. Nyquist. Certain topics in telegraph transmission theory. AIEE Transactions. 1928,47:617-644.
    [38]郝建民.采样定理与奈奎斯特准则的研究[J].遥测遥控.1998,19(2):11-19.
    [39] Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing[M]. New Jersey:Prentice-Hall,Inc,2002:34-71.
    [40]杨淑莹. VC++图像处理程序设计[M].北京:清华大学出版社,2003:1—17.
    [41]何斌,马天予,王运坚,等. Visual C++数字图像处理[M].北京:人民邮电出版社,2001:1-20.
    [42]陈纯.计算机图像处理技术与算法[M].北京:清华大学出版社,2003:44-75.
    [43] Songtao Liu, Xiaodong Zhou, Tongsheng Shen, etc. Research on infrared image denoising algorithm based on the noise analysis of detector[J]. Proc. of SPIE. 2005, 5640:440-447.
    [44] Xiao Zhihong, Shi Jiale, Guan Zongqi. Infrared Image Denoising Based on Stationary Wavelet Transform[J]. Proc. of SPIE. 2010, 7546:3B-1-3B-7.
    [45] Junshan Li, Xiongmei Zhang, Kun Li, etc. Infrared image pre-processing based on nonsubsampled contourlet transform[J]. Proc. of SPIE. 2007, 6787:1R-1-1R-7.
    [46] Huishi Zhu, Yuejin Zhao, Liquan Dong, etc. The Image Denoising Method for MEMS Based Uncooled Infrared Imaging System[J]. Proc. of SPIE. 2010, 7854:0O-1-0O-9.
    [47] Gong Cheng, Hui Mei, Dong liquan, etc. The real-time infrared image denoising method of double buffering for Microcantilever-based infrared imaging system[J]. Proc. of SPIE. 2009, 7510:0C-1-0C-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700