组织工程化人工神经修复长节段周围神经损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     周围神经损伤(peripheral nerve injury, PNI)是临床最常见的创伤之一。随着现代建筑业、交通运输业的发展以及局部战争的频发,PNI的发生率也逐年呈上升趋势。由于成熟的神经元不能分裂和复制,与其它组织相比,周围神经损伤后的再生和恢复效果还很不理想。若不能及时救治,可导致肌肉功能丧失、感觉功能损害、功能恢复不佳甚至导致病人终生残疾,给社会带来巨大的损失和沉重的负担,已成为世纪医学挑战之一。
     目前国内外修复周围神经损伤的主要策略是桥接神经断端,促进神经轴突再生,克服再生屏障。20世纪90年代Lundborg利用神经再生室模型证实神经趋化特异性以来,神经导管修复神经缺损的优势逐渐被人们认识和接受。随着组织工程技术的飞速发展,周围神经损伤的修复又取得了新的进展。组织工程技术治疗PNI的基本模式是―种子细胞+细胞因子+生物支架‖。利用具有良好的组织相容性和生物活性的组织工程化人工神经搭载神经干细胞修复PNI取得了一定得疗效。
     【目的】
     1、体外培养骨髓间充质干细胞(BMSCs),并在体外诱导分化为骨髓源性神经干细胞,实现短时间内获得增殖能力较强的神经干细胞的要求。
     2、以PLGA为原料制作管壁具有三维结构的中空的可降解组织工程用神经导管
     3、利用IKVAV自组装多肽构建组织工程化人工神经。
     4、将可降解神经导管、IKVAV自组装多肽凝胶、骨髓源性神经干细胞和神经生长因子构建的组织工程化人工神经移植至坐骨神经缺损处,观察神经再生和功能恢复情况,探讨新型组织工程化人工神经修复周围神经的可行性。
     【方法】
     1、利用全骨髓培养法进行原代骨髓间充质干细胞的培养。以3月龄大白兔为取材对象,于胫骨平台下抽取2~3ml骨髓,加入Percoll液中离心,10%FBS,1%抗生素的DMEM培养液重悬后,接种于培养皿中培养。BMSCs达到亚融合后,去除培养液,加入诱导液(DMEM培养基、全反式视黄酸、bFGF等),诱导BMSCs向类施万氏细胞分化。
     2、以PLGA为原料,通过静电纺丝技术制作中空的、管壁具有三维结构的可降解神经导管,并进行神经导管的体外、体内生物相容性测试。
     3、以IKVAV自组装多肽为原料,在一定条件下触发自组装形成多肽凝胶,并进行其与神经干细胞的相容性初步测试。
     4、将构建的组织工程化人工神经移植进行神经缺损修复实验。以新西兰大白兔为动物模型,实验动物随机分为3组:A组:自体神经移植组,B组:神经导管+神经干细胞+NGF,C组:神经导管+IKVAV自组装凝胶+神经干细胞+NGF。于术后3、6、9、12周,应用肌电图、肌肉湿重测量、HE染色、免疫荧光染色、透射电镜等观察方法观察神经干细胞的存活、周围神经功能的恢复情况。
     【结果】
     1、流式细胞仪鉴定结果表明成功分离、培养BMSCs,诱导后经S-100免疫细胞化学染色鉴定为类SC细胞,细胞纯度达87%。
     2、利用新型的静电纺丝工艺能够制作出管壁具有三维结构的组织工程用神经导管,导管外径3mm,内径2.5mm,管壁纤维直径约18μm,呈螺旋上升结构。导管管壁孔隙率约85.4%,支架具有良好的生物相容性,降解时间约为3个月。
     3、在实验室条件下成功触发IKVAV多肽自组装成凝胶,透射电镜显示其纤维直径为10-30nm,长度可达数百纳米,纳米纤维交织成立体网状结构。测定神经干细胞在凝胶上的黏附率及生物活性显示其有良好的生物相容性。
     4、构建的人工神经修复长节段坐骨神经缺损,术后3组动物均出现不同程度的足底溃疡,恢复情况以A组最好,C组次之,B组最差。神经肌电图、小腿三头肌湿重结果提示C组神经修复效果接近A组(P > 0. 05)而优于B组(P < 0. 05)。HE染色观察12周时A组见较多束状组织,神经纤维排列整齐,神经纤维较为粗大,髓鞘较厚。B、C组切片可见PLGA纤维基本降解、消失。C组亦可见较多束状的组织,呈波浪形,神经纤维较A组稀疏,组织间可见新生毛细血管,胶原组织较少。而B组中神经纤维排列较杂乱,胶原组织较多,神经纤维细小。透视电子显微镜观察:A组中有大量的有髓神经纤维,排列均匀。B组有髓神经纤维形态不规则,数量较少,少数神经纤维髓鞘轻度肿胀,呈脱髓鞘改变。C组中再生有髓神经纤维较多,但分布不均匀,纤维直径和髓鞘厚度大小不等,神经纤维间有较多新生血管形成。12周时组织工程化人工神经切片在荧光显微镜下观察到在神经损伤处有GFP荧光表达,表明神经干细胞在人工神经内仍然存活。
     【结论】
     1、采用全骨髓培养法进行BMSCs,可以获得大量高纯度BMSCs,经诱导后可以转化为类SC细胞,可作为神经修复的种子细胞。
     2、利用静电纺丝技术制作的PLGA可降解神经导管,具有良好的生物相容性和适当的降解时间,可以用来修复PNI。
     3、IKVAV多肽可以自组装形成凝胶,凝胶是由纳米纤维交联形成的类似细胞外基质的物质,具有良好的生物相容性和生物活性,可以作为神经组织工程支架。
     4、组织工程化人工神经修复坐骨神经具有较好的疗效,植入体内的神经干细胞可存活3个月以上,神经缺损处发现新生轴突,坐骨神经功能得到部分恢复。
【Background】
     Peripheral nerve injury (PNI) is a frequently encountered trauma in clinic of orthopedic department. The incidence of PNI has been increase annually with the developing of modern architecture and transportation industry and the frequent local war. Compared with orther tissues, the prognosis of peripheral nerve injury is ugly because of limitied regenerative ability of mature neurons. Defuctionalization of muscle and sensory may occur without prompt remedy, and even permanent disability can happen to the patients, which brings about tremendous loss and burden. So the treatment of PNI has been the century challenge of medicine.
     Bridging the nerve gap, promoting regeneration of axon and overcoming regeneration barrier have been the main treatment of PNI. The advantage of nerve conduit in nerve injury treatment has been recognized and accepted since specificity of neurotropism was confirmed by Lundborg in 90s. Another progress has been made with the flying develop of tissue engineering technique, whose fundamental mode is "seed cell + cytokine + bioscaffold", and certain curative effect has been obtained with neural stem cell carried on tissue engineered artificial nerve which has outstanding histocompatibility and bioactivity.
     【Objectives】
     1、Bone marrow mesenchymal stem cells (BMSCs) is cultured in vitro and induced to differentiate into bone marrow-derived neural stem cells to obtain neural stem cells of higher proliferative capacity in a short period of time.
     2、Using PLGA as raw materials to produce a new type of three-dimensional structure biodegradable nerve conduit for tissue engineering.
     3、Using IKVAV self-assembled peptide to constructed tissue engineered artificial nerves.
     4、Tissue engineered artificial nerves constructed of biodegradable nerve conduit, IKVAV self-assembled peptide, bone marrow-derived neural stem cells and NGF were grafted to sciatic nerve defects to observe nerve regeneration and functional recovery, and to explore the feasibility of peripheral nerve repair using new type tissue-engineered artificial nerve.
     【Method】
     1、We introduced a whole bone marrow culture method to culture primary BMSCs. Bone marrow(2~3ml) was obtained from 3-month-old rabbits under the tibial plateau, and was centrifugated in Percoll solution. The material was cultured after being re-floated in DMEM (10% FBS, 1% antibiotic). The culture fluid was removed after sub-fusion of BMSCs. Then induce fluid (DMEM, all-trans retinoic acid, bFGF) was added in to the material to induce the BMSCs differentiate toward Schwann cell-like.
     2、Degradable 3-D nerve conduit was structured by electrospun technique as PLGA being raw material, and biocompatibility was tested in vivo and in vitro.
     3、IKVAV self-assembling peptide was triggered into polypeptide-gel in certain condition, and compatibility of nerve stem cell was primarily tested.
     4、Nerve-repair experiment was performed by graft of tissue engineered artificial nerves. Animal models (New Zealand rabbits) were randomly divided into 3 groups: A: Auto-nerve transplatation group, B: Nerve conduct + NSC + NGF group, C: Nerve conduct + IKVAV + NSC + NGF group. The survival of NSCs and function recovery of PN was observed by means of EMG, muscle wet weight, HE stain, IMF stain and TEM at the time of 3, 6, 9, 12 weeks after operation.
     【Results】
     1、Flow cytometer indentification shows that BMSCs were isolated and cultured successfully. After the induction, BMSCs displayed morphologies of Schwann cell and its purity reached 87% by S-100 immunocytochemistry staining.
     2、The new type nerve conduit was produced by way of electrospun technique. We prepared new type of conduits whose outer diameter was 3mm, inner diameter was 2.5mm and the tube wall fiber diameters were 18μm. The fibers of the tube wall showed a spiral increasing arrangement in axial sections. The porosity of nerve conduit was 85.4%, and the 3D scaffold possessed features with good biocompatibi1ity, its degradation time was 3 months.
     3、We successfully trigger IKVAV peptides self-assemble into gels under laboratory conditions. The diameter of gels fibers was 10-30 nm and the length can reach to hundreds of nanometers. Nanofibers intertwined into three-dimensional mesh structure. Adhesion rate and biological activity determination showed that NSCs have good biocompatibi1ity.
     4、Different degree plantar ulcer were observed in all three groups (Severity: Group A> C> B) after reparation of long segment of sciatic nerve by artificial nerve. The result of Group C is significantly better than that of Group B (p<0.05) while it has no significant difference with that of Group A (p<0.05) in EMG test and determination of wet weight of triceps surae. More fasciculate tissue, thicker nerve fiber and neural sheath were observed in Group A but degradation of PLGA fiber in group B and C by HE stain after 12 weeks reservation. The nerve fiber were tangle and tiny with lots of collagen tissue in Group B, but raritas and neat with little collagen tissue in Group A, while much wave-shaped fascicularis tissue can be observed in Group C. TEM illustrated large quantity of neat medullated nerve fibers in Group A. Group B showed less quantity of irregular-shaped medullated nerve fibers and the medullary sheath of nerve fiber mild swelling under TEM. More regenerate medullated nerve fiber can be found in group C and more newborn capillary formation compared to group B under TEM. Fluorescence microscope illustrated that GFP fluorescence was expressed after 12 weeks, which showed that 12 weeks after transplantation, the NSCs were still alive over that period.
     【Conclusions】
     1、Using whole bone marrow culture method can get a large number of high-purity BMSCs and can be used as seed cells for tissue engineering technique for PNI repair after induction into Schwann cell-like.
     2、The PLGA biodegradable nerve conduits were suitable for PNI repair by tissue engineering technique with good biocompatibi1ity and biodegradability.
     3、IKVAV peptides can self-assembled into gels, which intertwined by nanofibers like extracellular matrix. The gels with good biocompatibility and biological activity and can be used as tissue engineering scaffold.
     4、Tissue-engineered artificial nerves can gain good effect for sciatic nerve injury repair. NSCs maintained a good biological activity living for 3 months. Newly born axon can be founded in the sciatic nerve defect. The function of sacistic nerve got partially restored.
引文
[1] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos [J]. Nature,1981,(9) :154-156.
    [2] Ryden M,Dicker A,Gotherstrom C, et a1. Functional characterization of human mesenchymal stem cell-derived adipocytes[J].Biochem Biophys Res Commun.2003,311(2):391-397.
    [3] Direkze NC, Forbes SJ,Brittan M,et a1. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marow-transplanted mice[J].Stem Cells,2003,21(5):514-520.
    [4] Sammons J, Ahmed N, El-Sheemy M, et a1.The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development:effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D3[J].Stem Cells Dev,2004.13(3):273-280.
    [5] Wang PP, Wang JH, Yan ZP,et a1. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction[J].Bioehem Biophys ResCommun.2004,320(3):712-716.
    [6] Hassan HT, EI-Sheemy M. Adult bone-marrow stem cells and their potential in medicine[J]. J R Soc Med,2004,97(10):465-471.
    [7] Luk JM, Wang PP, Lee CK, et a1. Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models[J].J Immunol Methods, 2005,305(1):39-47.
    [8] Li H, Yu B, Zhang Y, et al. Jagged protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes[J]. Biochem Biophys Res Commun, 2006,341(2):320-325.
    [9] Heath CA. Cells for tissue engineering[J]. Trends Biotechnol, 2000;18(1):17-19.
    [10] Dezawa M , Takahashi I,Esaki M,et al Sciatic nerve regeneration in rat induced by transplantation of in vitro differentiated bone-marrow stromal stem cells[J]. Eur J Neurosci 2001,14(11) 1171-1176
    [11] Mimura T, Dezawa M, Kanno H,et al. Peripheral nerve regeneration by cell-derived Schwann cell in adult rat transplantation of bone marrow stromal stem cell[J].J Neurosurg. 2004,101(5):806-812
    [12] Hou SY ,Zhang HY,Quan DP,et al.Tissue-engineering peripheral nerve grafting by differentiated bone-marrow stromal stem cells[J]. Neuroscience,2006,140(1): 101-110.
    [13] Choi BH,Zhu SJ, Kim BY,et al.Transplantation of cultured bone marrow stromal stem cells to improve peripheral nerve regeneration[J]. Int J Oral Maxillofac Surg,2005, 34(5):537-542.
    [14] Pereira Lopes FR, Moura Campos LC, Dias Correa J, et al. Bone-marrow stromal stem cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice[J].Exp Neur,2006, 198(2):457-468
    [15] Trumble TE, Shon FG. The physiology of nerve transplantation[J], Hand Clin. 2000,16(1):105–122.
    [16] Berger A, Shen ZL , Hierner R. Peripheral nerve surgery:current achievements and future directions[J].中华手外科杂志,2000,16:10-16.
    [17] Hadlock T, Elisseeff J, Langer R, et al. A tissue engineered conduit for peripheral nerve repair[J]. Arch Otolaryngol Head Neck Surg, 1998,124:1081-1086.
    [18]王光林,杨志明,解慧琪,等.周围神经组织工程材料的预构[J].中国修复重建外科杂志,2000,14(2):110-2114.
    [19] Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal and mesodermal genes prior to neuro genesis[J]. Neurosci Res, 2002; 69(6):908 - 917.
    [20] Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells[J]. Leuk Lymphoma. 2005;46(11):1531-1544.
    [21] Park SH, Sim WY, Park SW, et al. An electromagnetic compressive force by cell exciter stimulates chondrogenic diferentiation of bone marrow-derived Mesenchymal stem cells[J].Tissue Eng, 2006, 12(11) :3107-3117.
    [22] Colter DC, Class R, Digirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow[J]. Proc Natl Acad Sci U S A. 2000,97(7):3213-3218.
    [23] Kuo CK, Tuan RS. Tissue engineering with mesenchymal stem cells[J]. IEEE Eng Med Biol Mag. 2003;22(5):51-56.
    [24] Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold[J]. Tissue Eng. 2004;10(1-2):33-41.
    [25]杨芬,杨乃龙.两种体外分离成人骨髓间充质干细胞方法的比较[J].中国组织工程研究与临床康复.2008,12(3):473-476.
    [26]张明鸣,贾贵清,罗婷,等.大鼠骨髓间充质干细胞体外两种分离方法和培养条件下生物学特点的比较[J].华西医学,2009,24(2):371-374.
    [27]邢承忠,洪晶,顾绍峰,等.兔骨髓间充质干细胞的分离、培养和鉴定[J].中国医科大学学报, 2008, 37(1): 4-5.
    [28] Gronthos S, Graves SE, Ohta S, Simmons PJ . The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors[J]. Blood 1994,84(12): 4164–4173.
    [29] Netter, Frank H. Musculoskeletal system: anatomy, physiology, and metabolic disorders[M]. Summit, New Jersey: Ciba-Geigy Corporation ISBN 0914168886, (1987), p.134
    [30] Brighton, Carl T. and Robert M. Hunt, Early histologic and ultra structural changes in medullary fracture callus[J]. Journal of Bone and Joint Surgery, 1991,73-A (6): 832-847
    [31] Lee JW, Gupta N, Serikov V, et al. Potential application of mesenchymal stem cells in acute lung injury[J]. Expert Opin Biol Ther, 2009,9(10):1259-1270.
    [32] Sanchez-Ramos J, Song S, Cardozo-Pelaez, F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro[J]. Exp Neurol, 2000, 164(2):247-256.
    [33] Woodbury D, Schwarz EJ,Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000, 61(4):364-370.
    [34] Deng W,Obrocka M, Fischer I. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophys Res Commun, 2001,282(1):148-152.
    [35] Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures[J]. J Neurobiol, 1999, 38(1):65-81.
    [36] Cohen RI, Mckay R, Almazan G. Cyclic AMP regulates PDGF stimulated signal transduction and differentiation of an immortalized optic nerve-derived cell line[J]. J Exp Biol, 1999, 202(Pt 4):461-473.
    [37] Garratt AN, Britsch S, Birchmeier C. Neuregulin, a factor with many functions in the life of a Schwann cell[J]. Bio Essays,2000,22(11):987-996.
    [1] Lundborg G, Dahlin L, Danioelson W, et al. Trophism tropism and specifity in nerve regeneration[J]. J Reconstr Microsurg. 1994,5 (10):345-354
    [2] Sladowski D, Steer SJ, Clothier RH. An improved MTT assay [J].J Immunol Meth, 1993,157:2031.
    [3] Landegren U.Measurement of cell numbers by means of the endogenous enzyme hexosaminidase.Applications to detection of lymphokines and cell surface antigens[J].J Immunol Methods, 1984,67(2):379-388.
    [4]严计赓,顾玉东.张力下神经缝合与移植的比较(实验研究) [J].实验外科杂志, 1984, 6: 86 - 89.
    [5] Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid)aligned fibers and their potential in neural tissue engineering [J].Biomaterials, 2005,26(15):2603-2610.
    [6] Nisbet DR,Yu LM, Zahir T, et al. Characterization of neural stem cells on electrospun poly (epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering[J]. J Biomater Sci Polym Ed. 2008,19(5): 623-634.
    [7] Young TH,Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates.Biomaterials 2005,26(20):4291-4299.
    [8] Willerth SM,Arendas KJ,Gottlieb DI,et a1.Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells[J]. Biomaterials,2006,27(36):5900-6003.
    [9] Hadlock T,Sundback C,Hunter D,et al.A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration[J].Tissue Eng, 2000,6(2):119-127.
    [10]李文萍,朱家恺,籍涛等.许旺细胞在人工神经支架材料上三维培养的体外活性研究[J].中华显微外科杂志,2002,25(1):31-33.
    [11] Sundback CA, Shyu JY,Wang Y, et al.Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material[J]. Biomaterials,2005,26(27):5454-5464.
    [12] Cenni E,Granchi D, Avnet S,et al.Biocompatibility of poly (D,L-lactide-co- glycolide) nanoparticlesconjugated with alendronate[J]. Biomaterials,2008, 29(10):1400-1411.
    [13] Kim MS, Ahn HH, Shin YN, et al. An in vivo study of the host tissue response to subcutaneousimplantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds[J]. Biomaterials,2007,28(34):5137-5143.
    [14] Ren T,Ren J,Jia X,et a1.The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds[J]. Biomed Mater Res A, 2005, 74A(4):562-569.
    [15] Day RM, Boccaccini AR, Maquel V, et a1.In vivo characterisution of a novel bioresorbable poly(1actide-co-glycolide)tubular foam scaffold for tissue engineering applications[J].Mater Sci Mater Med , 2004,15(6):729-734.
    [16] Badami AS,Kreke MR,Thompson MS, et a1.Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun polysubstrates[J].Biomaterials,2006,27(4):596-606.
    [17] Evans GR,Brandt K,Katz S,et al. Bioactive poly(L-lactic acid)conduits seeded with Schwann cells for peripheral nerve regeneration[J].Biomaterials. 2002,23 (3):841-848.
    [18] Bryan DJ,Holway AH,Wang KK,et al. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration[J].Tissue Eng.2000,6(2):129-138.
    [19] Kannan RY, Salacinski HJ, Butler,PE, et al. Current status of prosthetic bypass grafts: A review[J].Biotechnol.Appl Biochem. 2005, 74(1):193-194.
    [20] Hofmann S, Hagenmuller H,et al. Control of in vitro tissue-engineered bone-like structures usinghuman mesenchymal stem cells and porous silk scaffolds[J]. Biomaterials,2007,28:1152–1162.
    [21] Ahmed Z, Brown RA. Adhesion, alignment, and migration of cultured Schwann cells on ultrathin fibronectin fibres[J].Cell Motil Cytoskeleton.1999;42(4):331- 343.
    [22] Pattison MA,Wurster S, Webster TJ,et al .Three dimensional,nano-structured PLGA scaffolds for bladder tissue replacement applications[J].Biomaterials,2005,26(5):2491–2500.
    [23] Zhao X,Jain S,Benjamin LH,et al.Directed cell migration via chemoattractants released from degradable microspheres[J].Biomaterials,2005,26(24):5048–5063.
    [24] Jilek S,Walter E,Merkle HP,et al.Modulation of allergic responses in mice by using biodegradable poly(lactide-co-glycolide) microspheres[J].J Allergy Clin Immunol,2004,114(4):943–950.
    [25] Choi BS, Kim SH, Yun SJ. Demineralized bone particle (DBP) suppressed the inflammatory reaction of poly(lactide-co-glycolide) scaffold[J]. Tissue Eng Reg Med,2006,3:295–300.
    [26] Wang AJ,Ao Q,Cao WL,et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering[J]. J Biomed Mater Res A ,2006,79 (1):36246.
    [1] Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration [J]. Annu Rev Biomed Eng, 2003, 5: 293-347.
    [2] Silva GA., Czeisler C, Niece KL, et al. Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers [J]. Science, 2004, 303(5662):1352-1355.
    [3] Anderson DG, Burdick JA, Langer R. Smart Biomaterials[J]. Science (Washington), 2004,305(5692):1923-1924
    [4] Service RF. American Chemical Society meeting. Molecular scaffolding helps raise a crop of neurons[J]. Science. 2003,302(5642):46-47
    [5] Huber M,Heiduschka P,Kienle S,et al. Modification of glassy carbon surfaceswith synthetic lamininderived peptides for nerve cell attachment and neurite growth[J].J Biomed Mater Res.1998,41(2):278–288.
    [6] Grant DS,Kinsella JL,Fridman R,et al. Interaction of endothelial cells with a laminin A chain peptide(SIKVAV)in vitro and induction of angiogenic behavior in vivo[J].J Cell Physiol.1992,153(3):614–625.
    [7] Grant DS,Zukowska Z.Revascularization of ischemic tissues with SIKVAV andneuropeptide Y(NPY) [J].Adv Exp Med Biol.2000,476:139–154.
    [8] Malinda KM,Nomizu M,Chung M,et al, Identification of laminin alpha1 and beta1 chain peptides active for endothelial cell adhesion,tube formation,and aortic sprouting[J].FASEB J.1999,13(1):53–62.
    [9] Massia SP,Holecko MM,Ehteshami GR.In vitro assessment of bioactive coatings for neural implant applications[J].J Biomed Mater Res.2004,68A(1):177–186.
    [10] Shaw D,Shoichet MS.Toward spinal cord injury repair strategies:peptide surface modification of expanded poly(tetrafluoroethylene)fibers for guided neurite outgrowth in vitro[J].J Craniofac Surg.2003,14(3):308–316.
    [11] Tong YW,Shoichet MS.Enhancing the neuronal interaction on fluoropolymer surfaces with mixed peptides or spacer group linkers[J]. Biomaterials, 2001,22(10):1029–1034.
    [12] Zhang S,Holmes T,Lockshin C,Rich A.Spontaneous assembly of a self- complementary oligopeptide to form a stable macroscopic membrane[J].Proc Natl Acad Sci USA.1993 Apr 15;90(8):3334-8
    [13] Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building[J].Surgery.2005,137(1):1-7.
    [14] Saneinejad S,Shoichet MS.Patterned glass surfaces direct cell adhesion and process outgrowth of primary neurons of the central nervous system[J].J Biomed Mater Res 1998;42(1):13–19.
    [15] Tong YW,Shoichet MS.Peptide surface modification of poly(tetrafluoroethylene- co-hexafluoropropylene)enhances its interaction with central nervous system neurons[J].J Biomed Mater Res.1998;42(1):85–95.
    [16] Liang DH, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications[J]. Adv Drug Deliv Rev, 2007,59(14):1392–1412.
    [17] Kam L, Shain W, Turner JN, et al. Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin[J]. Biomaterials, 2001,22(10):1049-1054.
    [18] Powell SK, Rao J, Roque E, et al. Neural cell response to multiple novel sites on laminin-1[J]. J Neurosci Res, 2000,61(3):302-312.
    [19]邹枕玮,吴永超,郑启新,等.自组装IKVAV多肽纳米支架及其对背根神经节神经元细胞的作用[J].中国脊柱脊髓杂志, 2007, 17(6): 450-453.
    [20] Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury[J]. J Neurosci, 2008, 28(14): 3814-3823.
    [1] Lundborg G, Dahlin LB, Danielsen NP, et al. Reorganization and orientation of regeneration nerve fibers, perineurium, and epineurium in preformed mesothelial tubes - an experimental study on the sciatic nerve of rats [J]. J Neurosci Res, 1981, 6(3):265-281.
    [2]徐欣,张学广,马跃,等.聚四氟乙烯膜管内植入自体许旺氏细胞桥接面神经的实验研究[J].华西口腔医学杂志, 2005,4:316-318.
    [3] Hadlock T, Sundback C, Hunter D, et al. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration [J]. Tissue Eng, 2000, 6(2):119-127.
    [4] Chiu DT, Janecka I, Krizek TJ, et al. Autogenous vein graft as a conduit for nerve regeneration [J]. Surgery, 1982, 91 (2):226-233.
    [5] Ard MD, Bunge RP, Bunge MB. Comparison of the schwann cell surface and Schwann cell extracellularmatrix promoters of neurite growth [J]. J Neuro Cytol, 1987, 16 (4):539-555.
    [6]侯赛云,朱家恺.大鼠骨髓基质干细胞体外诱导分化为类许旺细胞[J].中华显微外科杂,2003,26(1):39-41.
    [7]侯赛云,朱家恺.经诱导的骨髓基质干细胞应用于组织工程化人工神经的实验研究[J].中华显微外科杂志,2003,26(2):112-115.
    [8] Crawley WA, Dellon AL. Inferior alveolar nerve reconstruction with a polyglycolic acid bioabsorbable nerve conduit [J]. Plast Reconstr Surg, 1992, 90:300-302.
    [9]张伟,李明,傅强.静电纺丝纤维支架在神经组织工程中的应用进展[J].中华外科杂志,2010,48(20):1584-1587.
    [10] Gunatillake PA, Adhikari, R. Biodegradable synthetic polymers for tissue engineering [J]. Eur Cells Mater, 2003,5:1-16.
    [11]蒋涛,任先军.组织工程脊髓支架材料的研究进展[J].中国矫形外科杂志, 2010,18(15):1270-1273.
    [12] Hadlock T, Elisseeff J, Langer R, et al. A tissue engineered conduit for peripheral nerve repair[J]. Arch Otolaryngol Head Neck Surg, 1998,124:1081-1086.
    [13] Zhao X, Jain S, Benjamin Larman H, et al. Directed cell migration via chemoattractants released from degradable microspheres[J]. Biomaterials. 2005,26(24):5048-5063.
    [14] Jilek S, Walter E, Merkle HP, et al. Modulation of allergic responses in mice byusing biodegradable poly(lactide-co-glycolide) microspheres[J]. J Allergy Clin Immunol. 2004;114(4):943-950.
    [15] Yoon SJ, Kim SH, Ha HJ,et al. Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles[J]. Tissue Eng Part A. 2008;14(4):539-547.
    [16] Khor E ,Lim L Y. Implantable applications of chitin and hitosan[J].Biomaterials, 2003,24(13):2339-2349.
    [17] Shieh SJ,Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building[J].Surgery.2005,137(1):1-7.
    [18] Smith RA, Orr DJ.The survival of adult mouse sensory neurons in vitro is enhanced by natural and synthetic substrata particularly fibronectin[J].J Neurosci Res.1987,17(3):265-270.
    [19] Chen YS, Hsieh CL,Tsai CC,et al. Peripheral nerveregeneration using silicone rubber chambers filled with collagen,laminin and fibronectin[J].Biomaterials. 2000,21(15):1541-1547.
    [20] Whitworth IH,Brown RA,Dore CJ,et al. Nerve growth factor enhances nerve regeneration through fibronectin grafts[J].J Hand Surg[Br].1996,21(4):514-522.
    [21] Silva GA., Czeisler C, Niece KL, et al. Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers[J]. Science, 2004,303 (5662): 1352-1355
    [22] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues[J]. Science, 1997, 276(5309):71-74.
    [23] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
    [24] Mimura T, Dezawa M, Kanno H, et al. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats[J]. J Neurosurg, 2004, 101(5): 806-812.
    [25] Cazill is M, LeLièvre V, Gressens P, et al. Neural differentiation of murine embryonic stem cells ES[J]. Med Sci (Paris), 2005, 21(5): 484-490.
    [26] Nicoluzzi JE, Barbu V, Baudrimont M, et al. Viability and differentiation of human hepatocytes immunoprotected by macroencapsulation and transplanted in rats[J]. Gastroenterol Clin Biol, 2000, 24(3): 342-334.
    [1] Trumble TE, Shon FG.. The physiology of nerve transplantation[J]. Hand Clin,2000,16: 105–122.
    [2] Chew SY, Wen Y, Dzenis Y, et al. The role of electrospinning in the emerging field of nanomedicine[J]. Curr Pharm Des, 2006,12 : 4751–4770.
    [3] Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies[J].Tissue Eng,2006,16: 435–447.
    [4] Teo WE, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix[J]. Biotechno J, 2006,1: 918–929.
    [5] Barnes CP, Sell S A, Boland ED,et al. Nanofiber technology:designing the next generation of tissue engineering scaffolds[J]. Adv Drug Deliv Rev, 2007, 59: 1413–1433.
    [6] Liang D, Hsiao B S, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications[J]. Adv Drug Deliv Rev,2007,59:1392–1412.
    [7] Gunatillake PA, Adhikari, R. Biodegradable synthetic polymers for tissue engineering[J]. Eur Cells Mater,2003,5:1–16.
    [8] Sangsanoh P, Waleetorncheepsawat S, Suwantong O,et al. In vitro bio- compatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds[J]. Biomacromolecules, 2007,8:1587–1594.
    [9] Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery[J].Adv Drug Deliv,Rev, 2007,59:325–338.
    [10] Wang W, Itoh S, Matsuda A, Ichinose S, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration[J].J Biomed Mater Res, 2008,84A:557–566.
    [11] Wang W, Itoh S, Matsuda A, Aizawa T, et al. Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence[J]. J Biomed Mater Res, 2008,85A: 919–928.
    [12] Ahmed I, Liu HY, Mamiya PC,et al. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro[J].J Biomed Mater Res, 2006,76A: 851–860.
    [13] Meiners S, Mohammed SA,Nur-E-Kamal, et al. Identification of a neurite outgrowth-promoting motif within the alternatively spliced region of human tenascin-C[J]. J Neurosci,2001 ,21:7215–7225.
    [14] Li WS, Guo Y, Wang H, et al. Electrospun nanofibers immobilized with collagen for neural stem cells culture[J]. J Mater Sci-Mater M, 2008,19:847–854.
    [15] Patel S, Kurpinski K., Quigley R,et al. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance[J]. Nano Lett, 2007,7:2122–2128.
    [16] Prabhakaran MP, Venugopal JR, Chyan TT, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering[J]. Tissue Eng. Part A., 2008,14:1787–1797.
    [17] Van Wachem PB, Beugeling,T, Feijen J,et al. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities[J]. Biomaterials, 1985,6:403–408.
    [18] Schnell E, Klinkhammer K, Balzer S,et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε- caprolactone and a collagen/poly-ε-caprolactone blend[J]. Biomaterials, 2007,28:3012–3025.
    [19] Corey JM, Lin DY, Mycek KB, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth[J]. J Biomed. Mater Res,Part A.,2007,83A:636–645.
    [20] Chow WN, Simpson DG, Bigbee JW, et al. Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries[J]. Neuron Glia Biol, 2007,3:119–126.
    [21] Jones LL, Oudega M, Bunge MB, et al. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury[J]. J Physiol,(Lond) , 2001,533:83–89.
    [22] Chew SY, Mi R, Hoke A,et al. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation[J]. Biomaterials, 2008,29: 653–661.
    [23] Gage FH. Mammalian neural stem cells[J]. Science 2000,287:1433–1438.
    [24] Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering[J]. Biomaterials,2005,26:2603–2610.
    [25] Xie JW, Willerth SM, Li XR, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages[J]. Biomaterials, 2009, 30:354–362.
    [26] Markus A, Patel TD, Snider WD, et al. Neurotrophic factors and axonal growth[J]. Curr Opin Neurobiol. 2002,12:523–531.
    [27] Boyd J, Gordon T. Neurotrophic factors and their receptors in axonalregeneration and functional recovery after peripheral nerve injury[J]. Mol Neurobiol, 2003,27:277–323.
    [28] Cao XD, Shoichet MS. Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders[J].Biomaterials, 1999,20: 329–339.
    [29] Wang YC, Wu YT, Huang HY, et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury[J]. Biomaterials, 2008,29:4546–4553.
    [30] Fine EG, Decosterd I, Papalo?zos M, et al. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap[J]. Eur. J NeuroSci, 2002,15: 589–601.
    [31] Bloch J, Fine EG, Bouche N, et al. Nerve growth factor- and neurotrophin-3- releasing guidance channels promote regeneration of the transected rat dorsal root[J]. Exp Neurol, 2001,172: 425–432.
    [32] Chew SY, Wen J, Yim EK, et al. Sustained release of proteins from electrospun biodegradable fibers[J]. Biomacromolecules, 2005,6: 2017–2024.
    [33] Chew SY, Mi R, Hoke A, et al. Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform[J]. Adv Funct Mater, 2007,17: 1288–1296.
    [34] Meiners S, Ahmed I, Ponery AS, et al. Engineering electrospun nanofibrillar surfaces for spinal cord repair: a discussion[J]. Polym Int, 2007,56:1340–1348.
    [35] Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques[J]. Biomaterials, 2005,26: 37–46.
    [36] Panseri S, Cunha C, Lowery J, et al. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transactions[J]. BMC Biotech, 2008,8: 39.
    [37] Kim YT, Haftel VK, Kumar S, et al. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps[J]. Biomaterials, 2008,29: 3117–3127.
    [1] Fawcett JW, Asher RA.The glial scar and central nervous system repair[J]. Brain Res Bull, 1999, 49(6): 377–391.
    [2] Liang DH, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications [J]. Adv Drug Deliv Rev, 2007,59(14):1392–1412.
    [3] Zhang SG. Fabrication of novel biomaterials through molecular self-assembly [J]. Nat Biotechol, 2003,21: 1171–1178.
    [4] Fandrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin [J]. Nature, 2001, 410:165–166.
    [5] Lynn DG, Meredith SC. Review: model peptides and the physicochemical approach toβ-amyloids [J].J Struct Biol, 2000,130 (2-3):153–173.
    [6] Shtilerman MD, Ding TT, Lansbury PT. Molecular crowding accelerates fibrillization ofα-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease[J].Biochemistry, 2002,41(12)3855–3860.
    [7] Reches M, Porat Y, Gazit E.Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin [J]. J Biol Chem, 2002,277 35475–35480.
    [8] Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers [J]. Science, 2004, 303(5662): 1352-1355.
    [9] Gelain F, Bottai D, Vescovi A, et al. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures[J]. PLoSONE, 2006,1(1):e119.
    [10] Holmes TC, Lacelle SD, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds [J]. Proc Natl Acad Sci U S A, 2009, 97(12): 6728-6733.
    [11] Ye Z, Zhang H, Luo H, et al. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I [J]. J Pept Sci, 2008, 14(2): 152-162.
    [12]肖峰,吴永超,郑启新,等.含IKVAV肽自组装成凝胶的实验[J].中国组织工程研究与临床康复, 2007, 11(22): 4352-4354.
    [13] Jackson AR, Yuan TY, Huang CY, et al. Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus [J]. Spine, 2008,33 (1): 1-7.
    [14] Rosenblat G, Perelman N, Katzir E, et al. Acylated ascorbate stimulates collagen synthesis in cultured human foreskin fibroblasts at lower doses than does ascorbic acid[J].Connect Tissue Res, 1998,37(3-4):303–311.
    [15] Firth A, Aggeli A, Burke JL, et al. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering[J].Nanomedicine (London, England) ,2006,1(2):189–199.
    [16] Kokkoli E, Mardilovich A, Wedekind A, et al. Selfassembly and applications of biomimetic and bioactive peptide-amphiphiles[J]. Soft Matter, 2006,2:1015–1024.
    [17] Madurantakam PA, Cost CP, Simpson DG, et al. Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds [J]. Nanomedicine, 2009,4(2):193–206.
    [18] Holmes TC, Lacalle SD, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds [J]. Proc Nat Acad SciU.S.A. 2000,97(12):6728–6733.
    [19] Semino CE, Kasahara J, Hayashi Y, et al. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold[J]. Tissue Eng, 2004,10(3-4):643–655.
    [20] Hosseinkhani H, Hosseinkhani M, Kobayashi H. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers[J]. Biomed Mater, 2006,1 (1):8–15.
    [21] Kam L, Shain W, Turner JN, et al. Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin[J]. Biomaterials, 2001,22(10):1049–1054
    [22] Powell SK, Rao J, Roque E, et al. Neural cell response to multiple novel sites on laminin-1[J]. J Neurosci Res, 2000,61(3):302–312.
    [23]邹枕玮,吴永超,郑启新,等.自组装IKVAV多肽纳米支架及其对背根神经节神经元细胞的作用[J].中国脊柱脊髓杂志, 2007, 17( 6) : 450- 453.
    [24] Kibbey MC, Jucker M,Weeks BS, et al.β- Amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin [J].Proc Natl Acad Sci, 1993, 90( 21): 10150- 10153.
    [25] Chalazonitis A, Tennyson VM, Kibbey MC, et al. The alpha 1 subunit of laminin- 1 promotes the development of neurons by interacting with LBP110 expressed by neural crest– derived cells immunoselected from the fetal mouse gut [J].J Neurobiol, 1997, 33( 2):118- 138.
    [26] Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold[J].Nanomedicine,2007,3(4):311–321.
    [27] Shearer M, Fawcett J. The astrocyte/meningeal cell interface-a barrier to successful nerve regeneration? [J].Cell Tissue Res, 2001,305 (2):267–273.
    [28] Bradbury EJ, Moon LDF, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury[J].Nature, 2002,416:636–640.
    [29] Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury [J]. J Neurosci, 2008, 28(14): 3814-3823.
    [30] Basso DM, Beattie MS, Bresnahan JC, et al. MASCIS evaluation of open field locomoter scores: effects of experience and teamwork on reliability [J].J Neurotraum, 1996,13(7): 343–359.
    [31] Ellis-Behnke RG, Liang YX, You SW, ET AL. Nano neuro knitting: peptidenanofiber scaffold for brain repair and axon regeneration with functional return of vision[J].Proc Nat Acad Sci U.S.A. 2006,103(13):5054–5059.
    [32] Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering [J]. Biomaterials, 2003,24(24): 4353–4364.
    [33] Ma ZW, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue engineering Scaffolds [J]. Tissue Eng, 2005, 11(1-2):101–109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700