混合动力电动汽车运行状态切换过程动态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会能源与环境危机的大背景下,混合动力电动汽车应景而生,成为汽车行业研究的热点。混合动力电动汽车含有内燃机和蓄电池-电机两种车载动力源,两动力源间能量分配方式的不同产生纯电动驱动模式、发动机参与的驱动模式、再生制动模式、混合制动模式等多种运行模式。整车控制器根据能量管理策略确定车辆在不同行驶工况下的最佳运行模式,实现节能减排的目的。这一过程可能造成发动机与电机输出转矩的突变,由于发动机与电机的动态响应特性不同,发动机不能立即响应目标转矩的变化,而电机响应速度快。车辆运行状态发生变化时,如果单独按照各自的目标转矩进行控制来响应总的转矩需求,可能导致运行模式切换过程中的整车动力不足及震荡现象,影响车辆动力性及驾驶舒适性。由于电机与机械制动系统性能较稳定,只要合理控制电机变化率,避免电机突增负载造成的震荡,就能保证模式切换过程的平稳性。本文主要研究驱动模式切换过程中发动机与电机输出转矩的动态协调控制,保证该过程动力传递的平顺性。
     研究过程中将混合动力系统驱动模式切换过程分为三类:发动机切入驱动系的过程(纯电动驱动模式向发动机参与的驱动模式的切换)、发动机退出驱动状态的过程(发动机参与的驱动模式向纯电动驱动模式的切换)和电动机提供动力补偿过程。切换过程中,利用电机响应快速的特点,对模式切换过程中发动机响应滞后造成的动力不足进行动态补偿,称为动力系统动态转矩协调控制。另外,并联混合动力系统在由纯电动驱动模式切换至有发动机参与的驱动模式的过程中存在发动机的调速控制问题。基于整个模式切换过程中速度调节的快速平稳性,本文提出可选择自适应模糊——PID控制算法用于发动机调速控制。
     最后,在MATLAB/SIMULINK平台上建立混合动力系统仿真模型,分别对上述三类模式切换过程中转矩的动态控制进行仿真验证。结果表明动态转矩协调控制算法能够保证状态切换过程中变速器输入端动力需求,满足切换过程动力传递的平稳性要求。
Under the threat of energy and environment, hybrid electric vehicles have appearedand become a hot spot in automotive industry. Hybrid electric vehicles consist of twopower sources of an engine and an electromotor. Different energy distribution processesbetween the two sources bring several types of operating modes for hybrid electricsystems, including driving mode with an electromotor only, driving modes with an enginemainly, regenerative braking mode and hybrid braking mode. The hybrid control unitdecides the better one under the current condition. There may be power shortage becauseof different dynamic characteristics between the two power sources if they are controlledseparately in the process of mode-switches. This can cause rocking for vehicles,influencing its superior dynamic and comfort. For the braking mode-switches, because themotors and mechanical brake systems’characteristics are steady, it can keep the smoothpower transmission during the braking mode-switches by limiting changing rate of motorstorque. This paper intensively researches the coordinated control between an engine andan electromotor during driving mode switches.
     In the research, driving mode- switches are divided into three forms: the process ofengines cutting into driving state, such as, pure electric driving mode to driving modeswith an engine, the process of engines exiting from driving states, for example, enginedriving modes to pure electric mode, and power compensation by an electromotor. Duringthese processes, an electromotor is used to compensate the torque shortage caused byengine lag in response to meet the requirement torque in transmission input end, which iscalled dynamic coordinated control of torque for power systems. In addition, the secondtype of mode-switch has a problem of engine speed regulation. On purpose of rapidity andsmoothness of speed regulation, this paper proposes adaptive fuzzy-PID controller.
     In the last, simulation model is built based on MATLAB/SIMULINK platform. Bysimulating for the three types of mode switches, the results suggest that torquerequirement of the transmission input end is ensured through the toque dynamic control ofhybrid electric system, which ensured the smooth power transmission during mode switches and improve the whole electric vehicles’ride performances.
引文
[1] Chan, C C. The State of the Art of Electric and Hybrid Vehicles[C]//Proceedings of IEEE. Instituteof Electrical and Electronics Engineers Inc, 2002, 90(2): 247-275.
    [2]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势[J].公路交通科技, 2000, 17(1):71-74.
    [3]杜常青.车用并联混合动力系统瞬态过程控制研究技术[D].武汉:武汉理工大学学位论文,2009: 1.
    [4] Mehrdad E, Yimin G.现代电动汽车、混合动力电动汽车和燃料电池车:基本原理、理论和设计[M].倪正光,倪培宏,熊素铭,译.北京:机械工业出版社, 2008: 11-12, 204-206, 100-102.
    [5]白钰枝.混合动力汽车的发展现状与前景[J].科技创新导报, 2011(12): 249.
    [6]过学迅,张杰山,胡朝峰.日美混合动力汽车发展的比较研究[J].上海汽车, 2006: 7-10.
    [7]祝超群.混合动力汽车控制策略研究[D].兰州:兰州理工大学学位论文, 2008: 7-10.
    [8]胡骅,宋慧.电动汽车[M].第二版.北京:人民交通出版社, 2009: 52-58, 60-61.
    [9]麻友良,陈全世.混合动力电动汽车的发展[J].公路交通科技, 2001, 18(1): 77-80.
    [10]孟亚鹏.并联混合动力电动大客车多能源动力总成控制系统研究[D].上海:华中科技大学学位论文, 2005: 50-57.
    [11] Schouten N J, Salman M A, Kheir N A. Fuzzy Logic Control for Parallel Hybrid Vehicles[J]. IEEETransactions on Control Systems Technology, 2002, 10(3): 460-468.
    [12]宋光辉.并联式混合动力客车瞬时优化控制策略研究[J].客车技术与研究, 2009(5): 14-17.
    [13]胡红斐,黄向东,罗玉涛等. HEV实时等效能量消耗最小控制策略[J].汽车工程, 2006, 6(28):516-520.
    [14]王伟华,王庆年,曾小华.并联混合动力汽车自适应控制策略[J].汽车工程, 2009, 31(9):834-838.
    [15] Poursamad A, Montazeri M. Design of Genetic-Fuzzy Control Strategy for Parallel HybridElectric Vehicles[J]. Control Engineering Practice, 2008, 16(7): 861-873.
    [16] Li C Y, Liu G P. Optimal Fuzzy Power Control and Management of Fuel Cell/Battery HybridVehicles[J]. Journal of Power Sources, 2009,192(2): 525-533.
    [17]彭涛,陈全世.并联混合动力电动汽车的模糊能量管理策略[J].中国机械工程, 2003, 14(9):797-800.
    [18]钱立军,裘著永,赵韩.基于模糊神经网络的混合动力汽车控制策略仿真[J].系统仿真学报,2006, 18(5): 1384-1387.
    [19]黄妙华,喻厚宇.影响并联混合动力电动汽车发动机在高效区工作的因素[J].汽车工程,2005, 27(1): 11-15.
    [20]黄妙华,陈飚.基于转矩分配的并联式混合动力电动轿车能量管理策略研究[J].武汉理工大学学报, 2006, 30(1): 33-36.
    [21]童毅,欧阳明高,张俊智.并联式混合动力汽车控制算法的实时仿真研究[J].机械工程学报,2003, 39(10): 156-161.
    [22]颜伏伍,潘庆庆,杜常青.并联混合动力汽车从纯电动状态切换至发动机驱动的控制研究[J].汽车技术, 2009(1): 30-34.
    [23]朱阳,赵治国.混合动力汽车发动机建模方法研究[J].新能源汽车, 2009(6): 9-12.
    [24] Zhang J Y, Shen T L, Marino R. Model-based Cold-Start Speed Control Scheme for Spark IgnitionEngines[J]. Engineer Practice, 2010, 18(11): 1285-1294.
    [25]日本电气学会.电动汽车最新技术[M].康龙云,译.北京:机械工业出版社, 2008: 30-34,40-41.
    [26]刘艳.混合动力汽车感应电机转矩控制系统研究[D].大连:大连理工大学学位论文, 2006:14.
    [27]冀尔聪.并联混合动力汽车模式切换中的协调控制问题研究[D].吉林:吉林大学学位论文,2006: 23.
    [28]孙文凯.并联混合动力汽车系统建模与转矩动态控制的仿真研究[D].武汉:武汉科技大学学位论文, 2007: 31-32.
    [29]古艳春,殷承良,张建武.并联混合动力汽车扭矩协调控制策略仿真研究[J].系统仿真学报,2007, 19(3): 631-636.
    [30]沈明星,杨农林.并联混合动力汽车模糊逻辑控制策略的建模和仿真[J].动力学与控制学报,2006(4): 353-358.
    [31]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学学位论文, 2004,16.
    [32]叶明,秦大同,刘振军等.轻度混合动力AMT系统换挡品质控制[J].机械工程学报, 2009,45(5): 108-114.
    [33]黎苏.发动机动态过程控制及应用[M].北京:人民交通出版社, 2001: 34-35.
    [34]侯献军,杜常青,颜伏伍,等.混合动力系统状态切换技术研究[J].内燃机工程, 2009, 30(6):72-76.
    [35]严运兵.并联混合动力电动汽车的动态控制研究[D].武汉:武汉理工大学学位论文, 2008:11.
    [36] Javier F, Matthew A F, Karolos G. Real-time Brake Torque Estimation for Internal CombustionEngines [J]. Mechanical Systems and Signal Processing, 2008, 22(2): 338-361.
    [37]董光宇,于水,张旭升,等.基于燃烧离子传感技术的发动机指示转矩实时估计[J].汽车工程, 2008, 30(7): 592-596.
    [38] Necla K T, Sedat B. Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine byUsing Artificial Neural Network[J]. Applied Energy, 2010, 87(1): 349-355.
    [39]吴晓刚,王旭东,余腾伟.发动机输出转矩的改进BP神经网络估计[J].电机与控制学报,2010, 14(3): 104-108.
    [40] Yahya H Z, Lakmal and D.Seneviratne. Diesel Engine Indicated Torque Estimation Based onArtificial Neural Networks[J]. 2007 IEEE/ACS International Conference on Computer Systemand Applications, 2007: 791-798.
    [41] Jonathan C, Gilles C, Philippe, et al. Real-time Combustion Torque Estimation on a Diesel EngineTest Bench Using Time-varying Kalman Filtering[C]//43rdIEEE Conference on Decision andControl. Proceedings of the IEEE Conference on Decision and Control, 2004: 1688-1694.
    [42] Villanueva J A B, Espadafor F J, Garcia F, et al. A Methodology for Cracks Identification in LargeCrankshafts [J]. Mechanical System and Signal Processing, 2011, 25(8): 3168-3185.
    [43]李建秋,欧阳明高.柴油机各缸工作均匀性的闭环反馈控制[C]//中国内燃机学会第五届学术年会, 1999: 91-99.
    [44] Luis C M S, Jose R S. Cold Start Characteristics of an Ethanol-Fuelled Engine with Heated IntakeAir and Fuel[J]. Applied Thermal Engineering, 2012, 40: 198-201.
    [45] Adrian I. Study of Cold Start Air-Fuel Mixture Parameters for Spark Ignition Engines Fueled withGasoline-Isobutanol Blends[J]. International Communications in Heat and Mass Transfer, 2010,37(9): 1203-1207.
    [46]熊伟威,张勇,殷承良.混合动力汽车的电机启动发动机过程仿真研究[J].中国机械工程,2008(20): 2504-2509.
    [47]严运兵,颜伏伍,杜常青.并联混合动力电动汽车动态协调控制策略及仿真研究[J].中国机械工程, 2010, 21(2): 234-239.
    [48]艾维全,冯启山,殷承良.混合动力汽车发动机转速控制策略研究[J].内燃机工程, 2006,27(5): 57-61.
    [49]严运兵,颜伏伍,杜常青.并联混合动力汽车发动机调速控制及试验研究[J].车用发动机,2009, (5): 72-75.
    [50] Howell M N, Best M C. On-line PID Tuning for Engine Idle-Speed Control Using ContinuousAction Reinforcement Learning Automata[J]. Control Engineering Practice, 2000, 8: 147-154.
    [51] Reznik L, Ghanayem O, Bourmistrov A. PID Plus Fuzzy Controller Structures as a Design Basefor Industrial Applications[J]. Engineering Applications of Intelligence, 2000, 13(4): 419-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700