应用复合PLGA纳米纤维膜构建人工硬脊膜修复羊硬脊膜缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤性或医源性的硬脊膜缺损在脊柱及神经外科有一定的发生率,处理不当可引发持续性脑脊液漏、低颅内压综合征、急性气道阻塞、脑脊液囊肿、粘连性蛛网膜炎、椎管内感染、甚至危及生命的化脓性脑膜炎等一系列并发症。然而对于硬脊膜缺损的治疗,由于硬脊膜的不可再生性、现有的硬脊膜替代材料均无模仿天然硬脊膜空间结构的设计理念以及缺乏理想的修复方法,导致目前在临床上不同程度的存在治疗疗程长、痛苦大、组织愈合的形式以疤痕组织为主以及痊愈的标准也仅仅是脑脊液漏停止等诸多不足。硬脊膜缺损的―高质量‖(既能实现术后硬脊膜再生、预防硬膜外粘连及瘢痕,又能实现术中有效封堵)依然是临床亟待解决的难题。要想实现硬脊膜的再生,必须先明确硬脊膜的空间结构及表观形貌特征,并以此构建与之空间构象近似的替代材料;而要想实现术中有效封堵,必须研制出一种理想的修复方法;同时,要想预防硬膜外粘连及瘢痕形成,替代材料必须兼具此功能。由于硬脊膜主要由胶原基质和成纤维细胞组成,其胶原束具有特殊的取向性结构,因此本项目提出采用具有不同功能的双层复合PLGA纳米纤维膜片和组织工程技术来构建组织工程化人工硬脊膜,结合粘合力强且具有排水性能的贻贝粘蛋白生物胶,来实现硬脊膜再生及术中有效封堵。拟构建的硬脊膜替代材料设计为双层结构:内层(修复层)专司硬脊膜的再生,利于静电纺丝法制备与天然硬脊膜结构近似的有―取向性‖(有序)的聚乳酸/乙醇酸共聚物(PLGA)纳米纤维膜,作为组织工程支架,促使种子细胞(成纤维细胞)接种后所合成的胶原束也呈取向性分布,使新生组织接近天然硬脊膜;外层(加强层)应用无―取向性‖(无序)PLGA-壳聚糖纳米纤维膜片,专司增强内层力学性能、预防硬膜外粘连及瘢痕形成;内外层之间采用非缝合胶粘技术(贻贝粘蛋白),既可将外层与硬脊膜牢固粘合成一体,又能避免粘合胶与脑脊液直接接触以及人为封闭膜体风险,以期实现术中快速、确切的封闭硬脊膜囊。
     研究目的:构建与羊硬脊膜空间结构近似的复合组织工程化PLGA纳米纤维膜,评价体内回植修复羊硬脊膜缺损的效果。
     研究方法:①获取山羊硬脊膜的表观形貌及三维结构:成年山羊硬脊膜取材,对标本进行肉眼观察、组织学观察、扫描电镜以及透射电镜观察。②3种人工硬脊膜的制备及评价:利用静电纺丝法制备有序及无序PLGA纳米纤维膜;壳聚糖溶液单面涂层无序PLGA纳米纤维膜片,制备PLGA-壳聚糖膜片;手工撕成单丝的无纺PGA纤维,以同一方向均匀缠绕于特制U型钢丝,制备有序PGA纤维膜片。对有序及无序PLGA纳米纤维膜片进行物理性能及生物相容性检测。③3种组织工程化人工硬脊膜体外构建:将体外分离、扩增的山羊皮肤成纤维细胞,作为种子细胞,分别接种于有序PLGA、无序PLGA纳米纤维膜以及有序PGA纤维膜上,观察种子细胞在支架材料上的黏附、生长及基质分泌等情况。④组织工程化人工硬脊膜修复羊硬脊膜缺损的系列实验:1)将9只成年山羊随机分为3组:有序PLGA组、无序PLGA组及有序PGA组,分别采用上述3种膜片作为内层覆盖山羊腰段硬脊膜缺损(0.6cm×0.5cm),然后以无序PLGA-壳取糖膜片作为外层,涂抹贻贝粘蛋白粘贴于硬脊膜缺损周缘;术后1月取材,对术后并发症、封堵效果、与周围组织粘连、炎性反应、材料降解以及硬脊膜的再生质量等进行评价。2)对3种膜片中修复效果最佳者进行再次分组:组织工程化材料组、单纯材料组,体内回植于6只山羊,术后3月取材,按前述方法对其进行评价。3)将实验二中效果最佳膜片再次进行山羊体内回植,评价其远期疗效(6个月)。
     结果:①山羊硬脊膜主要由胶原纤维及散在分布的成纤维细胞组成的半透明薄膜,胶原纤维直径介于400nm~1000nm之间,呈―取向性‖排列,微观下可见硬脊膜内外表面呈连綿不断的山峰。②采用静电纺丝法成功制备出与天然硬脊膜三维空间结构(胶原直径及排列)近似的有序的PLGA纳米纤维膜片以及无序PLGA纳米纤维膜片,二种膜片均具有良好的生物相容性及力学性能;成功制备出PLGA-壳聚糖膜片。③成功构建组织工程化有序PLGA、无序PLGA及有序PGA人工硬脊膜膜片。④术后1月取材,证实组织工程化有序PLGA膜优于组织工程化无序PLGA膜,组织工程化无序PLGA膜优于组织工程化PGA膜。⑤术后3月取材,证实组织工程化有序PLGA膜优于单纯有序PLGA膜。⑥术后6月取材,证实组织工程化有序PLGA膜体内回植再生膜的表观形貌及三维结构与天然硬脊膜高度相似。
     结论:复合组织工程化PLGA纳米纤维膜实现了真正意义的硬脊膜再生以及达到预防硬膜外瘢痕及粘连的目的,非缝合技术应用(贻贝粘蛋白)可显著减少术后脑脊液漏发生率。
In neuro-and spinal surgey, iatrogenic or traumatic dural defects will all causeleakage of cerebrospinal fluid(CSF)and further result in serious complications. Thesecomplications include cutaneous CSF fistula, intracranial hypotension syndrome,airway obstruction, delayed wound healing, cerebrospinal fluid cyst, adhesivearachnoiditis, spinal infection and even life-threatening purulent meningitis. However,due to the non-renewablity of dura, the lack of dural substitutions that mimic naturaldural microstructure and an ideal repair method, the current treatments of duraldefects all have some shortcomings more or less, including the long course oftreatment, scar tissue formation in the defect region and CFS leakage stopping as thestandard of healing. Therefore, we propose to apply a novel two-lay compositenanofibrous membrane and fibroblasts as seed cells to reconstitute dura tissue viatissue engineering technique. The reconstructed tissue will be used to repair pre-madedura defects in sheep with the aid of mussel musin bioglue during the surgery. Thedesign of current study was based on the principle of―practical, clinical, andappliable‖. Due to the fact that natrual dura was composed of highly oriented collagenfibers as matrix lined with fibroblasts, the artificial membrane was fabricated with twolayers: the inner layer is oriented PLGA nanofiberous membrane of prepared byelectrospinning. It is used as scaffolds for the growth of fibroblasts in order toregenerate neo-dura tissue. With its similar microstructure to that of normal dura,neo-collagen fibers secreted by the seeded fibroblasts are expected to be arrangedaccordingly. The outer layer is electrospinned PLGA nanofibrous membrane coatedwith chitosan. Its main function is to provide mechanical strength of the whole designand further prevent adhesion of the neo-dura to adjacent tissue. The seamlessimmobilization of the outer layer in the defect area to the surrounding normal dura isrealized by mussel musin bioglue in the marginal strip. The two layers are alsostabilized with the same seamless technique. Hence, the risk of cerebrospinal fluidleakage can be minimized while the direct contact of cerebrospinal fluid with thebioglue is avoided. Based on the above design, efficient and quick sealing of duradefect during the operation could be realized while biological dura tissue renegeration could be achieved afterwards.
     Objective:To invertigate the effects of reconstituting tissue enginered artificialdura using composite PLGA nanofiber mamborane to repair dural defects in goats.
     Methods:①Light microscopy, scanning electron microscopy and transmissionelectron microscopy were used to gain the dural microstructure of goat.②Theoriented PLGA nanofibrous membrane and no-oriented PLGA nanofibrous membranewere prepared by electrospinning through adjusting the electrospinning parameters.And the oriented PGA fiberous membrane was also reconstituted by twinningnonwoven PGA fibers evenly in single direction at a tailor-made U-shaped wire. ThePLGA-chitosan nanofibrous membrane was prepared by the chitosan solution singlesided coating. The physical performances and biocompatibility of them were thendetected.③The fibroblasts of goats which were separated and amplificated in vitro,as seed cells, were planted in the oriented PLGA nanofibrous membrane, no-orientedPLGA nanofibrous membrane and the oriented PGA fiberous membrane respectively.The adhesion, growth and matrix secretion of fibroblasts in scaffolds were observed.④Aseries of experiments that tissue engineered artificial dural membranes repaireddural defects in goats:1) Nine adult goats were divided into3groups randomly:oriented PLGA group,non-oriented PLGA group and oriented PGA group. Each typeof the membranes mentioned above was attached to the dural defects of lumbar(0.6cm×0.5cm)in goats respectively. And then the seamless immobilization of theouter layer (PLGA-chitosan nanofibrous membrane) in the defect area to thesurrounding normal dura was realized by mussel musin bioglue in the marginal strip.All the animals were killed in1month after operation. Perioperative complications,incidence of CSF leaks, adherences to the surrounding tissue, inflammatory reactionand dural regeneration were evaluated to choose the best one.2) After selecting thebest membrane, the dural defects were repaired by adopting the tissue engineeredmembrane or single material membrane (no seed cells) in6adult goats randomly.They were evaluated after3months of surgery according to the above mentionedmethods to determine which one was better.3) The best membrane selected by thesecond experiment was given a six month observation in vivo to evaluate itslong-term effects.
     Results:①The dura of goat shows a translucent film which is mainly composedof highly oriented collagen fibers as matrix lined with fibroblasts. The diameter ofcollagen fibers ranges from400nm to1000nm. The microscopic surface of dura looks like the endless peaks.②The oriented PLGA membrane which has the similarmicrostructure to that of natrual dura of goat and the non-oriented PLGA membranewere successfully prepared by electrospinning. Both membranes showed goodbiocompatibility and mechanical properties.③The oriented PLGA membrane,non-oriented PLGA membrane and oriented PGA membrane were seeded with thefibroblasts of goats successfully.④The results of1month after operation confirmedthat the tissue engineered oriented PLGA membrane showed the best performanceamong the3type of membranes. And the performance of the tissue engineerednon-oriented PLGA membrane was better than that of the tissue engineered orientedPGA membrane.⑤The results of3month after operation indicated that theperformance of the tissue engineered oriented PLGA membrane was better than thatof the single oriented PLGA membrane(no seed cells).⑥A six month observation invivo showed the morphology and microtructure of regenerated membrane were highlysimilar to that of the natural dura of goat by adopting the tissue engineered orientedPLGA membrane.
     Conclusion: The composite tissue engineered PLGA nanofibrous membraneachieves biological repair of dural defect and realizes the purpose of preventiingepidural scar and adhesions. Meanwhile, non-suture technology application (musseladhesive protein) can reduce the incidence of CSF leakage effectively.
引文
[1] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervicalcorpectomy for ossified posterior longitudinal ligament: incidence,management, andoutcome. Spine,2009;34:49-494.
    [2] Li H, Dai LY. A systematic review of complications in cervical spine surgery forossification of the posterior longitudinal ligament. Spine J,2011;11:1049-1057.
    [3] Chen Y,Guo Y,Lu X,et al. Surgical strategy for multilevel severe ossification ofposterior longitudinal ligament in the cervical spine. J Spinal Disord Tech,2011;24:24-30.
    [4] Sakai K, Okawa A, Takahashi M,et al. Five-year follow-up evaluation of surgicaltreatment for cervical myelopathy caused by ossification of the posterior longitudinalligament: a prospective comparative study of anterior decompression and fusion withfloating method versus laminoplasty. Spine,2012;37:367-376.
    [5] Mazur M, Jost GF, Schmidt MH, et al. Management of cerebrospinal fluid leaksafter anterior decompression for ossification of the posterior longitudinal ligament: areview of the literature. Neurosurg Focus,2011;30:E13.
    [6] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervicalspine surgery. J Bone Joint Surg Am,2008;90:1101-1105.
    [7]胥少汀,卢世壁.骨科手术并发症预防与处理[M].2004:151,160,195,205,206.
    [8] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervicalcorpectomy for ossified posterior longitudinal ligament: incidence, managementandoutcome. Spine,2009;34:491-494.
    [9] Bertalanffy H, Eggert HR. Complications of anterior cervical discectomy withoutfusion in450consecutive patients. Acta Neurochir (Wien),1989;99:41-50.
    [10] Cammisa FP Jr, Girardi FP, Sangani PK,et al. Incidental durotomy in spinesurgery. Spine,2000;25:2663-2667.
    [11] Tew JM Jr, Mayfield FH. Complications of surgery of the anterior cervical spine.Clin Neurosurg,1976;23:424-434.
    [12] Hannallah D, Lee J, Khan M,et al. Cerebrospinal fluid leaks following cervicalspine surgery. J Bone Joint Surg Am,2008;90:1101-1105.
    [13] Fielding JW. Complications of anterior cervical disk removal and fusion. ClinOrthop Relat Res,1992;28:410-413.
    [14] Graham JJ. Complications of cervical spine surgery.A five year report on asurvey of the membership of the Cervical Spine Research Society by the Morbidityand Mortality Committee. Spine,1989;14:1046-1050.
    [15] Fountas KN, Kapsalaki EZ, Johnston KW. Cerebrospinal fluid fistula secondaryto dural tear in anterior cervical discectomy and fusion: case report. Spine,2005;30:E277-E280.
    [16] Kojima T, Waga S, Kubo Y,et al. Anterior cervical vertebrectomy and interbodyfusion for multi-level spondylosis and ossification of the posterior longitudinalligament. Neurosurgery,1989;24:864-872.
    [17] Hida K, Yano S, Iwasaki Y: Considerations in the treatment ofcervicalossification of the posterior longitudinal ligament. ClinNeurosurg,2008;55:126-132.
    [18] Eleraky MA, Llanos C, Sonntag VK. Cervical corpectomy: report of185casesand review of the literature. J Neurosurg,1999;90:1Suppl35-141.
    [19] Belanger TA, Roh JS, Hanks SE,et al. Ossification of the posterior longitudinalligament. Results of anterior cervical decompression and arthrodesis in sixty-oneNorth American patients. J Bone Joint Surg Am,2005;87:610-615.
    [20] Abe H, Tsuru M, Ito T,et al. Anterior decompression for ossification of theposterior longitudinal ligament of the cervical spine. J Neurosurg,1981;55:108-116.
    [21] Epstein N: Anterior approaches to cervical spondylosis and ossification of theposterior longitudinal ligament: review of operative technique and assessment of65multilevel circumferential procedures. Surg Neurol,2001;55:313-324.
    [22] Chen Y, Guo Y, Chen D, et al.Diagnosis and surgery of ossification of posteriorlongitudinal ligament associated with dural ossification in the cervical spine. EurSpine J,2009;18:1541-1547.
    [23] Smith MD, Bolesta MJ, Leventhal M,et al. Postoperative cerebrospinal-fluidfistula associated with erosion of the dura. Findings after anterior resection ofossification of the posterior longitudinal ligament in the cervical spine. J Bone JointSurg Am,1992;74:270-277.
    [24] Harsh GR IV, Sypert GW, Weinstein PR, et al. Cervical spine stenosis secondaryto ossification of the posterior longitudinal ligament. J Neurosurg,1987;67:349-357.
    [25] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervicalcorpectomy for ossified posterior longitudinal ligament: incidence, management, andoutcome. Spine,2009;34:491-494.
    [26] Choi S, Lee SH, Lee JY,et al. Factors affecting prognosis of patients whounderwent corpectomy and fusion for treatment of cervical ossification of theposterior longitudinal ligament: analysis of47patients. J Spinal Disord Tech,2005;18:309-314.
    [27] Li H,Dai LY. A systematic review of complications in cervical spine surgery forossification of the posterior longitudinal ligament. Spine J,2011,11:1049-1057.
    [28]张阳德,向忠,彭健.硬脊膜损伤分度及预防脑脊液漏的临床研究.中国现代医学杂志,2007;17:1349-1351.
    [29]向忠,李红,吴明宇,等.生物蛋白胶在硬脊膜损伤修复中的临床研究.中国医药导报,2006;3:9-10.
    [30] Cain JJ, Dryer RF, Barton BR. Evaluation of dural closure techniques. Suturemethods, fibrin adhesive sealant, and cyanoacrylate polymer.Spine,1988;13:720-725.
    [31] Nakajima S, Fukuda T, Hasue M, et al. New technique for application of fibrinsealant: rubbing method devised to prevent cerebrospinal fluid leakage from duramater sites repaired with expanded polytetrafluoroethylene surgical membranes.Neurosurgery,2001;49:117-123
    [32] Shaffrey CI, Spotnitz WD, Shaffrey ME, et al. Neurosurgical applications offibrin glue: augmentation of dural closure in134patients. Neurosurgery,1990;26:207-210
    [33] Epstein NE, Hollingsworth R. Anterior cervical micro-dural repair ofcerebrospinal fluid fistula after surgery for ossification of the posterior longitudinalligament. Technical note Surg Neurol,1999;52:511-514.
    [34] Narotam PK, Jose S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair:analysis of a new modified technique. Spine,2004;29:2861-2869.
    [35] Black P. Cerebrospinal fluid leaks following spinal surgery: use of fat grafts forprevention and repair. Technical note. J Neurosurg,2002;96:2Suppl250-252.
    [36] Parízek J, Měricka P, Husek Z, et al. Detailed evaluation of2959allogeneic andxenogeneic dense connective tissue grafts (fascia lata, pericardium, and dura mater)used in the course of20years for duraplasty in neurosurgery. Acta Neurochir(Wien),1997;139:827-838.
    [37] DiFazio FA, Nichols JB, Pope MH, et al. The use of expandedpolytetrafluoroethyleneas an interpositional membrane after lumbar laminectomy.Spine,1995;20:986-991.
    [38] Epstein NE. Wound-peritoneal shunts: part of the complex management ofanterior dural lacerations in patients with ossification of the posterior longitudinalligament. Surg Neurol,2009;72:630-634.
    [39] Yuguchi T, Kohmura E, Yoshimine T. PTFE-fascia patch inlay method for theanterior approach for cervical intradural spinal lesion. Spinal Cord,2002;40:601-603.
    [40] Longmire S, Joyce TH III: Treatment of a duro-cutaneous fistula secondary toattempted epidural anesthesia with an epidural autologous blood patch.Anesthesiology,1984;60:63-64.
    [41] Foyt D, Johnson JP, Kirsch AJ,et al. Dural closure with laser tissue welding.Otolaryngol Head Neck Surg,1996;115:513-518.
    [42] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervicalspine surgery. J Bone Joint Surg Am,2008;90:1101-1105.
    [43] Chen Y,Kitchel SH, Eismont FJ, et al. Closed subarachnoid drainage formanagement of cerebrospinal fluid leakage after an operation on the spine. J BoneJoint Surg Am,1989;71:984-987.
    [44]全必春,王文军,姚女兆,等.脊柱术后脑脊液漏并椎管内感染20例分析.医学临床研究,2005,22:534-535.
    [45]陈江宏,熊卫军.腰穿置管持续引流脑脊液置换加鞘内注药治疗重症颅内感染.中国现代医学杂志,2004,14:98-102.
    [46]侯铁胜,傅强,贺石生,等.颈前路减压并发脑脊液漏的处理.中华骨科杂志,2003,23:650-652.
    [47]余可渲,田野,王以明,等.颈椎手术后并发脑脊液漏的原因和处理.中国脊柱脊髓杂志,2005,15:740-743.
    [48] Eleraky MA, Llanos C, Sonntag VK. Cervical corpectomy: report of185casesand review of the literature. J Neurosurg,1999;90:1Suppl35-41.
    [49] Andrew SA, Sidhu KS. Cervical-peritoneal shunt placement for postoperativecervical pseudomeningocele. J Spinal Disord Tech,2005;18:290-292.
    [50]唐勇,王新伟,袁文,等.颈前路手术并发脑脊液漏的原因及处理.颈腰痛杂志,2010;31:26-28.
    [51]郑旭为,刘忠军.人工硬膜修补硬脊膜及预防椎管内粘连的实验观察.中国脊柱脊髓杂志,2006;16(1):52-56.
    [52] Yong HK,Reill YJ,Uekorumpay V. Prevent i on of nerve root adhesions after1amiectomySpine,1980;5:59.
    [53] Brookfield K, Randolph J, Eismont F.Delayed symptoms of cerebrospinal fluidleak following lumbar decompression. Orthopedics,2008;31:816.
    [54] Ma L,Gao C,Mao Z,ct al.Thermal dehydration treatment and glutaraldehydecross link into increase the biostability of collagen—chitosan porous scaffolds used asdermal equivalent.J Biomater Sci Polym Ed,2003;14:861-874.
    [55]张卫红,王新伟,王长峰.PLGA/I型胶原/壳聚糖复合人工硬脊膜生物相容性及力学性能的实验.南京医科大学学报(自然科学版),2009,6:836-839.
    [56]张卫红,袁文,王新伟等. PLGA—I型胶原一壳聚糖复合人工硬脊膜生物相容性的研究.山东医药,2009,14:14-16.
    [57]孙赓,张伯勋. á-氰基丙烯酸酯的组织毒性.中华医学写作杂志,2004,10:868-871.
    [58] Zhang X, Gao X, Jiang L, Qin J. Flexible generation of gradient electrospinningnanofibers using a microfluidic assisted approach. Langmuir,2012,28:10026-10032.
    [59] Alamein MA, Liu Q, Stephens S, Skabo S, Warnke F, Bourke R, Heiner P,Warnke PH. Nanospiderwebs: Artificial3D Extracellular Matrix from Nanofibers byNovel Clinical Grade Electrospinning for Stem Cell Delivery. Adv HealthcMater,2012,Nov1.doi:10.1002/adhm.201200287.[Epub ahead of print]
    [60]Zha Z, Leung SL, Dai Z, Wu X.Centering of organic-inorganic hybrid liposomalcerasomes in electrospun gelatin nanofibers. Appl Phys Lett,2012,100:33702-33702.
    [61] Xie J, Macewan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned,electrospun nanofibers as dural substitutes for wound closure and tissue regenerationapplications. ACS Nano,2010,4(9):5027-5036.
    [62] Bock N, Riminucci A,Dionigi C,et a1.A novel route in bone tissueengineering:Magnetic biomimetic scaffolds.Aeta Biomater,2010;6:786-798.
    [63] Wang S,Wang C,Zhang B,et a1.Preparation of Fe3O4/PVA nanofibers viacombining imsitu composite with e1ectrospinning[J].Mater Lett,2009;9:43-46.
    [64] Zhang XY, Dai QY, Huang XB, et a1.Synthesis and characterization of novelmagnetic Fe3O4/polyphosphazene nanofibers.Solid State Sciences,2009;11:1861-1865.
    [65] Su Y, Mo X. Genipin crosslinked gelatin nanofibers for tissue engineering.JControl Release,2011;152(Suppl):e230-232.
    [66]廖智,申望,王日昕.海洋生物黏附蛋白研究进展.浙江海洋学院学报(自然科学版),2007;26:439-447.
    [1]Yarin AL, Koombhongse S, Reneker DH.Taylor cone and jetting from liquiddroplets in electrospinning ofnanofibers.Journal ofApplied Physics,2001;90:4836-4846
    [2] Dufrane D, Marchal C, Cornu O, et al. Clinical application of a physically andchemically processed human substitute for dura mater. J Neurosurg,2003;98:1198-1202.
    [3]David Hunt. Duraplasty:our current experience.SurgicalNeurology,2004;61:55-59.
    [4] Anson JA, Marchand EP. Bovine pericardium for dural grafts: clinical results in35patients. Neurosurgery,1996,39:764-768.
    [5] Parizek J, Husek Z, Mericka P, et al.Ovine pericardium: a new material forduraplasty. J Neurosurg1996;84:508-513.
    [6] Bejjani GK, Zabramski J. Safety and efficacy of the porcine small intestinalsubmucosa dural substitute: results of a prospective multicenter study and literaturereview. J Neurosurg,2007;106:1028-1033.
    [7] Cobb MA, Badylak SF, Janas W. Porcine small intestinal submucosa as a duralsubstitute. Surg Neurol,1999;51:99-104.
    [8] Knopp U, Christmann F, Reusche E. A new collagen biomatrix of equine originversus a cadaveric dura graft for the repair of dural defects-a comparative animalexperimental study. Acta Neurochir (Wien),2005;147:877-887.
    [9]Narotam PK, Dellen JR, Bhoola KD. A clinicopathological study of collagensponge as a dural graft in neurosurgery. J Neurosurg,1995;82:406-412.
    [10] Tatsui CE, Martinez G, Li X. Evaluation of DuraGen in preventing periduralfibrosis in rabbits. Invited submission from the Joint Section Meeting on Disorders ofthe Spine and Peripheral Nerves. J Neurosurg Spine,2006;4:51-59.
    [11] Wall SJ,Adamson PA,Bailey D,et a1.Patient satisfaction wi th expandedpolytrafluoroethylene(Softform)implants to the perioral region.Arch-Facial-Plast-Surg,2003;5:320-3243.
    [12] Prantl L,Angele P,Schreml S,et al. Determination of serum fibrosis indexes inpatients with capsular contracture after augmentation with smooth silicone gelimplants.J Plast-Reconstr-Surg,2006;18:224-229.
    [13] Prantl L,Poppl N,Horvat N,et a1.Serologic and histologicfindings in patientswith capsular contracture after breast augmentation with smooth silicone gelimplants:is serum hyaluronan a potential predictor?JAesthetic-Plast-Surg,2005;29:510-518.
    [14] Liao SS,Cui FZ,Zhang W,et a1.Mineralized collagen based composite for bonetissue engineering.J Zhong guo Yi Xue Ke Xue Yuan Xue Bao,2003;25:36-38.
    [15] Hu Y,Zhang c,Zhang S,et al.Development of a porous poly(L-lacticacid)/hydroxyapatite/collagen scaffold as a BMP delivery system andits use in healingcanine segmental bone defect.J Biomed Mater Res,2003;67:591-598.
    [16] Gelse I,Paschl E,Aigner, et a1.Collagen’S structure function andbiosynthesis.Advanced del ievey Reviews,2003;20:1531-1546
    [17] Giudici G,Viola M,EnricaTira,et a1.Molecular stability of chemically modifiedcollagen triple helices.Federation of European Biochemical Societies,2003;3:170-176.
    [18]Ma J, Wang H, He B,et a1.A preliminary in vitro study on the fabricationand tissue engineering applications of a novel chitosan bilayer material as a scaffoldof human neofetal dermal fibroblasts.Biomaterials,2001;22:331-336.
    [19] Alhosseini S N, Moztarzadeh F, Mozafari M,et al. Synthesis and characterizationof electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending withchitosan for neural tissue engineering. Int. J.Nanomed,2012;7:25-34.
    [20] Amarnath K, Kumar J, Reddy T, et al. Synthesis and characterization of chitosanand grape polyphenols stabilized palladium nanoparticles and their antibacterialactivity. Colloids Surf.B Biointerfaces,2012;92:254-261.
    [21] Bettini R, Romani AA, Morganti M M,et al. Physicochemical and cell adhesionproperties of chitosan films prepared from sugar and phosphate-containing solutions.Eur.J.Pharm. Biopharm,2008;68:74-81.
    [22] Hashi CK, Zhu Y, Yang GY,et al. Antithrombogenic property of bone marrowmesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A,2007;104:11915-11920.
    [23] Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effectsof nanotopography and chemical signaling on cell guidance. Nano Lett,2007;7:2122-2128.
    [24] Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: apotential scaffold for blood vessel engineering. Biomaterials,2004;25:877-886.
    [25] Bhardwaj N, Kundu S. Chondrogenic differentiation of rat MSCs on porousscaffolds of silk fibroin/chitosan blends.Biomaterials,2012;33:2848–2857.
    [26]Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overviewof biomedical applications.J Control Release,2012;161:505-522.
    [27] Horst M, Madduri S, Milleret V, et al. A bilayered hybrid microfibrousPLGA→acellular matrix scaffold for hollow organ tissue engineering.Biomaterials,2013;34:1537-1545.
    [28]Zhang X, Qi YY, Zhao TF,et al. Reconstruction of segmental bone defects in therabbit ulna using periosteum encapsulated mesenchymal stem cells-loadedpoly(lactic-co-glycolic acid) scaffolds. Chin Med J (Engl),2012;125:4031-4036.
    [29]Kutlu B, TilAydn RS, Akman AC,et al. Platelet-rich plasma-loaded chitosanscaffolds: preparation and growth factor release kinetics. J Biomed Mater Res B ApplBiomater,2013;101:28-35.
    [30]Shanmugasundaram N, Ravichandran P, Reddy PN, et a1.Collagen-chitosanpolymericscaffolds for the in vitro culture of human epidermoid carcinomacells.Biomaterials2001,22:1943-1951
    [31] Mi FL, Shyu SS, Wu YB, et a1.Fabrication and characterization of aSpnge-like asymmetric chitosan membrane as a wound dressing.Biomaterials2001,22:165-173.
    [32] Hong P, Bance M, Gratzer PF.Repair of tympanic membrane perforation usingnovel adjuvant therapies: a contemporary review of experimental and tissueengineering studies. Int J Pediatr Otorhinolaryngol,2013;77:3-12.
    [33] Casettari L, Vllasaliu D, Lam JK, et al. Biomedical applications of aminoacid-modified chitosans: a review. Biomaterials,2012;33:7565-7583.
    [34]Rodriguez-Merchan EC.Local fibrin glue and chitosan-based dressings inhaemophilia surgery.Blood Coagul Fibrinolysis,2012;23:473-476.
    [35] Wan R, Hu J, Zhou Q, et al. Aplication of co-expressed genes to articularcartilage: new hope for the treatment of osteoarthritis.Mol Med Report,2012;6:16-18.
    [36]Zhang ZL,Xu SW,Zhou XL,et a1.Preventive effects of chi tosanon peri toneal adhesion in rats.World J Gastroenterol,2006;12:4572-4577.
    [37] Krause TJ,Goldsmith NK,Ebner S。An inhibitor of cell proliferation associatedwith adhesion formation is suppressed by N,O-carboxymethyl chitosan.J InvestSurg,1998;11:105-113.
    [38] Wald HL,Sarakinos G,Lyman MD,et al. Cell seeding in porous transplantationdevices.Biomaterials,1993;14:270-278.
    [39]张卫红,王新伟,王长峰.PLGA/I型胶原/壳聚糖复合人工硬脊膜生物相容性及力学性能的实验.南京医科大学学报(自然科学版),2009;6:836-839.
    [40]张卫红,袁文,王新伟等. PLGA-I型胶原-壳聚糖复合人工硬脊膜生物相容性的研究,山东医药,2009;14:14-16.
    [1] Jahoda CA, Whitehouse J, Reynolds AJ,et al.Hair follicle dermal cellsdifferentiate into adipogenic and osteogenic lineages.Exp Dermat,2003;12:849-859.
    [2] Serra M, Brazis Fl, Puigdemont A,et a1.Development and characterization of acanine skin equivalent.Exp Dermat,2007;16:135-142.
    [3] Ma L, Gao C, Mao Z, et a1.Thermal dehydration treatment and glutaraldehydecross link into increase the biostability of collagen-chitosan porous scaffolds used asdermal equivalent.J Biomater Sci Polym Ed,2003;14:861-874.
    [4] Hashi CK, Zhu Y, Yang GY,et al.Antithrombogenic property of bone marrowmesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad SciUSA,2007;104:11915-11920.
    [5] Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effects ofnanotopography and chemical signaling on cell guidance. Nano Lett,2007;7:2122-2128.
    [6] Xu CY, Inai R, Kotaki M,et al. Aligned biodegradable nanofibrous structure: apotential scaffold for blood vessel engineering. Biomaterials,2004;25:877-886.
    [7]韩昭昭,孔桦,孟洁等.取向纳米纤维聚合物膜引导内皮细胞生长的作用.高等学校化学学报,2008;5:1070-1073.
    [1]郑旭为,刘忠军.人工硬膜修补硬脊膜及预防椎管内粘连的实验观察.中国脊柱脊髓杂志,2006;16(1):52-56.
    [2] Cain JJ, Dryer RF, Barton BR. Evaluation of dural closure techniques. Suturemethods, fibrin adhesive sealant, and cyanoacrylate polymer.Spine,1988;13:720-725.
    [3] Shaffrey CI, Spotnitz WD, Shaffrey ME, et al. Neurosurgical applications of fibringlue: augmentation of dural closure in134patients. Neurosurgery,1990;26:207-210
    [4] Nakajima S, Fukuda T, Hasue M, et al. New technique for application of fibrinsealant: rubbing method devised to prevent cerebrospinal fluid leakage from duramater sites repaired with expanded polytetrafluoroethylene surgical membranes.Neurosurgery,2001;49:117-123
    [5] Epstein NE, Hollingsworth R. Anterior cervical micro-dural repair ofcerebrospinal fluid fistula after surgery for ossification of the posterior longitudinalligament. Technical note Surg Neurol,1999;52:511-514.
    [6] Black P. Cerebrospinal fluid leaks following spinal surgery: use of fat grafts forprevention and repair. Technical note. J Neurosurg,2002;96:2Suppl250-252.
    [7] Narotam PK, Jose S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair:analysis of a new modified technique. Spine,2004;29:2861-2869.
    [8] Parízek J, Měricka P, Husek Z, et al. Detailed evaluation of2959allogeneic andxenogeneic dense connective tissue grafts (fascia lata, pericardium, and dura mater)used in the course of20years for duraplasty in neurosurgery. Acta Neurochir(Wien),1997;139:827-838.
    [9] DiFazio FA, Nichols JB, Pope MH, et al. The use of expandedpolytetrafluoroethylene as an interpositional membrane after lumbar laminectomy.Spine,1995;20:986-991.
    [10] Longmire S, Joyce TH III: Treatment of a duro-cutaneous fistula secondary toattempted epidural anesthesia with an epidural autologous blood patch.Anesthesiology,1984;60:63-64.
    [11] Epstein NE. Wound-peritoneal shunts: part of the complex management ofanterior dural lacerations in patients with ossification of the posterior longitudinalligament. Surg Neurol,2009;72:630-634.
    [12] Foyt D, Johnson JP, Kirsch AJ,et al. Dural closure with laser tissue welding.Otolaryngol Head Neck Surg,1996;115:513-518.
    [13] Yuguchi T, Kohmura E, Yoshimine T. PTFE-fascia patch inlay method for theanterior approach for cervical intradural spinal lesion. Spinal Cord,2002;40:601-603.
    [14] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervicalspine surgery. J Bone Joint Surg Am,2008;90:1101-1105.
    [15] Hashi CK, Zhu Y, Yang GY,et al.Antithrombogenic property of bone marrowmesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA,2007;104:11915-11920.
    [16] Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effectsof nanotopography and chemical signaling on cell guidance. Nano Lett,2007;7:2122-2128.
    [17] Xu CY, Inai R, Kotaki M,et al. Aligned biodegradable nanofibrous structure: apotential scaffold for blood vessel engineering. Biomaterials,2004;25:877-886.
    [18]韩昭昭,孔桦,孟洁等.取向纳米纤维聚合物膜引导内皮细胞生长的作用.高等学校化学学报,2008;5:1070-1073.
    [1] Joseph V, Kumar GS, Rajshekhar V. Cerebrospinal fluid leak during cervicalcorpectomy for ossified posterior longitudinal ligament:incidence, managementandoutcome. Spine,2009;34:491-494.
    [2] Li H, Dai LY. A systematic review of complications in cervical spine surgery forossification of the posterior longitudinal ligament. Spine J,2011;11:1049-1057.
    [3] Chen Y, Guo Y, Lu X, et al. Surgical strategy for multilevel severe ossification ofposterior longitudinal ligament in the cervical spine. J Spinal Disord Tech,2011;24:24-30.
    [4]Sakai K, Okawa A, Takahashi M, et al. Five-year follow-up evaluation of surgicaltreatment for cervical myelopathy caused by ossification of the posterior longitudinalligament: a prospective comparative study of anterior decompression and fusion withfloating method versus laminoplasty. Spine,2012;37:367-376.
    [5] Mazur M, Jost GF, Schmidt MH, et al. Management of cerebrospinal fluid leaksafter anterior decompression for ossification of the posterior longitudinal ligament: areview of the literature. Neurosurg Focus,2011;30:E13.
    [6] Hannallah D, Lee J, Khan M, et al. Cerebrospinal fluid leaks following cervicalspine surgery. J Bone Joint Surg Am,2008;90:1101-1105.
    [7] Chang H S, Kondo S, Mizuno J,et al.Airway obstruction caused by cerebrospinalfluid leakage after anterior cervical spinesurgery. A report of two cases. Bone JointSurg Am,2004;86:370-372.
    [8]胥少汀,卢世壁.骨科手术并发症预防与处[M].2004:151,160,195,205,206.
    [9]张阳德,向忠,彭健.硬脊膜损伤分度及预防脑脊液漏的临床研究.中国现代医学杂志,2007;17:1349-1351.
    [10]向忠,李红,吴明宇,等.生物蛋白胶在硬脊膜损伤修复中的临床研究.中国医药导报,2006;3:9-10.
    [11] Hodges SD, Humphreys SC, Eck JC, et al. Management of incidental durotomywithout mandatory bed rest. A retrospective review of20cases. Spine,1999;24:2062-2064
    [12] Narotam PK, Jose S, Nathoo N, et al. Collagen matrix (DuraGen) in dural repair:analysis of a new modified technique. Spine,2004;29:2861-2869.
    [13] Cammisa FP Jr, Girardi FP, Sangani PK, et al. Incidental durotomy in spinesurgery. Spine,2000;25:2663-2667.
    [14]Kim KD, Wright NM. Polyethylene glycol hydrogel spinal sealant (DuraSealSpinal Sealant) as an adjunct to sutured dural repair in the spine: results of aprospective, multicenter, randomized controlled study. Spine,2011;36:1906-1912.
    [15] Rihn JA, Patel R, Makda J, et al. Complications associated with single-leveltransforaminal lumbar interbody fusion. Spine J,2009;9:623-629.
    [16] Mulder M, Crosier J, Dunn R. Cauda equina compression by hydrogel duralsealant after a laminotomy and discectomy: case report. Spine,2009;34:E144-148.
    [17] Kumar A, Maartens NF, Kaye AH. Reconstruction of the sellar floor usingBioglue following transsphenoidal procedures. J Clin Neurosci,2003;10:92-95.
    [18] Kumar A, Maartens NF, Kaye AH. Evaluation of the use of BioGlue inneurosurgical procedures. J Clin Neurosci,2003;10:661-664.
    [19] Yuen T, Kaye AH. Persistence of Bioglue in spinal dural repair. J Clin Neurosci,2005;12:100-101.
    [20] Hutchinson RW, Mendenhall V, Abutin RM, et al. Evaluation of fibrin sealantsfor central nervous system sealing in the mongrel dog durotomy model.Neurosurgery,2011;69:921-928.
    [21] Bivalacqua TJ, Guzzo TJ, Schaeffer EM, et al. Application of Evicel tocavernous nerves of the rat does not influence erectile function in vivo. Urology,2008;72:1169-1173.
    [22]王善琛,王建华,夏虹.颈椎手术脑脊液漏及并发症的防治特点.实用医学杂志,2008;9:1654-1656.
    [23] Sekhar LN, Natarajan SK, Manning T,et al. The use of fibrin glue to stop venousbleeding in the epidural space, vertebral venous plexus, and anterior cavernous sinus:technical note. Neurosurgery,2007;61:E51.
    [24] Yeom JS, Buchowski JM, Shen HX, et al. Effect of fibrin sealant on drain outputand duration of hospitalization after multilevel anterior cervical fusion: a retrospectivematched pair analysis. Spine,2008,33: E543-547.
    [25] Epstein NE. Wound-peritoneal shunts: part of the complex management ofanterior dural lacerations in patients with ossification of the posterior longitudinalligament. Surg Neurol,2009;72:630-634.
    [26] Ferroli P, Acerbi F, Broggi M, et al. A Novel Impermeable Adhesive Membraneto Reinforce Dural Closure: A Preliminary Retrospective Study on119ConsecutiveHigh-Risk Patients. World Neurosurg,2011, Nov1.[Epub ahead of print]
    [27] Della Puppa A, Rossetto M, Scienza R: Use of a new absorbable sealing film forpreventing postoperative cerebrospinal fluid leaks: remarks on a new approach. Br JNeurosurg,2010;24:609-611.
    [28]. Brelie C, Soehle M, Clusmann HR. Intraoperative sealing of dura mater defectswith a novel, synthetic, self adhesive patch: application experience in25patients. Br JNeurosurg,2012;26:231-235.
    [29] Gazzeri R, Neroni M, Alfieri A, et al. Transparent equine collagen biomatrix asdural repair. A prospective clinical study. Acta Neurochir (Wien),2009;151:537-543.
    [30] Dufrane D, Marchal C, Cornu O, et al. Clinical application of a physically andchemically processed human substitute for dura mater. J Neurosurg,2003;98:1198-1202.
    [31] Zerris VA, James KS, Roberts JB,et al. Repair of the dura mater with processedcollagen devices. J Biomed Mater Res B Appl Biomate,2007;83:580-588.
    [32] Shimada Y, Hongo M, Miyakoshi N, et al. Dural substitute with polyglycolicacid mesh and fibrin glue for dural repair: technical note and preliminary results. JOrthop Sci,2006;11:454-458.
    [33] Anson JA, Marchand EP. Bovine pericardium for dural grafts: clinical results in35patients. Neurosurgery,1996,39:764-768.
    [34] Parizek J, Husek Z, Mericka P, J et al.Ovine pericardium: a new material forduraplasty. J Neurosurg,1996;84:508-513.
    [35] Bejjani GK, Zabramski J. Safety and efficacy of the porcine small intestinalsubmucosa dural substitute: results of a prospective multicenter study and literaturereview. J Neurosurg,2007;106:1028-1033.
    [36] Cobb MA, Badylak SF, Janas W. Porcine small intestinal submucosa as a duralsubstitute. Surg Neurol,1999;51:99-104.
    [37] Knopp U, Christmann F, Reusche E.A new collagen biomatrix of equine originversus a cadaveric dura graft for the repair of dural defects→a comparative animalexperimental study. Acta Neurochir (Wien),2005;147:877-887.
    [38]Narotam PK, Dellen JR, Bhoola KD.A clinicopathological study of collagensponge as a dural graft in neurosurgery. J Neurosurg,1995;82:406-412.
    [39] Tatsui CE, Martinez G, Li X. Evaluation of DuraGen in preventing periduralfibrosis in rabbits. Invited submission from the Joint Section Meeting on Disorders ofthe Spine and Peripheral Nerves. J Neurosurg Spine,2006;4:51-59.
    [40] Bhatia S, Bergethon PR, Blease S. A synthetic dural prosthesis constructed fromhydroxyethylmethacrylate hydrogels. J Neurosurg,1995;83:897-902.
    [41] Klopp LS, Simon BJ, Bush JM.Comparison of a caprolactone/lactide film(mesofol) to two polylactide film products as a barrier to postoperative periduraladhesion in an ovine dorsal laminectomy model. Spine,2008;33:1518-1526.
    [42] Zhang X, Gao X, Jiang L. Flexible generation of gradient electrospinningnanofibers using a microfluidic assisted approach. Langmuir,2012;28:10026-10032.
    [43] Alamein MA, Liu Q, Stephens S, et al.Nanospiderwebs: Artificial3DExtracellular Matrix from Nanofibers by Novel Clinical Grade Electrospinning forStem Cell Delivery. Adv Healthc Mater,2012[Epub ahead of print]
    [44] Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: effects onthe behavior of normal human keratinocytes and early-stage wound healing.Biomaterials,2006;27:1452-1461.
    [45] Khil MS, Cha DI, Kim HY, et al. Electrospun nanofibrous polyurethanemembrane as wound dressing. J Biomed Mater Res B Appl Biomater,2003;67:675-679.
    [46] Hashi CK, Zhu Y, Yang GY,et al. Antithrombogenic property of bone marrowmesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A,2007;104:11915-11920.
    [47] Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effectsof nanotopography and chemical signaling on cell guidance. Nano Lett,2007;7:2122-2128.
    [48] Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: apotential scaffold for blood vessel engineering. Biomaterials,2004;25:877-886.
    [49] Xie J, Macewan MR, Ray WZ, et al.Radially aligned, electrospun nanofibers asdural substitutes for wound closure and tissue regeneration applications. ACS Nano,2010;4:5027-5036.
    [50] Kurpinski K, PatelS. Dura mater regeneration with a novel synthetic, bilayerednanofibrous dural substitute: an experimental study. Nanomedicine (Lond),2011;6:325-337.
    [51] Santin M, Motta A, Freddi G, et al. In vitro evaluation of the inflammatorypotential of the silk fibroin. J Biomed Mater Res,1999;46:382-389.
    [52] Jeyasuria P, Wetzel J, Bradley M, et al. Progesterone-regulated caspase3actionin the mouse may play a role in uterine quiescence during pregnancy throughfragmentation of uterine myocyte contractile proteins. Biol Reprod,2009;80:928-934.
    [53] Lun B, Jianmei X, Qilong S. On the growth model of the capillaries in the poroussilk fibroin films. J Mater Sci Mater Med,2007;18:1917-1921.
    [54] Wang S, Gao Z, Chen X, et al. The anticoagulant ability of ferulic acid and itsapplications for improving the blood compatibility of silk fibroin. Biomed Mater,2008;3:044106.
    [55] Yamada H, Igarashi Y, Takasu Y, et al. Identification of fibroin-derived peptidesenhancing the proliferation of cultured human skin fibroblasts. Biomaterials,2004;25:467-472.
    [56] Kim DW, Eum WS, Jang SH,et al. A transparent artificial dura mater made ofsilk fibroin as an inhibitor of inflammation in craniotomized rats. J Neurosurg,2011;114:485-490.
    [57] Ettinger AB, Argoff CE. Use of antiepileptic drugs for nonepileptic conditions:psychiatric disorders and chronic pain. Neurotherapeutics,2007;4:75-83.
    [58] Jensen TS. Anticonvulsants in neuropathic pain: rationale and clinical evidence.Eur J Pain,2002;6Suppl A:61-68.
    [59] Mulleners WM, Chronicle EP. Anticonvulsants in migraine prophylaxis: aCochrane review. Cephalalgia,2008;28:585-597.
    [60] Ergun E, Kurt G, Tonge M, et al. Effects of phenytoin sodium on dura materhealing in a rat model of CSF leakage. Turk Neurosurg,2011;21:471-476.
    [61] Thomas KA. Fibroblast growth factors. FASEB J,1987;1:434-440.
    [62] Werner S. Keratinocyte growth factor: a unique player in epithelial repairprocesses. Cytokine Growth Factor Rev,1998;9:153-165.
    [63] Gospodarowicz D, Ferrara N, Schweigerer L. Structural characterization andbiological functions of fibroblast growth factor. Endocr Rev,1987;8:95-114.
    [64] Phillips LG, Abdullah KM, Geldner PD,et al. Application of basic fibroblastgrowth factor may reverse diabetic wound healing impairment. Ann Plast Surg,1993;31:331-334.
    [65] Nurata H, Cemil B, Kurt G, et al.The role of fibroblast growth factor-2in healingthe dura mater after inducing cerebrospinal fluid leakage in rats. J ClinNeurosci,2009;16:542-544.
    [66] Wu JC, Huang WC, Tsai YA, et al. Nerve repair using acidic fibroblast growthfactor in human cervical spinal cord injury: a preliminary Phase I clinical study. JNeurosurg Spine,2008;8:208-214.
    [67] Kaplan G, Walsh G, Guido LS,et al. Novel responses of human skin tointradermal recombinant granulocyte/macrophage-colony-stimulating factor:Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing. J ExpMed,1992;175:1717-1728.
    [68] Jorgensen LN, Agren MS, Madsen SM, et al. Dose-dependent impairment ofcollagen deposition by topical granulocyte-macrophage colony-stimulating factor inhuman experimental wounds. Ann Surg,2002;236:684-692.
    [69] Canturk NZ, Vural B, Esen N, et al. Effects of granulocyte-macrophagecolony-stimulating factor on incisional wound healing in an experimental diabetic ratmodel. Endocr Res,1999;25:105-116.
    [70] Kurt G, Borcek AO, Cemil B, et al. The effects of topicalgranulocyte-macrophagecolony-stimulating factor on dural healing in rats afterinduced cerebrospinal fluid leakage. J Neurosurg Spine,2007;7:419-422.
    [71] Bass LS, Treat MR. Laser tissue welding: a comprehensive review of current andfuture clinical applications. Lasers Surg Med,1995;17:315-349.
    [72] Foyt D, Johnson JP, Kirsch AJ, et al. Dural closure with laser tissue welding.Otolaryngol Head Neck Surg,1996;115:513-518.
    [73] Hadley MN, Martin NA, Spetzler RF, et al. Comparative transoral dural closuretechniques: a canine model. Neurosurgery,1988;22:392-397.
    [74] Menovsky T, Beek JF, Gemert MJ. Laser tissue welding of dura mater andperipheral nerves: a scanning electron microscopy study. Lasers Surg Med,1996;19:152-158.
    [75] Forer B, Vasilyev T, Brosh T, et al. Repair of pig dura in vivo using temperaturecontrolled CO2laser soldering. Lasers Surg Med,2005;37:286-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700