克服多能干细胞移植免疫排斥反应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多能干细胞(Pluripotent Stem Cells)主要包括胚胎干细胞和诱导多潜能干细胞(induced pluripotent stem cell, iPS),均具有自我复制及多潜能分化的能力。理论上,它们能够为细胞移植治疗提供无限的供体细胞来源,因此是理想的“种子细胞”。然而,免疫排斥反应是细胞移植治疗面临的共同问题,当然是多能干细胞移植治疗首先需要考虑的问题。本课题根据两种多能干细胞的不同特点,为解决免疫排斥进行了以下两个方面尝试:
     一、通过在人胚胎干细胞上稳定表达人白细胞抗原G(Human Leucocyte Antigen G,HLA-G),获得具有免疫耐受能力的通用的种子细胞。HLA-G是母胎免疫及器官移植免疫耐受的重要分子。本研究建立了稳定表达HLA-G1的hES细胞系。该细胞系核型正常,仍具有自我复制和多潜能性(表达干细胞特异性的转录因子Oct4和Sox2,接种SCID小鼠后能够形成畸胎瘤,其中有三胚层的分化细胞)。由HLA-G1+hESCs分化为神经前体细胞(Neural Progenitor cells,NPCs)的过程中,HLA-G1持续表达,通过细胞毒实验及混合淋巴细胞反应证实HLA-G1对由hESCs分化获得的NPCs具有明显的免疫保护作用。
     二、提高建立iPS细胞(induced pluripotent stem cells,iPS细胞)的效率,同时探讨iPS细胞形成的机制。iPS细胞是个体特异性多能干细胞,可完全避免个体的免疫排斥反应。本研究采用人胚胎神经干细胞作为重编程对象,与传统的四分子转染体系不同,我们用Oct4进行单分子转染。转染1周后出现iPS细胞克隆,2周统计iPS细胞的形成效率为0.015±0.001,比成纤维细胞效率高10倍。对获得的iPS细胞与hES细胞进行比较鉴定后发现,二者在表达谱、重要标志物以及DNA甲基化方式和多潜能分化能力等方面都非常相似。由此,本研究仅采用了一个分子就获得了人iPS细胞,同时神经干细胞重编程获得iPS细胞的效率远高于成纤维细胞。
Pluripotent stem cell, incuding human embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells), can be maintained as a pluripotent, self-renewing population. Theriotically, pluripotent stem cells may provide unlimited source for cell transplantation-based treatment, which makes them become the ideal seed cells. One major challenge of cell therapy is the rejection by the transplant recipient. Pluripotent stem cells are certainly no exception. This study was designed to develop methods either to improve immune tolerance or to make completely immune compatible cells for cell therapy.
     1. Generation of immune tolerant hES cell line by stable HLA-G expression. HLA-G is one of the key molecules involving in pregnancy and engraftment tolerance. We established human ES cell line with stable HLA-G expression. These ES cells have been shown to present a stable diploid karyotype and maintained self-renewal and pluripotency. They are Oct4 and Sox2 positive cells and formed teratoma in SCID mice. While differentiating HLA-G1+hESCs into neural progenitor cells (NPCs), HLA-G1 was stably expressed in the differentiated cells. Cytotoxicity assay and mixed lymphocyte reaction (MLR) suggested HLA-G protected hESC-derived NPCs from attacking in vitro.
     2. Improve the effeciency of iPS cells, make immune compatible transplant cells and explore mechanism underlying iPS cell induction. In this study, human neural progenitor cells were used for genetic reprogramming by applying single molecule - Oct4, instead of the four Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc. Our results showed that Oct4 alone was sufficient to reprogram human NPCs into iPS cells. The reprogramming efficiency was 0.015±0.001, about 10-fold higher than that of human skin fibroblast cells using 4 factors system. Comparing these human NPC-derived iPS cells (NiPS) with hES cells, they had similar gene expression profiling, DNA methylation pattern,expressed all pluripotent markers and maintained pluripotency. Hence, we generated iPS cells from human NPC by using Oct4 alone, moreover, the efficiency of inducing NiPS by oct4 is much higher that that of fibroblast.
引文
1. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
    2. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
    3. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
    4. Daley, G.Q. and D.T. Scadden, Prospects for stem cell-based therapy. Cell, 2008. 132(4): p. 544-8.
    5. Drukker, M., et al., Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A, 2002. 99(15): p. 9864-9.
    6. Chidgey, A.P., et al., Tolerance strategies for stem-cell-based therapies. Nature, 2008. 453(7193): p. 330-7.
    7. Hviid, T.V., HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update, 2006. 12(3): p. 209-32.
    8. von Rango, U., Fetal tolerance in human pregnancy--a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett, 2008. 115(1): p. 21-32.
    9. Hunt, J.S., et al., HLA-G and immune tolerance in pregnancy. FASEB J, 2005. 19(7): p. 681-93.
    10. van Wijk, I.J., et al., HLA-G expression in trophoblast cells circulating in maternal peripheral blood during early pregnancy. Am J Obstet Gynecol, 2001. 184(5): p. 991-7.
    11. Fuzzi, B., et al., HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol, 2002. 32(2): p. 311-5.
    12. Warner, C.M., et al., Soluble HLA-G (sHLA-G) a predictor of IVF outcome? J Assist Reprod Genet, 2004. 21(9): p. 315-6.
    13. Aldrich, C.L., et al., HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Mol Hum Reprod, 2001. 7(12): p. 1167-72.
    14. Hara, N., et al., Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody "87G" and anti-cytokeratin antibody "CAM5.2". Am J Reprod Immunol, 1996. 36(6): p. 349-58.
    15. Yie, S.M., et al., HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am J Obstet Gynecol, 2004. 191(2): p. 525-9.
    16. O'Brien, M., et al., Analysis of the role of HLA-G in preeclampsia. Hum Immunol, 2000. 61(11): p. 1126-31.
    17. Lila, N., et al., Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation, 2002. 105(16): p. 1949-54.
    18. Rieger, L., et al., Th1- and Th2-like cytokine production by first trimester decidual large granular lymphocytes is influenced by HLA-G and HLA-E.Mol Hum Reprod, 2002. 8(3): p. 255-61.
    19. Kaneku, H., Detection of soluble HLA-G and its correlation with kidney transplant outcome. Clin Transpl, 2006: p. 447-54.
    20. Horuzsko, A., et al., Maturation of antigen-presenting cells is compromised in HLA-G transgenic mice. Int Immunol, 2001. 13(3): p. 385-94.
    21. Liang, S., B. Baibakov, and A. Horuzsko, HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol, 2002. 32(9): p. 2418-26.
    22. Ristich, V., et al., Mechanisms of prolongation of allograft survival by HLA-G/ILT4-modified dendritic cells. Hum Immunol, 2007. 68(4): p. 264-71.
    23. Sun, L.L., et al., Down-regulation of HLA-G boosted natural killer cell-mediated cytolysis in JEG-3 cells cultured in vitro. Fertil Steril, 2008. 90(6): p. 2398-405.
    24. Gomez-Lozano, N., et al., Recognition of HLA-G by the NK cell receptor KIR2DL4 is not essential for human reproduction. Eur J Immunol, 2003. 33(3): p. 639-44.
    25. Soderstrom, K., et al., CD94/NKG2 is the predominant inhibitory receptor involved in recognition of HLA-G by decidual and peripheral blood NK cells. J Immunol, 1997. 159(3): p. 1072-5.
    26. Pende, D., et al., HLA-G recognition by human natural killer cells. Involvement of CD94 both as inhibitory and as activating receptor complex. Eur J Immunol, 1997. 27(8): p. 1875-80.
    27. Le Gal, F.A., et al., HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol, 1999. 11(8): p. 1351-6.
    28. Munz, C., S. Stevanovic, and H.G. Rammensee, Peptide presentation and NK inhibition by HLA-G. J Reprod Immunol, 1999. 43(2): p. 139-55.
    29. Khalil-Daher, I., et al., Role of HLA-G versus HLA-E on NK function: HLA-G is able to inhibit NK cytolysis by itself. J Reprod Immunol, 1999. 43(2): p. 175-82.
    30. Bainbridge, D.R., S.A. Ellis, and I.L. Sargent, HLA-G suppresses proliferation of CD4(+) T-lymphocytes. J Reprod Immunol, 2000. 48(1): p. 17-26.
    31. Lila, N., et al., Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A, 2001. 98(21): p. 12150-5.
    32. Shiroishi, M., et al., Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8856-61.
    33. Naji, A., et al., Soluble HLA-G and HLA-G1 expressing antigen-presenting cells inhibit T-cell alloproliferation through ILT-2/ILT-4/FasL-mediated pathways. Hum Immunol, 2007. 68(4): p. 233-9.
    34. Seliger, B., H. Abken, and S. Ferrone, HLA-G and MIC expression in tumors and their role in anti-tumor immunity. Trends Immunol, 2003. 24(2): p. 82-7.
    35. van der Meer, A., et al., Membrane-bound HLA-G activates proliferation and interferon-gamma production by uterine natural killer cells. Mol Hum Reprod, 2004. 10(3): p. 189-95.
    36. Zaehres, H. and H.R. Scholer, Induction of pluripotency: from mouse to human. Cell, 2007. 131(5): p. 834-5.
    37. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
    38. Jiang, J., et al., A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol, 2008. 10(3): p. 353-60.
    39. Heo, I., et al., Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 2008. 32(2): p. 276-84.
    40. Rybak, A., et al., A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 2008. 10(8): p. 987-93.
    41. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2008. 26(1): p. 101-6.
    42. Kim, J.B., et al., Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008. 454(7204): p. 646-50.
    43. Kim, J.B., et al., Oct4-induced pluripotency in adult neural stem cells. Cell, 2009. 136(3): p. 411-9.
    44. Bru, T., et al., Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res, 2008. 314(14): p. 2634-42.
    45. Cyranoski, D. and M. Baker, Stem-cell claim gets cold reception. Nature, 2008. 452(7184): p. 132.
    46. Ichida, J.K., et al., A small-molecule inhibitor of tgf-Beta signalingreplaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 2009. 5(5): p. 491-503.
    47. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009. 4(6): p. 472-6.
    48. Zhou, H., et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009. 4(5): p. 381-4.
    49. Sun, N., et al., Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15720-5.
    50. Mali, P., et al., Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 2008. 26(8): p. 1998-2005.
    51. Kanawaty, A. and J. Henderson, Genomic analysis of induced pluripotent stem (iPS) cells: routes to reprogramming. Bioessays, 2009. 31(2): p. 134-8.
    52. Aasen, T., et al., Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol, 2008. 26(11): p. 1276-84.
    53. Yoshida, Y., et al., Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 2009. 5(3): p. 237-41.
    54. Hong, H., et al., Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 2009. 460(7259): p. 1132-5.
    55. Schmidt-Kastner, P.K., et al., Absence of p53-dependent cell cycle regulation in pluripotent mouse cell lines. Oncogene, 1998. 16(23): p. 3003-11.
    56. Czyz, J., et al., Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumour suppressor p53. Mutat Res, 2004. 557(1): p. 63-74.
    57. Dimos, J.T., et al., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008. 321(5893): p. 1218-21.
    58. Mauritz, C., et al., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 2008. 118(5): p. 507-17.
    59. Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009. 457(7227): p. 277-80.
    60. Yu, J. and J.A. Thomson, Pluripotent stem cell lines. Genes Dev, 2008. 22(15): p. 1987-97.
    61. Kovats, S., et al., A class I antigen, HLA-G, expressed in human trophoblasts. Science, 1990. 248(4952): p. 220-3.
    62. Carosella, E.D., [HLA-G: fetomaternal tolerance]. C R Acad Sci III, 2000. 323(8): p. 675-80.
    63. Rouas-Freiss, N., et al., HLA-G in transplantation: a relevant molecule for inhibition of graft rejection? Am J Transplant, 2003. 3(1): p. 11-6.
    64. Carosella, E.D. and J. Dausset, Progress of HLA-G in cancer. Semin Cancer Biol, 2003. 13(5): p. 315-6.
    65. Williams, M.A., Could the functional expression of HLA-G be exploited for successful stem cell transplantation and engraftment? J Hematother Stem Cell Res, 2003. 12(6): p. 757-8.
    66. Yao, Y.Q., D.H. Barlow, and I.L. Sargent, Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J Immunol, 2005. 175(12): p. 8379-85.
    67. Tang, X., et al., Genetic engineering neural stem cell modified by lentivirus for repair of spinal cord injury in rats. Chin Med Sci J, 2006. 21(2): p. 120-4.
    68. Zhou, B.Y., et al., Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. Stem Cells, 2007. 25(3): p. 779-89.
    69. LeMaoult, J., et al., HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci U S A, 2004. 101(18): p. 7064-9.
    70. Riteau, B., et al., HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol, 2001. 13(2): p. 193-201.
    71. Perez-Villar, J.J., et al., The CD94/NKG2-A inhibitory receptor complex is involved in natural killer cell-mediated recognition of cells expressing HLA-G1. J Immunol, 1997. 158(12): p. 5736-43.
    72. Li, L., et al., Human embryonic stem cells possess immune-privileged properties. Stem Cells, 2004. 22(4): p. 448-56.
    73. Drukker, M. and N. Benvenisty, The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol, 2004. 22(3): p. 136-41.
    74. Drukker, M., Immunogenicity of human embryonic stem cells: can we achieve tolerance? Springer Semin Immunopathol, 2004. 26(1-2): p. 201-13.
    75. Drukker, M., Immunogenicity of embryonic stem cells and their progeny. Methods Enzymol, 2006. 420: p. 391-409.
    76. Grinnemo, K.H., et al., Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online, 2006. 13(5): p. 712-24.
    77. Grinnemo, K.H., et al., Immunogenicity of human embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 67-78.
    78. Swijnenburg, R.J., et al., Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 2005. 112(9 Suppl): p. I166-72.
    79. Preynat-Seauve, O., et al., Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J Cell Mol Med, 2009.
    80. Stadtfeld, M., K. Brennand, and K. Hochedlinger, Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol, 2008. 18(12): p. 890-4.
    81. Pereira, C.F., et al., Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet, 2008. 4(9): p. e1000170.
    82. Aoi, T., et al., Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 2008. 321(5889): p. 699-702.
    83. Loh, Y.H., et al., Generation of induced pluripotent stem cells from human blood. Blood, 2009. 113(22): p. 5476-9.
    84. Haase, A., et al., Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 2009. 5(4): p. 434-41.
    85. Giorgetti, A., et al., Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 2009. 5(4): p. 353-7.
    86. Li, C., et al., Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet, 2009. 18(22): p. 4340-9.
    87. Hu, B.Y. and S.C. Zhang, Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc, 2009. 4(9): p. 1295-304.
    88. Cai, J., et al., Dopaminergic Neurons Derived from Human Induced Pluripotent Stem Cells Survive and Integrate into 6-OHDA Lesioned Rats. Stem Cells Dev, 2009.
    89. Sullivan, G.J., et al., Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2009.
    90. Narazaki, G., et al., Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 2008. 118(5): p. 498-506.
    91. Zhang, J., et al., Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res, 2009. 104(4): p. e30-41.
    92. Lu, M., et al., Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol, 2009. 37(8): p. 924-36.
    93. Hanna, J., et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007. 318(5858): p. 1920-3.
    94. Kim, J.B., et al., Direct reprogramming of human neural stem cells by OCT4. Nature, 2009. 461(7264): p. 649-3.
    95. Zhao, X.Y., et al., iPS cells produce viable mice through tetraploid complementation. Nature, 2009. 461(7260): p. 86-90.
    96. Kang, L., et al., iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009. 5(2): p. 135-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700