内源光学功能成像数据的时空分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对内源光学数据的时空分析方法及低频自发振荡信号的时空模式做了深入研究。
     提出了利用时间兼空间结构信息进行脑成像数据盲源信号分离的思想。其基本假设为:相对于噪声,感兴趣信号无论在时间上还是在空间上变化都较为平滑,即一个小的邻域内的采样点数值上相近。在此思想下,设计了包含时间兼空间邻域特征的目标函数,并给出了令该目标函数最大化的解析求解公式,将其归结为一个特征向量求解问题。在实现上述思想的过程中,主要解决了三个具体问题:(a)构建了一个新的指标来定义时间信号源的空间分布图,这使得数学上量化描述时间信号源的空间邻域特征成为可能;(b)提出了一种最大化信号自相关系数的新的实现手段,使推导过程摆脱了“延迟协方差矩阵对称条件”;(c)利用奇异值分解工具,提出了不损失信息的条件下低维度实现时间分析的流程,该流程既可以用来低维度实现上述目标函数的求解,也可以用来改进传统时间分析方法,在不降维的条件下降低其时间复杂度。
     在时间盲信号分离过程中引入直接图像投影技术。对直接图像投影技术进行了矩阵形式的描述,并从时间/空间分析的角度出发,揭示了它与时间分析、空间分析手段的联系与区别。提出了“广义时间序列”的概念,“广义时间序列”的样本之间既包含时间轴的信息,又包含空间上行或列内的信息,所以可以同时定义“广义时间序列”的时间邻域特征和空间邻域特征,这使得从另外一个角度最大化时间兼空间邻域特征成为可能。
     研究了内源光学成像手段在人脑研究应用中的重要问题——皮层运动的消除。提出了对标志点进行分组弱化的薄板样条算法对皮层图像序列进行配准。使用薄板样条插值函数拟合形变函数的过程中弱化标志点约束条件,允许标志点与匹配点之间存在一定误差。结合标志点定位精度的量化衡量技术,对标志点按定位精度分组,并对不同组的标志点以不同的权值进行弱化。定义了衡量图像配准效果的代价函数,通过最小化该代价函数确定各组的权值。
     利用盲源分离技术和傅立叶谱分析手段对低频自发振荡信号的时空特性进行研究,发现了刺激调制下该信号幅度增强、相位跳变和空间趋于同步的现象,尽我们所知,此现象在国内外尚未有报道。并据上述现象探讨了低频自发振荡信号的形成机理,提出了如下观点:细小动脉的舒缩对绿光(~546nm,下同)下皮层中的自发振荡贡献很大。根据振荡信号在动静脉和皮层的相位差别特点,得出以下结论:红光(~605nm)下的相位差反应了代谢产物在动静脉中的流动方向和路径。绿光下没有明显的相位差可能源于在血管处采集的振荡信号与皮层处采集的振荡信号的形成机理存在不同。
This dissertation is focused on the spatial/temporal analysis methods for intrinsic optical imaging dataset and their applications in spatio-temporal pattern analysis of spontaneous low frequency oscillations.
     In blind separation of brain mapping signals, the spatial plus temporal structure information is utilized. It is assumed that the interesting signals alter smoothly cross both space and time, i.e. the neighboring sample-points are similar. Then the object function which quantifies and integrates temporal and spatial structure information is defined and maximized. Three problems are solved in this procedure. (a) A new definition of the spatial pattern of a temporal signal is given. This makes it possible to quantify the spatial structure information for a temporal source. (b) A novel method for maximizing autocorrelation is proposed. Unlike traditional methods, it does not rely on the so-called“symmetry assumption for delayed/shifted covariance matrix”. (c) A low dimensional procedure for temporal analysis is developed. It could be applied to any traditional temporal analysis methods and reduce their computational complexity without losing any information.
     The straightforward image projection technique is introduced into the temporal source separation. By represented it in the matrix format, the differences and relationship between this technique and the temporal/spatial analysis are revealed. It is indicated that the straightforward image projection technique performs the data analysis from a novel viewpoint by traditional procedure. The concept of“generalized timecourse”is proposed. Because there are both temporal and spatial relationships among the sample points in one“generalized timecourse”, it is possible to define temporal plus spatial structure information and maximize it.
     The critical problem in OI for human brain, the cortex movement reduction, is also studied in this dissertation. A new cortex image registration algorithm based on thin-plate splines is proposed. In the splines interpolation, the point constraints are weakened and the interpolation function needs not to exactly go through the landmarks. Based on estimating the localization accuracy of each landmark, all landmarks are categorized into several groups. Each group is weakened by different weight values. A cost function which quantifies the registration errors is given, and the weight values are decided by minimizing this cost function.
     By the blind source separation method and Fourier spectrum analysis technique, the spatio-temporal pattern of spontaneous low frequency oscillations is studied. After the electrical stimulation, it is observed that the phases of the LFO signals are changed, the amplitudes are increased, and most importantly, the signals in the bilateral somatosensory cortex tend to be synchronized. Based on these phenomena, the origin of the LFO signals is discussed. It is argued that the arteriole vasomotion may be the major contribution to the LFO signals under green illumination (~546nm). The phase relationship among the LFO signals of arteries, veins and cortex is also studied. Based on the phase relationship under red/green illumination, it is suggested that remarkable phase difference at ~605nm shows the motion of deoxy-hemoglobin and none phase difference at ~546nm may imply different mechanism of the LFO signals of cortexes and vessels.
引文
[1]. Grinvald A, Frostig R D, Lieke E, et al. Optical imaging of neuronal activity. Physiology Review, 1988, 68:1285~1365.
    [2]. Frostig R D, Lieke E E, Ts’o D, et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, PNAS 1990, 87: 6082-6086.
    [3]. Bonhoeffer T, and Grinvald A., Optical imaging based on intrinsic signals: the methodology. In Brain Mapping: The methods (A. Toga and J. C. Maziotta, Eds.), Academic Press, San Diego, CA, 55-97, 1996.
    [4]. Pouratian N, Sheth SA, Martin NA, Toga AW: Shedding light on brain mapping: advances in human optical imaging. Trends Neurosci. 2003, 26:277-282.
    [5].寿天德主编,神经生物学,第二版.北京:高等教育出版社, 2006.
    [6]. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 2001, 21:1133–1145.
    [7]. Sibson N. R., Dhankhar A., Mason G. F., et al., Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci. USA, 1998, 95:316–321.
    [8]. Martindale, J., Mayhew, J., Berwick. J., et al., The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab. 2003, 23: 546-555.
    [9]. Villringer A., Dirnagl U., Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging, Cerebrovasc. Brain Metab. Rev. 1995, 7:240–276.
    [10]. Roy C. W., Sherrington C. S., On the regulation of the blood supply of the brain, J. physiol. (London), 1890, 11:85-108.
    [11]. Vanzetta I.,and Grinvald A., Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging. Science, 1999, 286:1555-1558。
    [12]. Kim D. S., Duong T. Q., Kim S. G., High-resolution mapping of iso-orientation columns by fMRI, Nat. Neurosci. 2000, 3:164–169.
    [13].赵喜平等,磁共振成像系统的原理及其应用,第一版.北京:科学出版社,2000.
    [14]. Cannestra, A. F., Pouratian, N., Bookheimer, S. Y., et al., Temporal spatial differences observed by functional MRI and human intraoperative optical imaging, Cereb. Cortex 2001, 11:773–782.
    [15]. Schie?l, I., Blind source separation algorithms for the analysis of optical imaging experiments, Doctor Dissertation, Germany: Technical University of Berlin, 2001.
    [16]. http://omlc.ogi.edu/spectra/hemoglobin/summary.html
    [17]. Narayan S.M.,Esfahani P.,Blood A.J. et al., Functional increases in cerebral blood volume over somatosensory cortex. Journal of Cerebral Blood Flow & Metabolism, 1995, 15:754-765.
    [18]. Mayhew, J., Askew, S., Zheng, Y., Porrill, J., Westby, G., W., Redgrave, P., Rector, D., M., Harper, R., M., Cerebral vasomotion: A 0.1-Hz oscillation in reflected light imaging of neural activity. NeuroImage, 1996, 4:183-193.
    [19]. Sheth S. A., Nemoto M., Guiou M., et al., Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses, Neuron, 2004, 42:347-355.
    [20]. Jones M., Hewson-Stoate N., Martindale J., et al., Nonlinear coupling of neural activity and CBF in rodent barrel cortex, NeuroImage, 2004, 22:956-965.
    [21].刘亚东,胡德文,刘发益,李明,王玉成,稳态快速谱光学功能映射,光学学报, 2006, 26(11):1710-1716.
    [22]. Martindale J., Berwick J., Johnston D., et al., Pseudo-random procedures for rapid presentation rates using optical imaging and spectroscopy, NeuroReport, 2000, 10:2247–2252.
    [23]. Toga A.W., Mazziotta, J.C., Brain Mapping: The Methods, second edition. USA: Academic Press, 2002.
    [24]. Hess A., Stiller D., Kaulisch T., et al., New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex, J. Neurosci., 2000, 20:3328–3338.
    [25]. Masino T., and Knudsen E.I., Orienting head movements resulting from electrical microstimulation of the brainstem tegmentum in the barn owl, The Journal of Neuroscience,1993,13:351-370.
    [26].俞洪波,寿天德,用脑光学成像术研究不同空间拓扑位置猫初级视皮层的空间频率反应特性,生理学报, 2000, 52(5):411-415.
    [27]. Grinvald A., Gilbert C., Frostig R., et al., Functional architecture of the cortex revealed by optical imaging of intrinsic signals, Nature, 1986, 324:361-364.
    [28]. Li M. Chen, Robert M. Friedman, Anna W. Roe, Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science, 2003, 302: 881-885.
    [29]. Haglund M. M., Ojemann G.A. and Hochman D. W., Optical imaging of epileptiform and functional activity in human cerebral cortex, Nature, 1992, 358:668-671.
    [30]. Cannestra A.F., Pouratian N., Bookheimer, S. Y., et al., Temporal spatial differences observed by functional MRI and human intraoperative optical imaging, Cerebral Cortex, 2001, 11:773–782.
    [31]. Narayan S. M., Esfahani P., Blood A. J., et al., Functional increases in cerebral blood volume over somatosensory cortex. Journal of Cerebral Blood Flow & Metabolism, 1995, 15:754-765.
    [32]. Das A., Gilbert C. D., Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 1995, 375:780–784.
    [33]. Zepeda A., Arias C, Sengpiel, F., Optical imaging of intrinsic signals: recent developments in the methodology and its applications, Journal of Neuroscience Methods, 2004, 136:1-21
    [34].张鹍,俞洪波,寿天德,基于内源信号的脑光学成像系统的研制,生物物理学报, 1999, 21 (3) : 597-604.
    [35].李鹏程,陈尚宾,骆卫华等,大鼠皮层扩散性抑制过程中在体内源光信号与脑血管形态变化的相关性,自然科学进展,2003, 13(12):1320-1324.
    [36]. Mayhew J., Hu D., Zheng Y., et al. An evaluation of linear model analysis techniques for processing images of microcirculation activity. NeuroImage, 1998, 7: 49~71.
    [37].陈昕,寿天德,用脑光学成像精确测定猫初级视皮层视野拓扑投射关系。生理学报,2003, 55:541~546.
    [38]. Burock, M. A., Buckner, R. L., Woldorff, M. G., et al., Event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 1998, 9(16): 3735~3739.
    [39]. Sato K., Nariai T., Tanaka Y., et al., Functional representation of the finger and face in the human somatosensory cortex: intraoperative intrinsic optical imaging. NeuroImage, 2005, 25:1292~1301.
    [40]. Chapin, J., K., Lin, C., Mapping the body representation in the SI cortex of anesthetized and awake rats. J. Comp. Neurol. 1984, 229 (2): 199-213.
    [41]. Shtoyerman E., Arieli A., Slovin H., et al., Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. Neurophysiology, 2000, 20: 8111-8121.
    [42]. Buchweitz E., Weiss H.R., Effect of withdrawal from chronic naltrexone on regional cerebral oxygen consumption in the cat. Brain Research, 1986, 397: 308-314.
    [43]. Xiaolu Deng, Fayi Liu, Yucheng Wang, Ming Li, Yadong Liu, Dewen Hu, Focal cerebral Ischemia in Rats by Photothrombosis of Cortical Microvessels, IEEE/ICME International Conference on Complex Medical Engineering, 2007, Beijing China, 500-503.
    [44].张发启,张斌,张喜斌,盲信号处理及应用,第一版.西安:西安电子科技大学出版社,2006.10.
    [45]. Stone, J. V., Independent component analysis: an introduction, Trends Cogn. Sci., 2002, 6: 59-64.
    [46]. Yang, J., Zhang, D., Frangi, A., F., Yang, J., Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26 (1), 131-137.
    [47]. Diamantaras, K. I., Kung, S. Y., Principal component neural networks: Theory and applications, Wiley, 1996.
    [48]. Oja, E., Subspace methods of pattern recognition, Research Studies Press, England, and Wiley, USA, 1983.
    [49].刘亚东,脑功能磁共振和光学成像数据模式分析方法研究,博士学位论文,国防科技大学,2006.
    [50]. Hyv?rinen, A, Karhunen, J., Oja, E., Independent component analysis. John Wiley and Sons, 2001.周宗潭,董国华,徐昕,胡德文等译,独立成分分析,电子工业出版社,2007.
    [51]. McKeown, M. J., Sejnowski, T. J., Independent component analysis of fMRI data: Examining the assumptions, Human Brain Mapping, 1998, 6: 368-372.
    [52]. McKeown M. J., Makeig S., Brown G. G., et al., Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping, 1998, 6:160-188.
    [53]. Jutten C., Herault J., Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1):1-10.
    [54]. Hyv?rinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks, 1999, 10(3), 626-634.
    [55]. Hyv?rinen, A., Fast ICA by a fixed-point algorithm that maximizes non-Gaussianity. In: Roberts, S., Everson, R. (Eds.), ICA: Principles and Practice. Cambridge University Press, 2001, 71-94.
    [56]. Switzer, P., and Green, A. A., Min/max autocorrelation factors for multivariate spatial imagery. Technical Report 6, Department of Statistics, Stanford University. 1984.
    [57]. Molgedey, L., Schuster, H., Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett., 1994, 72(23): 3634–3636.
    [58]. Ziehe, A., Müller, K. R., TDSEP—An efficient algorithm for blind separation using time structure. In Proc. Int. Conf. on Artificial Neural Networks (ICANN’98), 1998, pp. 675-680.
    [59]. Stetter, M., Schie?l I., Otto, T., Sengpiel, F., Hübener, M., Bonhoeffer, T., Obermayer, K., Principal component analysis and blind separation of sources for optical imaging of intrinsic signals, NeuroImage, 2000, 11, 482-490.
    [60]. Stone, J., Blind source separation using temporal predictability. Neural Computat., 2001, 13(7):1559-1574.
    [61]. Stetter, M., Exploration of Cortical Function, Boston MA: Kluwer Academic, 2002.
    [62]. Hotelling, H., Relations between two sets of variates, Biometrika, 1936, 28: 321-377.
    [63]. Friman, O., Borga, M., Lundberg, P., Knutsson, H., Exploratory fMRI analysis by autocorrelation maximization. NeuroImage, 2002, 16: 454-464.
    [64]. Zheng, Y., Johnston, D., Berwick, J., Mayhew, J., Signal source separation in the analysis of neural activity in brain. NeuroImage, 2001, 13: 447-458.
    [65]. Golub, G., H., Van Loan, C., F., Matrix Computations, 3rd edtion, the Johns Hopkins University Press, 1996.袁亚湘等译,矩阵计算,北京:科学出版社,2001.
    [66]. Martindale, J., Mayhew, J., Berwick. J., The hemodynamic impulse response to a single neural event. J. Cereb. Blood Flow Metab. 2003, 23, 546-555.
    [67].黄晓斌,胡德文,周宗潭等,脑功能光学成像的迭代广义指示函数分析法,电子学报,2006, 34(3): 664-669.
    [68]. S?rel?, J., Vigário, R., Overlearning in marginal distribution-based ICA: Analysis and solutions. J. Mach. Learn. Res. 2003, 4, 1447-1469.
    [69].边肇祺,张学工,模式识别,第二版,北京:清华大学出版社,1999.
    [70]. Turk, M., Pentland, A., Face processing: Models for recognition. Proc. Intelligent Robots and Computer Vision Vll, SPIE,1989,1(192):22-32.
    [71].杨健,线性投影分折的理论与算法及其在特征抽取中的应用研究,博士学位论文,南京理工大学,2002.
    [72].程云鹏,矩阵论,西安:西北工业大学出版社,1989,294-302.
    [73]. Daoqiang Zhang, Zhi-Hua Zhou, (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition, Neurocomputing, 2005, 69:224-231.
    [74]. Hyv?rinen, A., Oja, E., Independent component analysis: Algorithms and applications. Neural Networks, 2000, 13: 411-430.
    [75]. http://www.cis.hut.fi/projects/ica/fastica/
    [76]. Li, M., Liu, Y., Hu, D., Wang, Y., Liu, F., Feng, G., Spatio-temporal analysis of stimuli-modulated spontaneous low frequency oscillations. Chinese Science Bulletin, 2007, 52:1475-1483.
    [77]. Thirion, B., Faugeras, O., Dynamical components analysis of fMRI data through kernel PCA. NeuroImage, 2003, 20: 34-49.
    [78]. Sharma, A., Paliwal, K., Fast principal component analysis using fixed-point algorithm. Pattern Recognition Lett, 2007, 28:1151-1155.
    [79]. Yadong Liu, Guohua Zang, Fayi Liu, Lirong Yan, Ming Li, Zongtan Zhou, Dewen Hu, Spatial and Temporal Analysis for Optical Imaging Data Using CWT and tICA, ICCV 2005 & IEEE, Lecture notes in computer science, 3765:508-516.
    [80]. Sibao Chen, Haifeng Zhao, Min Kong, Bin Luo, 2D-LPP: A two-dimensional extension of locality preserving projections, Neurocomputing, 2007, 70:912-921.
    [81]. Jun Liu, Songcan Chen, Xiaoyang Tan, Fractional order singular value decomposition representation for face recognition, Pattern Recognition (2007), doi:10.1016/j.patcog.2007.03.027
    [82]. Jian Yang, David Zhang, XuYong, Jing-yu Yang, Two-dimensional discriminant transform for face recognition, Pattern Recognition, 2005, 38:1125-1129.
    [83]. Cooley R. L., Montano N., Cogliati C., et al. Evidence for a central origin of the low-frequency oscillation in RR-interval variability. Circulation, 1998, 98: 556-561
    [84]. Obrig H., Neufang M., Wenzel R., et al. Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. NeuroImage, 2000, 12: 623-639
    [85]. Hu, H. H., Kuo, T. B., Wong, W. J., Luk, Y. O., Chern, C. M., Hsu, L. C., and Sheng, W. Y., Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J. Cereb. Blood Flow Metab. 1999, 19: 460-465.
    [86]. Kuo, T. B., Chern, C. M., Sheng, W. Y., Wong, W. J., and Hu, H. H., Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure. J. Cereb. Blood Flow Metab. 1998, 18: 311–318.
    [87]. Elwell, C. E., Owen-Reece, H., Wyatt, J. S., Cope, M., Reynolds, E. O., and Delpy, D. T., Influence of respiration and changes in expiratory pressure on cerebral haemoglobin concentration measured by near infrared spectroscopy. J. Cereb. Blood Flow Metab. 1996. 16: 353-357.
    [88]. Elwell C. E., Springett R., Hillman E., et al. Oscillations in cerebral haemodynamics, implications for functional activation studies. Adv Exp Med Biol, 1999, 471: 57-65.
    [89]. Wise R G, Ide K, Poulin M J, et al. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage, 2004, 21: 1652-1664
    [90]. Laufs H., Krakow K., Sterzer P., et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci, 2003, 100: 11053-11058
    [91]. Biswal B. B., Hudetz A. G., Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvasc Res, 1995, 52: 1-12
    [92]. Lowe, M. J., Mock, B. J., and Sorenson, J. A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998, 7: 119-132.
    [93]. Diehl, R. R., Linden, D., Lucke, D., and Berlit, P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke,1995, 26: 1801-1804.
    [94]. Biswal B B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34: 537-541
    [95]. Coyle S, Ward T, Markham C. Physiological noise in near-infrared spectroscopy: implications for optical brain computer interfacing. IEEE Proc EMBS, 2004, 2: 4540-4543
    [96]. Kiviniemi V. Spontaneous blood oxygen fluctuation in awake and sedated brain cortex-a BOLD fMRI study. Doctor Dissertation. Finland: University of Oulu, 2004
    [97]. Fagrell B, Intaglietta M, Ostergren J. Relative hematocrit in human skin capillaries and its relation to capillary blood flow velocity. Microvasc Res, 1980, 20: 327-335
    [98]. Golanov E V, Reis D J. Vasodilation evoked from medulla and cerebellum is coupled to bursts of cortical EEG activity in rats. Am J Physiol, 1995, 268: R454-R467
    [99]. Golanov E V, Reis D J. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow. Neurosci Lett, 1996, 209: 101-104
    [100]. Tomita M, Gotoh F, Sato T, et al. 4-6 cycle per minute fluctuation in cerebral blood volume of feline cortical tissue in situ. J Cereb Blood Flow Metab, 1981, 1: 443~444
    [101]. Colantuoni A, Bertuglia S, Intaglietta M. Microvascular vasomotion: Origin of laser Doppler flux motion. Int J of Microcirc, 1994, 14: 151~158
    [102]. Liu T T, Behzadi Y, Restom K, et al. Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 2004, 23: 1402-1413
    [103]. Zilles K, Wree A. Cortex: Areal and laminar structure. The Rat Nervous System, Vol 1: Forebrain and midbrain. Sydney: Academic Press, 1985. 375-415
    [104]. Spitzer M W, Calford M B, Clarey J C, et al. Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat. J Neurophysiol, 2001, 85: 1283-1298
    [105]. Berwick J., Versnel H., Mayhew J., and Coffey P., Pharmacological intervention to reduce vascular noise in intrinsic optical imaging of the barrel cortex of the rat and auditory cortex of the ferret. Soc Neurosci Abst 1998, 24: 166-171.
    [106]. Pouratian N, Cannestra A F, Martin N A, et al. Intraoperative optical intrinsic signal imaging: a clinical tool for functional brain mapping. Neurosurg Focus, 2002, 13:1-9.
    [107]. Li P C, Ni S L, Zhang L, et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt Lett, 2006, 31:1824-1826
    [108].李鹏程,陈尚宾,骆卫华等,大鼠皮层扩散性抑制过程中在体内源光信号与脑血管形态变化的相关性.自然科学进展, 2003, 13:1320-1324.
    [109]. Morita Y, Hardebo J E, Bouskela E. Influence of cerebrovascular sympathetic, parasympathetic and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol Scand, 1995, 154: 121-130.
    [110]. Nilsson H, Aalkjaer C. Vasomotion: mechanisms and physiological importance. Mol Interv, 2003, 3: 79-89
    [111]. Colantuoni A, Bertuglia S, Intaglietta M. Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol-Heart Circ Physiol, 1984, 246: H508-H517
    [112]. W. G. Hundley, G. J. Renaldo, J. E. Levasseur and H. A. Kontos, Vasomotion in cerebral microcirculation of awake rabbits, Am J. Physiol. Heart Circ. Physiol., 1988, 254: H67-H71.
    [113]. Buzsáki G., Rhythms of the brain, New York: Oxford University Press, Inc. 2006.
    [114]. Cox S B, Woolsey T A, Rovainen C M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab, 1993, 13: 899-913
    [115]. Nariai T., Sato K., Hirakawa K., Ohta Y., Tanaka Y., ea al. Imaging of somatotopic representation of sensory cortex with intrinsic optical signals as guides for brain tumor surgery. J. Neurosurg, 2005, 103:414-423.
    [116]. Toga, A.W. et al. The temporal/spatial evolution of optical signals in human cortex. Cereb. Cortex, 1995, 5, 561-565.
    [117]. Shoham, D. and Grinvald, A. The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging. J. Neurosci. 2001, 21, 6820-6835.
    [118]. Sato, K. et al. Intraoperative intrinsic optical imaging of neuronal activity from subdivisions of the human primary somatosensory cortex. Cereb. Cortex, 2002, 12, 269-280.
    [119]. R.P. Woods, S.T. Grafton, C.J. Holmes, S.R. Cherry, J.C. Mazziotta, Automated image registration: II. intersubject validation of linear and nonlinear models, J. Comput. Assist.Tomogr., 1998, 22, 153-165.
    [120]. J. Ashburner, K.J. Friston, Nonlinear spatial normalization using basis functions, Hum. Brain. Mapp., 1999, 7, 254-266.
    [121]. Cannestra, A.F. et al. Topographical and temporal specificity of human intraoperative optical intrinsic signals. Neuroreport,1998, 9, 2557-2563.
    [122]. Cannestra, A.F. et al. Temporal and topographical characterization of language cortices using intraoperative optical intrinsinc signals. Neuroimage, 2000, 12, 41-54.
    [123]. Pouratian, N. et al. Optical imaging of bilingual cortical representations: case report. J. Neurosurg, 2000, 93, 686-691.
    [124]. Haglund MM., Hochman DW., Optical Imaging of Epileptiform Activity in Human Neocortex,Epilepsia, 2004, 45(4):43–47.
    [125]. P.M. Thompson, M.S. Mega, K.L. Narr, E.R. Sowell, R.E. Blanton, A.W. Toga, Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis, Chapter 17, 1071-1073, SPIE press, Belligham, 2000.
    [126]. F. Bookstein, Principal warps: Thin-plate splines and the decomposition of deformations, IEEE Trans. Pattern Anal. and Machine Intell., 1989, 11, 567-585.
    [127]. K. Rohr, H.S. Stiehl, R. Sprengel, W. Beil, T.M. Buzug, J. Weese, M.H. Kuhn, Point-based elastic registration of medical image data using approximating thin-plate splines, Proc. 4th Internat. Conf. Visualization in Biomedical Computing (VBC'96), LNCS, K.H. Hohne, R. Kikinis (Eds.), 1131, 297-306, Springer-Verlag, Berlin, 1996.
    [128]. G. Wahba, Y. Wang, Behavior near zero of the distribution of GCV smoothing parameter estimates for splines, Statistics and Probability Letters, 25, 1993, 105-111.
    [129]. K. Rohr, H.S. Stiehl, R. Sprengel, T.M. Buzug, J. Weese, and M.H. Kuhn, Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines, IEEE Trans. Medical Imaging, 20, 2001, 526-534.
    [130]. K. Rohr, On 3D Differential Operators for Detecting Point Landmarks, Image and Vision Computing, 1997, 15, 219-233.
    [131]. J. Ruiz-Alzola, E. Suarez, C. Alberola-Lopez, S.K. Warfield, C.-F. Westin, Geostatistical Medical Image Registration”, Proc. 6th Internat. Conf. Medical Image Computing and Computer-Assisted Intervention, LNCS, R.E. Ellis, T.M. Peters (Eds.), 2879, 894-901, Springer-Verlag, Heidelberg, 2003.
    [132]. K. Rohr.“Image registration based on thin-plate splines and local estimates of anistropic landmark localization uncertainties”, Proc. 1st Internat. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), LNCS, W.M. Wells (Eds.), 1496, 1174-1183, Springer-Verlag, Heidelberg, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700