小脑在豚鼠延迟性和痕迹性条件眨眼反应习得和表达过程中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和方法
     长期以来人们一直认为小脑只具有运动调节功能,但实验和临床研究的结果表明小脑可能还参与了多种复杂的认知和学习过程,如运动性学习。
     经典眨眼条件反射是研究小脑参与运动性学习机制的极好模型。该类条件反射的建立依赖于条件刺激和非条件刺激的配对出现。根据条件刺激与非条件刺激出现时间的不同,经典眨眼条件反射可以分成延迟性和痕迹性两种模式。在前者中,条件刺激先于非条件刺激开始,并与非条件刺激同时结束。而在后者中,条件刺激结束与非条件刺激开始之间存在一个时间间隔。
     大量实验研究(包括损毁、神经元单位放电记录、刺激、可逆性失活和脑功能性成像技术等)的结果均提示小脑是延迟性眨眼条件反射建立所必需的神经结构。但是,对小脑皮层和小脑中位核在此过程中的相对重要性仍存在较大的争议。此外,近期的研究发现,小脑皮层和小脑中位核在痕迹性眨眼条件反射过程中均有不同程度的活化,但它们在此过程中的作用仍不清楚。
     本研究的目的就是:(1)利用化学性可逆性失活的方法,在延迟性和痕迹性条件反射训练过程中失活小脑的中位核,观察失活作用对眨眼条件反射习得的影响,近而判断小脑中位核在延迟性和痕迹性眨眼条件反射建立过程中的作用;(2)利用透射电镜技术,检测延迟性和痕迹性眨眼条件反射建立后小脑中位核内突触超微结构的变化,初步探讨小脑中位核参与两类眨眼条件反射建立的机制(;3)利用化学性受体阻断法,阻断小脑皮层对小脑中位核神经元活动的影响,近而判断小脑皮层在痕迹性条件眨眼反应表达控制过程中的作用。研究小脑在延迟性和痕迹性条件眨眼反应习得和表达过程中的作用,既能全面确定小脑的运动性学习功能,又能为深入地研究相关机制提供新思路,具有重要的理论意义。
     结果
     1.单侧小脑中位核在延迟性条件眨眼反应习得过程中的作用
     1)豚鼠经典眨眼条件反射建立的关键期为条件反射训练第2-4天;
     2) 2.50μg/kg剂量的蝇蕈醇可以完全抑制一侧的豚鼠小脑中位核;
     3)训练前向左侧小脑中部定量微注射GABAA受体激动剂蝇蕈醇,可逆性失活左侧小脑中位核,可以完全抑制豚鼠左侧延迟性眨眼条件反射的习得;
     4)训练前向右侧小脑中部定量微注射GABAA受体激动剂蝇蕈醇,可逆性失活右侧小脑中位核,对豚鼠左侧延迟性眨眼条件反射习得的早期阶段具有显著的迟滞效应,但这种迟滞效应在豚鼠左侧延迟性眨眼条件反射习得的后期不再显著;
     5)向小脑中部微注射无论是蝇蕈醇还是人工脑脊液均不会显著影响非条件眨眼反应的表达。
     2.小脑中位核在痕迹性条件眨眼反应习得过程中的作用
     1)在痕迹性眨眼条件反射训练期间,可逆性失活一侧小脑中位核,可以阻止豚鼠对刺激间隔期为50 ms的同侧痕迹性眨眼条件反射习得,但却不能阻止豚鼠对刺激间隔期为250 ms的同侧痕迹性眨眼条件反射习得;
     2)当痕迹性眨眼条件反应已经习得后,无论刺激间隔期的长度如何,可逆性失活一侧小脑中位核,均可以显著抑制已习得的同侧痕迹性条件眨眼反应表达;
     3.经典眨眼条件反射习得后豚鼠小脑中位核内突触超微结构的变化
     1)延迟性模式配对训练组豚鼠小脑中位核内兴奋性和抑制性突触后膜致密物均显著增厚;
     2)痕迹性模式配对和非配对训练都未显著改变豚鼠训练侧小脑中位核内突触的超微结构;
     4.小脑皮层在痕迹性条件眨眼反应表达过程中的作用
     1)当建立稳定的痕迹性眨眼条件反射后,向小脑中部微注射GABAA受体拮抗剂甲酰荷包牡丹碱,封闭小脑中位核神经元表面GABAA受体,可以显著地改变豚鼠已习得的痕迹性条件眨眼反应的拓扑学特征;
     2)当建立稳定的痕迹性眨眼条件反射后,向小脑中部微注射GABAA受体激动剂蝇蕈醇使小脑中位核神经元细胞膜电位超极化,抑制中位核神经元活动,可以完全地抑制豚鼠对已习得痕迹性条件眨眼反应的表达。
     结论
     1.同侧小脑中位核在延迟性眨眼条件反射的建立过程中起到了至关重要的作用,而对侧小脑中位核仅参与了该类眨眼条件反射习得的早期过程;
     2.小脑中位核是否参与痕迹性眨眼条件反射的建立,取决于条件刺激与非条件刺激之间的时间间隔。随着时间间隔长度的增加,小脑中位核在痕迹性眨眼条件反射建立过程中的重要性就越小。但是,无论刺激间隔的长短,小脑中位核均是痕迹性条件眨眼反应表达所必需的神经结构;
     3.延迟性眨眼条件反射训练可以改变训练同侧小脑中位核内突触的超微结构,但相同刺激参数的痕迹性眨眼条件反射训练并不引起训练同侧小脑中位核内突触的超微结构发生类似改变,提示小脑中位核可能并不参与痕迹性眨眼条件反射的建立过程;
     4.小脑皮层可能参与了对痕迹性条件眨眼反应拓扑学特征的控制过程。
Aims and methods:
     Numerous lines of evidence ranging from purely theoretical considerations to human functional imaging studies have consistently implicated the cerebellum as being critically involved in a number of learning related tasks. Among the tasks in which the cerebellum is critically involved, a number of studies from several laboratories have demonstrated that the cerebellum is essentially involved in acquisition and expression of classically conditioned discrete skeletal movements, in particular, the classically conditioned eyeblink response.
     Classical conditioning of eyeblink reflex is a widely-used model system for elucidating the mechanisms of cerebellar involvement in motor learning, which involves paired presentation of a behaviorally neutral conditioned stimulus (CS, e.g., a tone) and an aversive unconditioned stimulus (US, e.g., a corneal airpuff in the eye). Initially, the organism produces only a reflexive unconditioned response (UR) to the US. However, after repeated pairings of the CS and US, the alone CS begins to elicit anticipatory conditioned eyeblink response (CR), suggesting that an association between the CS and US has been learned. There are two paradigms of eyeblink conditioning that differ in the temporal relationship between the CS and US. In the delay paradigm, the CS precedes, overlaps, and coterminates with the US. On the other hand, in the trace paradigm, the CS and the US are separated by a stimulus-free time gap (called trace interval, TI).
     Cumulative evidence from the lesion, recording, stimulation, reversible inactivation and neuroimaging studies has proved the cerebellum to be the basic locus of delay eyeblink conditioning. However, the relative contributions of the cerebellar cortex and interpositus nucleus to the acquisition of delay eyeblink conditioning are far to be determined. On the other hand, significant activations of the cerebellar cortex and interpositus nucleus during trace eyeblink conditioning have recently been observed. At this time, it is unclear what role does the cerebellar cortex and interpositus nucleus play during trace eyeblink conditioning.
     Consequently, the present study was undertaken to (1) investigate the role of cerebellar interpositus nucleus during the acquisition of delay and trace eyeblink conditioning in guinea pigs; (2) investigate changes of the synaptic ultrastrure in the guinea pig interpositus nucleus after delay and trace eyeblink conditioning; (3) investigate the cerebellar cortical function duting the expression of acquired trace-conditioned eyeblink responses in guinea pigs.
     Results:
     (1) Role of the unilateral cerebellar interpositus nucleus during the acquisition of delay eyeblink conditioning.
     1) The CR acquisition increased sharply during the sessions 2 to 4;
     2) A dose of 2.5 ug/kg muscimol had a sufficient inactivation effect;
     3) Microinjections of muscimol, a GABAA receptor agonist, into the left intermediate cerebellum before training completely prevented acquisition of the left CRs in guinea pigs;
     4) Microinjections of muscimol into the right intermediate cerebellum before training retarded acquisition of the left CRs at the early stage of training, whereas the CR acquisition was not affected at the later stage of traning relative to that of the Control animals;
     5) Microinjections of either aCSF or muscimol into the intermediate cerebellum did not affect the performance of tone-airpuff evoked UR;
     (2) Role of the unilateral cerebellar interpositus nucleus during the acquisition of trace eyeblink conditioning.
     1) Inactivations of the left cerebellar interpositus nuelceus with the GABAA receptor agonist muscimol during training prevent the acquisition of left TEBC using a relatively short (50 ms) TI, instead of the acquisition of left TEBC using a relatively long (250 ms) TI;
     2) Inactivations of the left cerebellar interpositus nucleus abolished the established left trace CRs regardless of the time length of TI;
     (3) Changes of synaptic ultrastructure in the cerebellar interpositus nucleus after delay and trace eyeblink conditioning.
     1) The PSD thickness of the excitatory and inhibitory synapses in the guinea pig interpositus nucleus increased after 10 daily sessions of delay eyeblink conditioning;
     2) However, the PSD thickness of the excitatory and inhibitory synapses in the guinea pig interpositus nucleus did not significantly change after 10 daily sessions of trace eyeblink conditioning;
     (4) Role of the cerebellar cortex during the expression of acquired trace-conditioned eyeblink responses in guinea pigs.
     1) Topography of the acquired trace-conditioned eyeblink responses was disrupted after blockade of cerebellar cortical input to the interpositus nucleus with bicuculline methiodide;
     2) Expression of the acquired trace-conditioned eyeblink response was totally abolished after microinjections of the GABAA agonist muscimol into the intermediate cerebellum;
     Conclusions:
     1) In contrast to the essential role of the ipsilateral cerebellar interpositus nucleus, the contralateral cerebellar interpositus nucleus is potentially involved in the acquisition of unilaterally classical eyeblink conditioning during the early stage of training.
     2) While the ipsilateral cerebellar interpositus nucleus is essential for the expression of trace CRs, its contribution to the acquisition of trace CRs appears to mainly depend on the length of trace interval.
     3) Delay, but not trace eyeblink conditioning is associated with significant changes of synaptic ultrastructure in the guinea pig interpositus nucleus.
     4) Blockade of cerebellar cortical input to the cerebellar interpositus nucleus disrupts the topography of acquired trace-conditioned eyeblink responses in guinea pigs.
引文
[1] Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 2003; 11: 427-455.
    [2] Rogers RF, Britton GB, Steinmetz JE. Learning-related interpositus activity is conserved across species as studied during eyeblink conditioning in the rat. Brain Res 2001; 905: 171-177.
    [3] Green JT, Arenos JD. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol Learn Mem 2007; 87: 269-284.
    [4] Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res 1982; 323: 190-193.
    [5] Lavond DG, Hembree TL, Thompson RF. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res. 1985; 326: 179-182.
    [6] Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus, J Physiol (London) 1991; 444: 459-480.
    [7] Clark RE, Zhang AA, Lavond DG. Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behav Neurosci 1992; 106: 879-888.
    [8] Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science 1993; 260: 989-991.
    [9] Hardiman MJ, Ramnani N, Yeo CH. Reversible inactivations of cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Exp Brain Res 1996; 110: 235-247.
    [10] McCormick DA, Lavond DG, Clark GA, Kettner RE, Rising CE, Thompson RF. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull Psyc Soci 1981; 18: 103-105.
    [11] Miller MJ, Chen NK, Li BL, Tom B, Weiss C, Disterhoft JF, et al. fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation, J Neurosci 2003; 23: 11573-11578.
    [12] Park J, Onodera T, Nishimura S, Thompson RF, Itohara S. Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice. Proc Natl Acad Sci USA 2007; 103: 5549-5554.
    [13] Logan CG, Grafton ST. Functional anatomy of human eyeblink conditioning determined with regional cerebellar glucose metabolism and positron-emission tomography. Proc Natl Acad Sci USA 1995; 92: 7500-7504.
    [14] Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, Theodore WH, et al. Functional mapping of human learning: a positron-emission tomography activation study of eyeblink conditioning. J Neurosci 1996; 16: 4032-4040.
    [15] Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, et al. eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp 2002; 17: 100-115.
    [16] Krogsgaard-Larsen P, Johnston GA. Structure-activity studies on the inhibition of GABA binding to rat brain membrane by muscimol and related compounds. J Neurochem 1978; 30: 1377-1382.
    [17] Palacios JM, Young WS, Kuhar MJ. Autoradiographic localization ofγ–aminobutyric acid (GABA) receptors in the rat cerebellum. Proc Natl Acad Sci USA 1980; 77: 670-674.
    [18] Sastry BR, Morishita W, Yip S, Shew T. GABA-ergic transmission in deep cerebellar nuclei. Prog Neurobiol 1997; 53: 259-271.
    [19] Rapisarda C, Bacchelli B. The brain of the guinea pig in stereotaxic coordinates. Arch Sci Biol 1977; 61: 1-37.
    [20] Yeo CH, Lobo DH, Baum A. Acquisition of a new-latency conditioned nictitating membrane response- major, but not complete dependence on the ipsilateral cerebellum. Learn Mem 1997; 3: 557-577.
    [21] Hu B, Lin X, Xiong Y, Huang W, Liu G, Sui J. Activity of single granule cell in the dentate gyrus of guinea pig during the consolidation of trace eyeblink conditioned responses. Prog Biochem Biophys 2006; 33: 1051-1060.
    [22] Hu B, Yang L, Huang W, Sui J. A comparison of the spontaneous firing patterns between principal cells and fast spiking interneurons from dentate gyrus in waking guinea pigs. Neurosci Bull 2006; 22: 21-28.
    [23] Kotani S, Kawahara S, Kirino Y. Trace eyeblink conditioning in decerebrate guinea pigs. Eur J Neurosci 2003; 17: 1445-1454.
    [24] Krupa DJ, Thompson RF. Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response. Learn Mem 1997; 3: 545-556.
    [25] Edeline JM, Hars B, Hennevin E, Cotillon N. Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 2002; 78:100-124.
    [26] Martin J. Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 1991; 24: 160-164.
    [27] Katz DB, Steinmetz JE. Single-unit evidence foe eye-blink conditioning in cerebellar cortex is altered, but no eliminated, by interpositus nucleus lesions. Learn Mem 1997; 3: 88-104.
    [28] Bengtsson F, Hesslow G. Cerebellar control of the inferior olive. Cerebellum 2006; 5: 7-14.
    [29] McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 1984; 223: 296-299.
    [30] Bao S, Chen L, Kim JJ, Thompson RF. Cerebellar cortical inhibition and classical eyeblink conditioning. Proc Natl Acad Sci USA 2002; 99: 1592-1597.
    [31] Wada N, Kishimoto Y, Watanabe D, Kano M, Hirano T, Funabiki K. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci USA 2007; 104: 16690-16695.
    [32] Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci 2002; 22: 8808-8818.
    [33] Van Ham JJ, Yeo CH. Somatosensory trigeminal projections to the inferior olive, cerebellum and other precerebellar nuclei in rabbits. Eur J Neurosci 1992; 4: 302-317.
    [34] Albus, JS. A theory of cerebellar function. Math Biosci 1971; 10: 25–61.
    [35] Marr, D. Theory of cerebellar cortex. J Physiol 1969; 202: 437–470.
    [36] Ivarsson M, Hesslow G. Bilateral control of the orbicularis oculi muscle by onecerebellar hemisphere in the ferret, NeuroReport 1993; 4: 1127-1130.
    [37] Bao S, Chen L, Kim JJ, Thompson RF. Cerebellar cortical inhibition and classical eyeblink conditioning. Proc Natl Acad Sci USA 2002; 99: 1592-1597.
    [38] Garcia KS, Mauk MD. Pharmacological analysis of cerebellar contribution to the timing and expression of conditioned eyelid responses. Neuropharmacology 1998; 37: 471-480.
    [39] Lavond DG, Steinmetz JE. Acquisition of classical eyeblink conditioning without cerebellar cortex. Behav Brain Res1989; 33: 113-164.
    [40] Attwell PJE, Rahman S, Yeo CH. Acquisition of eyeblink conditioning is critical dependent on normal function in cerebellar cortical lobule HVI. J Neurosci 2001; 21: 5715-5722.
    [41]林曦,胡波,万子兵,杨丽,黄率帅,隋建峰。一种简易的豚鼠眨眼反应测量方法。第三军医大学学报,2008;30: 2340-2342。
    [42]隋建峰,高洁,罗峻,甘平,鲜晓东,黄扬帆。适用于低等哺乳动物的视听分辨行为自动训练系统。第三军医大学学报,2005;27: 89。
    [43]梁培基,陈爱华。神经元活动的多电极同步记录及神经元信息处理,北京工业大学出版社,2003年11月第1版。
    [44]楼顺天,陈生潭,雷虎民。Matlab 5.X程序设计语言,西安电子科技大学出版社,2000年4月第1版。
    [45]王保进。英文视窗版SPSS与行为科学研究,北京大学出版社,2006年3月第3版。
    [1] D.T. Cheng, J.F. Disterhoft, J.M. Power, D.A. Ellis, J.E. Desmond, Neural substrate underlying human delay and trace eyeblink conditioning, Proc. Natl. Acad. Sci. U.S.A. 105 (2008): 8108-8113.
    [2] K.M. Christian, R.F. Thompson, Neural substrates of eyeblink conditioning: acquisition and retention, Learn Mem. 11 (2003): 427-455.
    [3] M. Gerwig, K. Haerter, K. Hajjar, A. Dimitrova, M. Maschke, F.P. Kolb, A.F. Thilmann, E.R. Gizewski, D.Timmann, Trace eyeblink conditioning in human subjects with cerebellar lesions, Exp. Brain Res. 170 (2006): 7-21.
    [4] J.T. Green, J.D. Arenos, Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat, Neurobiol. Learn. Mem. 87 (2007): 269-284.
    [5] M.J. Hardiman, N. Ramnani, C.H. Yeo, Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit, Exp. Brain Res. 110 (1996): 235-247.
    [6] B. Hu, X. Lin, L. Huang, L. Yang, H. Feng, J. Sui. Involvement of the ipsilateral and contralateral cerebellum in the acquisition of unilateral classical eyeblink conditioning in guinea pigs, Acta. Pharmacol. Sin, 30 (2009): 141-152.
    [7] Y. Kishimoto, M. Hirono, T. Sugiyama, S. Kawahara, K. Nakao, M. Kishio, et al, Impaired delay but normal trace eyeblink conditioning in PLCβ4 mutant mice, NeuroReport 12 (2001): 2919-2922.
    [8] Y. Kishimoto, S. Kawahara, R. Fujimichi, H. Mori, M. Mishina, Y. Kirino, Impairmentof eyeblink conditioning in GluRδ2-mutant mice depends on the temporal overlap between conditioned and unconditioned stimuli, Eur. J. Neurosci. 14 (2001):1515-1521.
    [9] S. Kotani, S. Kawahara, Y. Kirino, Trace eyeblink conditioning in decerebrate guinea pigs, Eur. J. Neurosci, 17 (2003): 1445-1454.
    [10] M.A. Kronforst-Collins, J.F. Disterhoft. Lesions of the caudal area of rabbit medial prefrontal cortex impair trace eyeblink conditioning, Neurobiol. Learn. Mem. 69 (1998): 147–62.
    [11] D.J. Krupa, J.K. Thompson, R.F. Thompson, Localization of a memory trace in the mammalian brain, Science 260 (1993): 989-991.
    [12] D.J. Krupa, R.F. Thompson, Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response, Learn Mem. 3 (1997): 545-556.
    [13] J.R. Jr. Moyer, R.A. Deyo, J.F. Disterhoft, Hippocampectomy disrupts trace eye-blink conditioning in rabbits, Behav. Neurosci. 104 (1990): 243-252.
    [14] B.P. Plakke, J.H. Freeman, A. Poremba, Metabolic mapping of the rat cerebellum during delay and trace eyeblink conditioning, Neurobiol. Learn. Mem. 88 (2007): 11-18.
    [15] W. Tseng, R. Guan, J.F. Disterhoft, C. Weiss, Trace eyeblink conditioning is hippocampally dependent in mice, Hippocampus 14 (2004): 58-65.
    [16] A.G. Walker, J.E. Steinmetz, Hippocampal lesions in rats differentially affect long- and short-trace eyeblink conditioning, Physiol. Behav. 93 (2008): 570-578.
    [17] A.P. Weible, M.D. McEchron, J.F. Disterhoft, Cortical involvement in acquisition and extinction of trace eyeblink conditioning, Behav. Neurosci. 114(2000):1058-1067.
    [18] C. Weiss, H. Bouwmeester, J.M. Power, J.F. Disterhoft, Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat, Behav. Brain Res. 99 (1999): 123-132.
    [19] D.S. Woodruff-Pak, J.F. Disterhoft, Where is the trace in trace conditioning? Trends Neurosci. 31 (2008):105-112.
    [20] D.S. Woodruff-Pak, D.G. Lavond, R.F. Thompson, Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations, Brain Res. 348 (1985): 249-260.
    [21]林曦,胡波,万子兵,杨丽,黄率帅,隋建峰,一种简易的豚鼠眨眼反应测量方法,第三军医大学学报30(2008):2340-2342。
    [22]隋建峰,高洁,罗峻,甘平,鲜晓东,黄扬帆,适用于低等哺乳动物的视听分辨行为自动训练系统,第三军医大学学报27(2005):89。
    [23]楼顺天,陈生潭,雷虎民。Matlab 5.X程序设计语言,西安电子科技大学出版社,2000年4月第1版。
    [24]王保进,英文视窗版SPSS与行为科学研究(第3版),北京大学出版社,2006年。
    [1] K.M. Christian, R.F. Thompson, Neural substrates of eyeblink conditioning: acquisition and retention, Learn. Mem. 11 (2003): 427-455.
    [2] J.E. Steinmetz, Brain substrates of classical eyeblink conditioning: a highly localized but also distributed system, Behav. Brain Res. 110 (2000): 13-14.
    [3] L. Aitkin, J. Boyd, Acoustic input to the lateral pontine nuclei, Hear. Res. 1 (1978): 17-77.
    [4] J.E. Steinmetz, C.G. Logan, D.J. Rrosen, J.K. Thompson, D.G. Lavond, R.F. Thompson, Initial localization of the acoustic conditioned stimulus projection system to the cerebellum during classical eyelid conditioning, Proc. Natl. Acad. Sci. U.S.A. 84 (1987): 3531-3535.
    [5] J.L. Lewis, J.J. LoTurco, P.R. Solomon, Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit’s classically conditioned nictitating membrane response, Behav. Neurosci. 101 (1987): 151-157.
    [6] J.E. Steinmetz, D.J. Rrosen, P.F. Chapman, D.G. Lavond, R.F. Thompson, Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation CS. I. Potine nuclei and middle cerebellar peduncle stimulation, Behav. Neurosci. 100 (1986): 871-880.
    [7] D.A. McCormick, J.E. Steinmetz, R.F. Thompson, Lesions of the inferior olivary complex cause extinction of the classically conditioned eyelid response, Brain Res. 359 (1985): 120-130.
    [8] M.D. Mauk, J.E. Steinmetz, R.F. Thompson,Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus, Proc. Natl. Acad. Sci. U.S.A. 83 (1986): 5349-5353.
    [9] S.P. Perrett, B.P. Ruiz, M.D. Mauk, Cerebellar cortex lesions disrupt learning- dependent timing of conditioned eyelid responses. J. Neurosci. 13 (1993):1708-1718.
    [10] S.K. Koekkoek, H.C. Hulscher, B.R. Dortland, R.A. Hensbroek, Y. Elgersma, T.J. Ruigrok, C.I. De Zeeuw, Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301 (2003): 1736–1739.
    [11] N. Wada, Y. Kishimoto, D. Watanabe, M. Kano, T. Hirano, K. Funabiki, Conditionedeyeblink learning is formed and stored without cerebellar granule cell transmission. Proc. Natl. Acad. Sci. U.S.A. 104 (2007): 8108-8113.
    [12] M. Gerwig, K. Hajjar, A. Dimitrova, M. Maschke, F.P. Kolb, M. Frings, A.F. Thilmann, M. Forsting, H.C. Diener, D. Timmann, Timing of conditioned eyeblink responses is impaired in cerebellar patients. J. Neurosci. 25 (2008): 3919-3931.
    [13] D.J. Krupa, J.K. Thompson, R.F. Thompson, Localization of a memory trace in the mammalian brain, Science 260 (1993): 989-991.
    [14] M.J. Hardiman, N. Ramnani, C.H. Yeo, Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit, Exp. Brain Res. 110 (1996): 235-247.
    [15] D.J. Krupa, R.F. Thompson, Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response, Learn. Mem. 3 (1997): 545-556.
    [16] B. Hu, X. Lin, L. Huang, L. Yang, H. Feng, J. Sui. Involvement of the ipsilateral and contralateral cerebellum in the acquisition of unilateral classical eyeblink conditioning in guinea pigs, Acta. Pharmacol. Sin, 30 (2009): 141-152.
    [17] G. Chen, J.E. Steinmetz, Microinfusion of protein kinase inhibitor H7 into the cerebellum impairs the acquisition but not the retention of classical eyeblink conditioning in rabbits, Brain Res. 856 (2000): 193-201.
    [18] G. Chen, J.E. Steinmetz, Intra-cerebellar infusion of NMDA receptor antagonist AP5 disrupts classical eyeblink conditioning in rabbits, Brain Res. 887 (2000): 144-156.
    [19] V. Bracha, K.B. Irwin, M.L. Webster, D.A. Wunderlich, M.K. Stachowiak, J.R. Bloedel, Microinjections of anisomycin into the intermediate cerebellum during learning affect the acquisition of classically conditioned responses in the rabbit, Brain Res. 788 (1998): 169-178.
    [20] J.A. Kleim, J.H. Freeman Jr, R. Bruneau, B.C. Nolan, N.R. Cooper, A. Zook, D. Walters, Synapse formation is associated with memory storage in the cerebellum, Proc. Natl. Acad. Sci. U.S.A. 99 (2002): 13228-13231.
    [21] K. Uchizono, Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat, Nature 207(997):642-643.
    [22] B.P. Plakke, J.H. Freeman, A. Poremba, Metabolic mapping of the rat cerebellumduring delay and trace eyeblink conditioning, Neurobiol. Learn. Mem. 88 (2007): 11-18.
    [23] J.T. Green, J.D. Arenos, Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat, Neurobiol. Learn. Mem. 87 (2007): 269-284.
    [24] D.T. Cheng, J.F. Disterhoft, J.M. Power, D.A. Ellis, J.E. Desmond, Neural substrate underlying human delay and trace eyeblink conditioning, Proc. Natl. Acad. Sci. U.S.A. 105 (2008): 8108-8113.
    [25] F.H. Guldner, C.A. Ingham, Increase in postsynaptic density material in optic target neuron of the rat supyachiasmatic nucleus after bilateral nucleation, Neurosci. Lett. 17 (1980): 27-32.
    [26] A.C.W. Weeks, S. Connor, R. Hinchcliff, J.C. LeBoutillier, R.F. Thompson, T.L. Petit, Eye-blink conditioning is associated with changes in synaptic ultrastructure in the rabbit interpositus nuclei, Learn. Mem. 14 (2007): 385-389.
    [27] N.L. Desmond, W.B. Levy, Change in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus, J Comp. Neurol. 253 (1986): 466-475.
    [28] B. Hu, L. Yang, L. Huang, H. Chen, Y. Zeng, H. Feng, J. Sui, Effect of cerebellar reversible inactivations on the acquisition of trace conditioned eyeblink responses in guinea pigs: Comparison of short and long trace intervals, Neurosci. Lett. 2009, doi:10.1016/j.neulet.2009.04.061.
    [29] J.R. Jr. Moyer, R.A. Deyo, J.F. Disterhoft, Hippocampectomy disrupts trace eye-blink conditioning in rabbits, Behav. Neurosci. 104 (1990): 243-252.
    [30] C. Weiss, H. Bouwmeester, J.M. Power, J.F. Disterhoft, Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat, Behav. Brain Res. 99 (1999): 123-132.
    [31] W. Tseng, R. Guan, J.F. Disterhoft, C. Weiss, Trace eyeblink conditioning is hippocampally dependent in mice, Hippocampus 14 (2004): 58-65.
    [32]林曦,胡波,万子兵,杨丽,黄率帅,隋建峰。一种简易的豚鼠眨眼反应测量方法。第三军医大学学报,30(2008): 2340-2342。
    [33]隋建峰,高洁,罗峻,甘平,鲜晓东,黄扬帆。适用于低等哺乳动物的视听分辨行为自动训练系统。第三军医大学学报,27(2005): 89。
    [34]楼顺天,陈生潭,雷虎民。Matlab 5.X程序设计语言,西安电子科技大学出版社,2000年4月第1版。
    [35]王保进。英文视窗版SPSS与行为科学研究,北京大学出版社,2006年3月第3版。
    [1] Christian, K.M., Thompson, R.F., 2003. Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem. 11, 427-455.
    [2] Perrett, S.P., Ruiz, B.P., Mauk, M.D., 1993. Cerebellar cortex lesions disrupt learning- dependent timing of conditioned eyelid responses. J. Neurosci. 13, 1708-1718.
    [3] Gerwig, M., Hajjar, K., Dimitrova, A., Maschke, M., Kolb, F.P., Frings, M., Thilmann, A.F., Forsting, M., Diener, H.C., Timmann, D., 2005. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J. Neurosci. 25, 3919-3931.
    [4] Dimitrova, A., Gerwig, M., Brol, B., Gizewski, E.R., Forsting, M., Beck, A., Aurich, V., Kolb, F.P., Timmann, D., 2008. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 1198, 73-84.
    [5] Koekkoek, S.K., Hulscher, H.C., Dortland, B.R., Hensbroek, R.A., Elgersma, Y., Ruigrok, T.J., De Zeeuw, C.I., 2003. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301, 1736-1739.
    [6] Welsh, J.P., Yamaguchi, H., Zeng, X., Kojo, M., Nakada, Y., Takagi, A., Sugimori, M., Llinas, R.R., 2005. Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc. Natl. Acad. Sci. U.S.A. 102, 17166-17171.
    [7] Wada, N., Kishimoto, Y., Watanabe, D., Kano, M., Hirano, T., Funabiki, K., 2007, Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc. Natl. Acad. Sci. U.S.A. 104, 8108-8113.
    [8] Linden, D.J., 2003. From Molecules to Memory in the cerebellum. Science 301, 1682-1685.
    [9] Kishimoto, Y., Hirono, M., Sugiyama, T., Kawahara, S., Nakao, K., Kishio, M., Katsuki, M., Yoshioka, T., Kirino, Y., 2001. Impaired delay but normal trace eyeblink conditioning in PLCβ4 mutant mice. NeuroReport 12, 2919-2922.
    [10] Kishimoto, Y., Kawahara, S., Fujimichi, R., Mori, H., Mishina, M., Kirino, Y., 2001. Impairment of eyeblink conditioning in GluRδ2-mutant mice depends on the temporal overlap between conditioned and unconditioned stimuli. Eur. J. Neurosci. 14, 1515-1521.
    [11] Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M., Kirino, Y., 2001. Classical eyeblink conditioning in glutamate receptor subunitδ2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur. J. Neurosci. 13, 1249-1253.
    [12] Miyata, M., Kim, H., Hashimoto, K., Lee, T., Cho, S., Jiang, H., Wu, Y., Jun, K., Wu, D., Kano, M., Shin, H., 2001. Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase Cβ4 mutant mice. Eur. J. Neurosci. 13, 1945-1954.
    [13] Woodruff-Pak, D.S., Green, G.T., Levin, S.I., Meisler, M.H., 2006. Inactivation of sodium channel Scn8A (Nav1.6) in purkinje neurons impairs learning in Morris maze and delay but not trace eyeblink classical conditioning. Behav. Neurosci. 120, 229-240.
    [14] Woodruff-Pak, D.S., Lavond, D.G., Thompson, R.F., 1985. Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348, 249-260.
    [15] Cheng, D.T., Disterhoft, J.F., Power, J.M., Ellis, D.A., Desmond, J.E., 2008. Neural substrates underlying human delay and trace eyeblink conditioning. Proc. Natl. Acad. Sci. U.S.A. 105, 8108-8113.
    [16] Plakke, B., Freeman, J.H., Poremba, A., 2007. Metabolic mapping of the rat cerebellum during delay and trace eyeblink conditioning. Neurobiol. Learn Mem. 88, 11-18.
    [17] Bao, S.W., Chen, L., Kim, J.J., Thompson, R.F., 2001. Cerebellar cortical inhibition and classical eyeblink conditioning. Proc. Natl. Acad. Sci. U.S.A. 99, 1592-1597.
    [18] Mauk, M.D., Garcia, K.S., 1998. Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology 37, 471-480.
    [19] Hu, B., Lin, X., Huang, L., Yang, L., Feng, H., Sui, J., 2009. Involvement of the ipsilateral and contralateral cerebellum in the acquisition of unilateral classical eyeblink conditioning in guinea pigs. Acta. Pharmacol. Sin. 30, 141-152.
    [20] Kotani, S., Kawahara, S., Kirino, Y., 2003. Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res. 994, 193-202.
    [21] Kotani, S., Kawahara, S., Kirino, Y., 2002. Classical eyeblink conditioning in decerebrate guinea pigs. Eur. J. Neurosci. 15, 1267-1270.
    [22] Kotani, S., Kawahara, S., Kirino, Y., 2003. Trace eyeblink conditioning in decerebrate guinea pigs. Eur. J. Neurosci. 17, 1445-1454.
    [23] Hu, B., Yang, L., Huang, L., Chen, H., Zeng, Y., Feng, H., Sui, J., 2009. Effect of cerebellar reversible inactivations on the acquisition of trace conditioned eyeblink responses in guinea pigs: comparison of short and long trace intervals. Neurosci Lett, 2009, Doi:10.1016/j.neulet.2009.04.061
    [24] Pakaprot, N., Kim, S., Thompson, R.F., 2009. The role of the cerebellar interpositus nucleus in short and long term memory for trace eyeblink conditioning. Behav. Neurosci. 123, 54-61.
    [25] Campusano, R.S., Gruart, A., Delgado-Garcia, J.M., 2007. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J. Neurosci. 27, 6620-6632.
    [26] Green, J.T., Arenos, J.D., 2007. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol. Learn Mem. 87, 269-284.
    [27] Hardiman, M.J., Ramnani, N., Yeo, C.H., 1996. Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Exp. Brain Res. 110, 235-247.
    [28] Krupa, D.J., Thompson, J.K., Thompson, R.F., 1993. Localization of a memory trace in the mammalian brain. Science 260, 989–991.
    [29] Krupa, D.J., Thompson, R.F., 1997. Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response. Learn. Mem. 3, 545-556.
    [30] Garcia, K.S., Steele, P.M., Mauk, M.D., 1999. Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses. J. Neurosci. 19, 10940-10947.
    [31] Attwell, P.J.E., Rahman, S., Yeo, C.H., 2001. Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J. Neurosci. 21, 5715-5722.
    [32] Moyer, J.R. Jr., Deyo, R.A., Disterhoft, J.F., 1990. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 104, 243-252.
    [33] Weiss, C., Bouwmeester, H., Power, J.M., Disterhoft, J.F., 1999. Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behav. Brain Res. 99, 123-132.
    [34] Tseng, W., Guan, R., Disterhoft, J.F., Weiss, C., 2004. Trace eyeblink conditioning is hippocampally dependent in mice. Hippocampus 14, 58-65.
    [35] Takehara, K., Kawahara, S., Takatsuki, K., Kirino, Y., 2002. Time-limited role of the hippocampus in the memory for trace eyeblink conditioning in mice. Brain Res. 951, 183-190.
    [36] Kim, J.J., Clark, R.E., Thompson, R.F., 1995. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditional responses. Behav. Neurosci. 109, 195-203.
    [37] Takehara, K., Kawahara, S., Kirino, Y., 2003. Time-Dependent Reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J. Neurosci. 23, 9897-9905.
    [38] Woodruff-Pak, D.S., Disterhoft, J.F., 2008. Where is the trace in trace conditioning? Trends Neurosci. 31, 105-112.
    [39] Ohyama, T., Nores, W.L., Mauk, M.D., 2009.Stimulus generalization of conditioned eyelid responses produced without cerebellar cortex: Implications for plasticity in the cerebellar nuclei. Learn Mem. 10, 346-354.
    [40] Pugh, J.R., Raman, I.M., 2006. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51, 113-123.
    [41] Gerwig, M., Haerter, K., Hajjar, K., Dimitrova, A., Maschke, M., Kolb, F.P., Thilmann, A.F., Gizewski, E.R., Timmann, D., 2006. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp. Brain Res. 170, 7-21.
    [42] Gerwig, M., Eber, A.C., Guberina, H., Frings, M., Kolb, F.P., Forsting, M., Aurich, V., Beck, A., Timmann, D., 2008. Trace eyeblink conditioning in patients with cerebellar degeneration: comparison of short and long trace intervals. Exp. Brain Res. 187, 85-96.
    [43] Evinger, C., Shaw, M.D., Peck, C.K., Manning, K.A., Baker, R., 1984. Blinking and associated eye movements in humans, guinea pigs, and rabbits. J. Neurophysiol. 52, 323-339.
    [44] Larouche, M., Diep, C., Sillitoe, R.V., Hawkes, R., 2003. Topographical anatomy of the cerebellum in the guinea pig, Cavia porcellus. Brain Res. 965, 159-169.
    [45] Llinas, R., Muhlethaler, M., 1988. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J. Physiol (London). 404, 241-258.
    [45]林曦,胡波,万子兵,杨丽,黄率帅,隋建峰,2008。一种简易的豚鼠眨眼反应测量方法。第三军医大学学报30,2340-2342。
    [46]隋建峰,高洁,罗峻,甘平,鲜晓东,黄扬帆,2005。适用于低等哺乳动物的视听分辨行为自动训练系统。第三军医大学学报27,89。
    [47]楼顺天,陈生潭,雷虎民。Matlab 5.X程序设计语言,西安电子科技大学出版社,2000年4月第1版。
    [48]王保进。英文视窗版SPSS与行为科学研究,北京大学出版社,2006年3月第3版。
    [1] Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science, 1962, 136: 650 ~ 652.
    [2] Solomon PR, Groccia-Ellison ME. Classical conditioning in aged rabbits: Delay, trace, and long-delay conditioning. Behav Neurosci, 1996, 110(3): 427 ~ 435.
    [3] Solomon PR, Vander Schaaf ER, Thompson RF, et al. Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating memory response. Behav Neurosci, 1986, 100(5): 729 ~ 744.
    [4] Moyer JR Jr, Deyo RA, Disterhoft JF. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci, 1990, 104(2): 243 ~ 252.
    [5] Weiss C, Bouwmeester H, Power JM, et al. Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behav Brain Res, 1999, 99(2): 123 ~ 132.
    [6] Kotani S, Kawahara S, Kirino Y. Trace eyeblink conditioning in decerebrate guinea pig. Eur J Neurosci, 2003, 17(7): 1445 ~ 1454.
    [7] Tseng W, Guan R, Disterhoft JF, et al. Trace eyeblink conditioning is hippocampally dependent in mice. Hippocampus, 2004, 14(1): 58 ~ 65.
    [8] McGlinchey-Berroth R, Carrillo MC, Gabrieli JD, et al. Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav Neurosci, 1997, 111(5): 873 ~ 882
    [9] Kishimoto Y, Suzuki Kawahara S, et al. Age-dependent impairment of delay and traceeyeblink conditioning in mice. NeuroReport, 2001, 12(15): 3349 ~ 3352.
    [10] Knuttinen MG, Gamelli AE, Weiss C, et al. Aged-related effects on eyeblink conditioning in the F344 X BN F1 hybrid rat. Neurobiol Aging, 2001, 22(1): 1 ~ 8.
    [11] Woodruff-Pak D, Papka M. Alzheimer's disease and eyeblink conditioning: 750 ms trace vs. 400 ms delay Paradigm. Neurobiol Aging, 1996, 17(3): 397 ~ 404.
    [12] Ewers M, Morgan D, Gordon MN, et al. Associative and motor learning in 12-month-old transgenic APP + PS1 mice. Neurobiol Aging, 2006, 27(8): 1118 ~ 1128.
    [13] Gruart A, Lopez-Ramos JC, Munoz MD, et al. Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Disease, 2008, 30(3): 329 ~ 450.
    [14] Disterhoft JF, Oh MM. Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol Paris, 2006, 99(2-3): 180 ~ 192.
    [15] Weiss C, Kronforst-Collins MA, Disterhoft JF. Activity of hippocampal pyramidal neurons during trace eyeblink conditioning. Hippocampus, 1996, 6(2): 192 ~ 209.
    [16] Hampson RE, Simeral JD, Deadwyler SA. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 1999, 402(6762): 610 ~ 614.
    [17] McEchron MD, Disterhoft JF. Sequence of single neuron changes in CA1 hippocampus of rabbits during acquisition of trace eyeblink conditioned responses. J Neurophysiol, 1997, 78(2): 1030 ~ 1044.
    [18] Green JT, Arenos JD. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol Learn Mem, 2007, 87(2): 269 ~ 284.
    [19] McEchron MD, Weible AP, Disterhoft JF. Aging and learning-specific changes in single-neuron activity in CA1 hippocampus during rabbit trace eyeblink conditioning. J Neurophysiol, 2001, 86(4): 1839 ~ 1857.
    [20] Wirth S, Yanike M, Frank LM, et al. Single neurons in the monkey hippocampus and learning of new associations. Science, 2003, 300(5625): 1578 ~ 1581.
    [21] Weible AP, O’Reilly JA, Weiss C, et al. Comparisons of dorsal and ventral hippocampus cornu ammonis region 1 pyramidal neuron activity during trace eye-blink conditioning in the rabbit. Neuroscience, 2006, 141(3): 1123 ~ 1137.
    [22] Kirsch P, Achenbach C, Kirsch M, et al. Cerebellar and hippocampal activation duringeyeblink conditioning depends on the experimental paradigm: a MEG study. Neural Plast, 2003, 10(4): 291 ~ 301.
    [23] Cheng DT, Disterhoft JF, Power JM, et al. Neural substrates underlying delay and trace eyeblink conditioning. Proc Natl Acad Sci USA, 2008, 105(23): 8108 ~ 8113.
    [24] Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem, 2003, 10(6): 427 ~ 455.
    [25] Daniel H, Levenes C, Crepel F. Cellular mechanisms of cerebellar LTD. Trends Neurosci, 1998, 21(9): 401 ~ 407.
    [26] Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci, 2006, 30(4): 176 ~184.
    [27] Linden DJ. From molecules to memory in the cerebellum. Science, 2003, 301(5640):1682 ~ 1685.
    [28] Kishimoto Y, Kawahara S, Fujimichi R, et al. Impairment of eyeblink conditioning in GluRδ2-mutant mice depends on the temporal overlap between conditioned and unconditioned stimuli. Eur J Neurosci, 2001, 14(9):1515 ~ 1521.
    [29] Kishimoto Y, Hirono M, Sugiyama T, et al, Impaired delay but normal trace eyeblink conditioning in PLCβ4 mutant mice. NeuroReport, 2001, 12(13): 2919 ~ 2922.
    [30] Kishimoto Y, Fujimichi R, Araishi K, et al. mGluR in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning. Eur J Neurosci, 2002, 16(12): 2416 ~ 2424.
    [31] Woodruff-Pak DS, Green JT, Levin SI, et al. Inactivation of sodium channel Scn8A (Na-sub(v)1.6) in Purkinje neurons impairs learning in Morris water maze and delay but not trace eyeblink classical conditioning. Behav Neurosci, 2006, 120(2): 229 ~ 240.
    [32] Gerwig M, Haerter K, Hajjar K, et al. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res, 2006, 170(1): 7 ~ 21.
    [33] Gerwg M, Eber AC, Guberina H, et al. Trace eyeblink conditioning in patients with cerebellar degeneration: comparison of short and long trace intervals. Exp Brain Res, 2008, 187(1): 85 ~ 96.
    [34] Woodruff-Pak DS, Disterhoft JF. Where is the trace in trace conditioning? Trends Neurosci, 2008, 31(1): 105 ~ 112.
    [35] Weible AP, McEchron MD, Disterhoft JF. Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci, 2000, 114(6): 1058 ~ 1067.
    [36] McLaughlin J, Skaggs H, Churchwell J, et al. Medial prefrontal cortex and pavlovian conditioning: trace versus delay conditioning. Behav Neurosci, 2002, 116(1): 37 ~ 47.
    [37] Weible AP, Weiss C, Disterhoft JF. Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol, 2003, 90(2): 599 ~ 612.
    [38] Weible AP, Weiss C, Disterhoft JF. Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning. Neuroscience, 2007, 145(1): 288 ~ 302.
    [39] Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem, 2007, 14(1): 94 ~ 100.
    [40] Wada N, Kishimoto Y, Watanabe D, et al. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci USA, 2007, 104(42): 16690 ~ 16695.
    [41] Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron, 2006, 51(1): 113 ~ 123.
    [42] Plakke B, Freeman JH, Poremba A. Metabolic mapping of the rat cerebellum duringdelay and trace eyeblink conditioning. Neurobiol Learn Mem, 2007, 88(1): 11 ~ 18.
    [43] Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to net work and physiology. Physiol Rev, 2005, 85(2): 523 ~ 569.
    [44] Van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415(6875): 1030 ~ 1034.
    [45] Nottebohm F. Neuronal replacement in adult brain. Brain Res Bull, 2002, 57(6): 737 ~ 749.
    [46] Shors TJ. Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trend Neurosci, 2004, 27(5): 250 ~ 256.
    [47] Gould E, Beylin A, Tanapat P, Reeves A, et al. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neurosci, 1999, 2(3): 260 ~ 265.
    [48] Leuner B, Mendolia-Loffredo S, Kozorovitskiy Y, et al. Learning enhances thesurvival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci, 2004, 24(34): 7477 ~ 7481.
    [49] Dalla C, Bangasser DA, Edgecomb C, et al. Neurogenesis and learning: acquisition and asymptotic performance predict how many new cells survive in the hippocampus Neurobiol Learn Mem, 2007, 88(1): 143 ~ 148
    [50] Waddell J, Shors TJ. Neurogenesis, learning and associative strength. Eur J Neurosci, 2008, 27(11): 3020 ~ 3028
    [51] Leuner B, Waddell J, Gould E, et al. Temporal discontinuity is neither necessary nor sufficient for learning-induced effects on adult neurogenesis. J Neurosci, 2006 26(52): 1337 ~ 1342
    [52] Beylin AV, Gandhi CC, Wood GE, et al. The role of the hippocampus in trace conditioning: temporal discontinuity or task difficulty? Neurobiol Learn Mem, 2001, 76(3): 447 ~ 461.
    [53] Shors TJ, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001, 410(6826): 372 ~ 376.
    [54] Shors TJ, Townsend DA, Zhao M, et al. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 2002, 12(5): 578 ~ 584.
    [55] Wallenstein GV, Eichenbaum H, Hasselmo MF. The hippocampus as an associator of discontiguous events. Trend Neurosci, 1998, 21(8): 317 ~ 323.
    [56] Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci, 2006, 9(6): 723 ~ 727.
    [57] Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in the Hippocampus. Science, 2006, 313(5790): 1093 ~ 1097.
    [58] Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by the maintenance mechanism of LTP. Science, 2006, 313(5790): 1141 ~ 1144.
    [59] Power JM, Thompson LT, Moyer JR Jr, et al. Enhanced synaptic transmission in CA1 hippocampus after eyeblink conditioning. J Neurophysiol, 1997, 78(2): 1184 ~ 1187.
    [60] Gruart A, Munoz MD, Delgado-Garcia JM. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci, 2006, 26(4): 1077 ~ 1087.
    [61] Geinisman Y, Berry RW, Disterhoft JF, et al. Associative learning elicits the formationof multiple-synapse buttons. J Neurosci, 2001, 21(15): 5568 ~ 5573.
    [62] Toni N, Buchs PA, Nikonenko I, et al. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 1999, 402(6760): 421 ~ 425.
    [63] Moyer JR Jr, Thompson LT, Disterhoft JF,et al. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J Neurosci, 1996, 16(17): 5536 ~ 5546.
    [64] Moyer JR Jr, Power JM, Thompson LT, et al. Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J Neurosci, 2000, 20(14): 5476 ~ 5482.
    [65] Takatsuki K, Kawahara S, Takehara K, et al. Effects of the noncompetitive NMDA receptor antagonist MK-801 on classical eyeblink conditioning in mice. Neuropharmacology, 2001, 41(5): 618 ~ 628.
    [66] Sakamoto T, Takatsuki K, Karahara S et al. Role of hippocampal NMDA receptors in trace eyeblink conditioning. Brain Res, 2005, 1039(1-2): 130 ~ 136.
    [67] Kishimoto Y, Kawahara S, Mori H, et al. Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunitε1. Eur J Neurosci, 2001, 13(6): 1221 ~ 1227.
    [68] Kaneko T, Thompson RF. Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade. Psychopharmacology (Berl), 1997, 131(2): 161 ~ 166.
    [69] Fontan-Lozano A, Troncoso J, Munera A, et al. Cholinergic septo-hippocampal innervation is required for trace eyeblink classical conditioning. Learn Mem, 2005, 12(6): 557 ~ 563.
    [70] Oh MM, Wu WW, Power JM, et al. Galantamine increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience, 2006, 137(1): 113 ~ 123.
    [71] Weible AP, Oh MM, Lee G, et al. Galantamine facilitates acquisition of hippocampus-dependent trace eyeblink conditioning in aged rabbits. Learn Mem, 2004, 11(1): 108 ~ 115.
    [72] Simon BB, Knuckley B, Powell DA. Galantamine facilitates acquisition of a trace-conditioned eyeblink response in healthy, young rabbits. Learn Mem, 2004, 11(1): 116 ~ 122.
    [73] Kim JJ, Clark RE, Thompson RF. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav Neurosci, 1995, 109(2): 195 ~ 203.
    [74] Takehara K, Kawahara S, Takatsuki K, et al. Time-limited role of the hippocampus in the memory for trace eyeblink conditioning in mice. Brain Res, 2002, 951(2):183 ~ 190.
    [75] Simon B, Knuckley B, Churchwell J, et al. Post-training lesions of the medial prefrontal cortex interfere with subsequent performance of trace eyeblink conditioning. J Neurosci, 2005, 25(46): 10740 ~ 10746.
    [76] Paz R, Bauer EP, Pare D. Learning-related facilitation of rhinal interactions by medial prefrontal inputs. J Neurosci, 2007, 27(24): 6542 ~ 6551.
    [77] Takehara-Nishiuchi K, Nakao K, Kawahara S, et al. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci, 2006, 26(19): 5049 ~ 5058.
    [78] Takehara-Nishiuchi K, Kawahara S, Kirino Y. NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning. Learn Mem, 2009, 12(6): 606 ~ 614.
    [79] Takehara-Nishiuchi K, McNaughton BL. Spontaneous changes of neocortical code for associative memory during consolidation. Science, 2008, 322(5903): 960 ~ 963.
    [80] Kishimoto Y, Nakazawa K, Tonegawa S, et al. Hippocampal CA3 NMDA receptors are crucial for adaptive timing of trace eyeblink conditioned response. J Neurosci, 2006, 26(5): 1562 ~ 1570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700