神经生长因子调控慢性阻塞性肺疾病气道神经源性炎症研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸烟是人类慢性阻塞性肺疾病(COPD)的主要致病因素,香烟中有害成份首先攻击气道上皮,气道上皮的损伤及炎症是COPD的重要病理特征,气道上皮的功能缺陷与气道疾病的发生发展有密切关系,目前研究证实COPD等气流受限性疾病发病过程中,气道上皮损伤时,炎性细胞活化并浸润于气道,使气道壁感觉神经末梢暴露、气道神经及神经肽的表型和含量均发生变化,众多神经肽如P物质(SP)、降钙素基因相关肽(CGRP)等大量释放,它们通过多种形式影响气道组织并可诱发神经源性炎症,表现为气道腺体分泌增加、血管扩张和血管通透性增加、气道平滑肌收缩、气道炎症细胞活化等。采用单一介质拮抗剂所起治疗作用往往有限,因此研究调节神经肽释放的化学物质可能是阻断慢性炎症发生、发展的重要途径。近年来,神经生长因子(NGF)由于具有高效的调控神经肽作用而受到国内外学者的关注。在多种炎症性疾病中NGF表达增加,NGF由外周靶细胞(包括免疫炎症细胞和组织结构细胞如气道上皮细胞、血管平滑肌细胞、气道平滑肌细胞、成纤维细胞等)合成并释放,并可被神经轴突末梢摄取,逆行运输至背根节,使背根节感觉神经元的敏感性增高,使合成并释放SP、CGRP等增加。我们的前期研究结果显示大鼠腹腔注射NGF后,肺组织中SP的受体即神经激肽受体1(NK-1R)表达上调,提示NGF可调节神经肽释放,应用抗NGF抗体可减轻RSV感染引起的肺组织神经源性炎症,并使肺组织NK-1R表达下调。
     综上所述,我们提出假说:COPD存在NGF表达增高;NGF通过上调SP等神经肽调控COPD气道神经源性炎症。由此,本实验测定COPD患者NGF水平,并在已建立的COPD模型中检测NGF及SP的变化,进一步用抗NGF干预以观测COPD大鼠下呼吸道及背根节SP水平的改变,旨在探讨NGF在实验性COPD大鼠中作用及初步机制,以寻求人类COPD治疗的新靶点。为证明上述假设我们完成了以下研究内容。
     第一部分:COPD患者血清NGF变化及与肺功能关系研究
     本部分对COPD患者体内NGF的变化进行了初步研究,以期进一步探讨和揭示人类COPD发病机制。我们以ELISA法测定COPD急性加重期患者(31例)、稳定期患者(30例)及正常对照组24例血清NGF水平,并检测同期FEV_1/FVC、FEV_1%pre等肺功能指标。
     结果发现:COPD急性加重期、稳定期患者,正常对照者血清NGF蛋白水平分别为30.3±11.7ng/L,17.2±8.5ng/L,7.29±3.4ng/L。与正常对照者相比,COPD急性加重期、稳定期患者NGF蛋白水平显著升高(均为P<0.05),且COPD急性加重期患者明显高于稳定期患者(P<0.05)。无论是COPD急性加重期还是稳定期患者血清NGF蛋白水平与FEV_1%pre、FEV_1/FVC%均呈负相关,在急性加重期分别为rs=-0.73,rs=-0.72(均P<0.01),在稳定期分别为rs=-0.65,rs=-0.68(均P<0.05)。
     研究结果提示NGF可能直接参与或调控COPD炎症,在患者急性加重期与稳定期的整个病程中发挥作用。
     第二部分:COPD模型的建立
     首先采用烟熏加气管内注入猪胰弹性蛋白酶的方法建立大鼠慢性阻塞性肺疾病的动物模型。并将Wistar大鼠随机分为模型组、正常对照组,每组15只。并从肺功能测定、HE染色观察肺组织病理变化及BALF炎症细胞计数等多方面来证实模型的成功性。
     结果发现:与正常对照组比较:(1)肺功能:COPD模型组大鼠PEF(23.61±2.67 ml/s vs 30.96±2.88 ml/s)、FEV_(0.3)(3.49±0.42ml vs 4.86±0.36 ml)和FEV_(0.3)/FVC((62.25±4.84)%vs (86.68±6.12)%]显著下降(均P<0.01);(2)病理改变:平均内衬间隔(136.92±16.71μm vs 36.70±4.48μm)明显增高,平均肺泡数(11.07±0.26个/μm~2 vs 24.40±2.83个/μm~2)明显降低(均P<0.01);(3)BALF炎症细胞:细胞总数(10~4/ml)(23.93±3.52 VS 15.27±2.40)、中性粒细胞计数(%)均明显增高(7.56±1.47 VS 1.80±0.68)(均P<0.01)。
     研究证实烟熏加气管内滴入猪胰弹性蛋白酶的方法可建立稳定的大鼠慢性阻塞性肺疾病的动物模型,模型组大鼠有气道炎症和肺气肿改变,小气道阻力增加,有阻塞性通气功能障碍。
     第三部分:NGF在COPD大鼠中的作用及其机制初探。
     为探讨NGF在COPD大鼠中的作用及机制,同上方法建立COPD模型和分组:正常对照组、COPD组及抗NGF抗体干预组,每组15只。模型建立后测定肺功能、BALF炎症细胞计数并取肺组织采用HE染色观察肺组织病理变化,同时采用ELISA法测定COPD大鼠BALF中NGF水平,免疫组化法观测三组肺组织、背根神经节NGF、SP及肺组织NK-1R变化,原位杂交比较三组背根神经节SP水平,RT-PCR半定量法测定COPD组及正常对照组肺组织、背根神经节NGFmRNA表达,Western-blot法检测三组NGF蛋白水平变化。
     结果发现:(1)COPD模型组与正常对照组比较:;BALF中NGF蛋白水平(ng/L)显著升高(187.18±64.76 vs 75.13±20.44,P<0.001);肺组织及背根神经节NGF蛋白表达无论是免疫组化(平均灰度值104.23±7.74 vs 153.50±8.02,108.95±7.02 vs 171.03±8.14,灰度值越高表明其在细胞中表达的量越低),还是Western blot(400.4±51.6ng/L vs 198.5±46.2ng/L,318.8±52.6ng/L vs144.2±32.7ng/L)表达均明显增高(均P<0.01);NGF mRNA在肺组织显著增高(82.07±7.89 vs 51.80±8.34)(P<0.01),在背根节无显著升高(56.67±6.28 vs 51.87±7.01)(P>0.05);NK-1R在肺组织表达显著升高(平均灰度值101.33±6.31 vs 157.67±8.15)(P<0.01);SP在背根节表达显著增高(平均灰度值103.40±7.08 vs167.06±7.83)(P<0.05);SPmRNA在肺组织无显著升高(平均灰度值165.53±7.30 vs 168.07±7.05)(P>0.05),在背根节表达显著增高(平均灰度值103.58±9.63 vs 173.37±12.83)(P<0.01)。(2)抗NGF组与COPD组相比较:肺组织及背根神经节NGF蛋白表达无论是免疫组化(平均灰度值130.78±6.35 vs 104.23±7.74,135.68±7.13 vs108.95±7.02),还是Western blot(297.9±43.3ng/L vs 400.4±51.6ng/L,222.3±46.6ng/L vs 318.8±52.6ng/L)表达均明显降低(均P<0.01);NK-1R在肺组织显著降低(平均灰度值138.20±7.99vs 101.33±6.31)(P<0.01);SP在背根节表达显著降低(平均灰度值138.00±9.32 vs 103.40±7.08)(P<0.01);SPmRNA在背根节显著降低(平均灰度值143.21±11.30 vs 103.58±9.63)(P<0.01);(3)COPD组大鼠肺组织N6FmRNA与背根节SPmRNA灰度值表达呈负相关(rs=-0.81,P<0.001)。(4)抗NGF组与COPD组比较,BALF细胞总数(17.13±3.94 vs 23.93±3.52)、中性粒细胞计数明显下降(4.65±0.80 vs 7.56±1.47)(P<0.01);肺功能PEF(27.88±2.98 vs 23.61±2.67)FEV_(0.3)(3.93±0.25 vs 3.49±0.42)与FEV_(0.3)/FVC(71.48±5.38 vs 62.25±4.84)显著增高(均P<0.05);形态学上,平均内衬间隔明显下降(101.88±19.67 vs 136.92±16.71,P<0.01)。
     研究结果;发现NGF参与大鼠COPD形成,首次证实NGF干预能有效抑制COPD大鼠气道神经源性炎症,改善COPD病理变化及气流阻塞,其机制可能与下调气道感觉神经元合成和分泌SP表达有关。
     上述三个部分研究提示NGF通过调节气道感觉神经元合成和分泌SP表达参与COPD神经源性炎症,在COPD气流阻塞中发挥作用;同时抗NGF干预可下调SPmRNA表达和蛋白分泌水平,减轻COPD气道炎症。因此我们可以这样认为:NGF作为气道神经肽SP的上游调节因子在COPD气道神经源性炎症中具有重要调控作用。
Tobacco smoking is the main risk factor for COPD (chronicobstructive pulmonary disease),smoke directly attack and damage theairway epithelium firstly, the damaged epithelium lesion lead to theexpose of the sensory nerve ending, the release of neuropeptides fromairway nerves leading to inflammatory effects. the abnomalinflammation include neurogenic inflammation developed then. Themolecular mechanisms underlying neurogenic inflammation areorchestrated by a large number of neuropeptides including tachykininssuch as substance P(SP) and neurokinin A, or calcitonin gene-relatedpeptide and endothelin-1,resulting in imflammation reaction, such asmucus excretion, hyperemia,increase in vasopermeability, edema,contraction of airway smooth muscle and immunocyte activation.furthermore, only a limited therapeutical effect be achieved by singleneuropeptide antagon.It is urgent and important to study the upstreamregulating factor to block up the release of the neuropeptide and theoccurrence and exacerbation of the inflammatory state.
     Recently,NGF(nerve growth factor NGF),a upstream cytokinepossessing high potency for regulating neuropeptide,is a study focus formany domestic and overseas scholar.many inflammatory diseases presenthigh levels of NGF.after NGF is synthetized and released by target cellshch as inflammatory cell and structure cell(including airway epithelim,vascular smooth muscle cell, airway smooth muscle cell, fibroblastetc.),NGF can be uptaked by nerve axon periphery and delivered toposterior root ganglion.then the sensitiveness of the sensory neuron inposterior root ganglion enhance,neuropetides such as SP and CGRP (calcitonin gene-related peptide) are synthetized and released withgreat quantity.we find Exogenous NGF upregulated NK-1R(neurokinin-1receptor) expression in the rat lungs,anti-NGF antibody inhibited NK-1Rupregul- ation and neurogenic inflammation in RSV-infected rat lungs inprophase study, indicating that NGF mediates the releases of neuropeptdeand is responsible for the exaggerated neurogenic inflammation in airway.Hence, our objective was to study the interaction between NGF andneuropeptide in COPD. we can hypothesize that nerve growth factor iselevated in COPD,NGF can regulate the neurogenic inflammation in theCOPD through neuropeptides up-regulation. To determine the thought,we checked the quantity of NGF in the serum in COPD patients firstly,then a COPD model and anti-NGF antibody were utilized to research itsmechanism, we completed the studies as follow.
     Study contents
     1. NGF changes and the correlation with lung function inCOPD patients
     three groups, including 31 cases in acute exacerbation stage,30 casesin stable stage and normal control group were checked by lung functionand the quantity of NGF in the serum were detected by enzyme-linkedimmunosorbent assay(ELISA).
     Results showed: As compared with the control group,the serumlevel of NGF in COPD patients in acute exacerbation stage and stablestage were increased (30.3±11.7ng/L vs 7.29±3.4ng/L,17.2±8.5ng/L vs7.29±3.4ng/L,P<0.01), furthermore, the serum level of NGF in COPDpatients in acute exacerbation stage were elevated compared with instable stage(30.3±11.7ng/L vs 17.2±8.5ng/L,P<0.05). the significantnegative correlation was found between the NGF and the FEV_1%pre、FEV_1/FVC%, in acute exacerbation stage, rs=-0.73, rs=-0.72(P<0.01), while in stable stage, (rs=-0.65, rs=-0.68, P<0.05)。
     As a result, we can suggest that NGF play a critical role in theairflow limitation in COPD through the whole course of disease.
     2. COPD Model establishment.
     (1) 30 Wistar rats were divided into control and COPD grouprandomly, The COPD model was established by expose the rat to thecigarette and PPE intratracheal injection, lung function tests wasperformed by lung function instrument. (2) the lung tissues pathologicchanges were detected by HE staining. (3)The total cell count anddifferential cell count in the bronchoalveolar lavage fluid (BALF) wereoperated.
     Results showed: (1) in comparsion with the normal group, PEF(23.61±2.67 ml/s vs 30.96±2.88 ml/s)、FEV_(0.3) (3.49±0.42 ml vs4.86±0.36 ml) and FEV_(0.3)/FVC [(62.25±4.84)% vs (86.68±6.12)%]decreased significantly (P<0.01); MLI (136.92±16.71μm vs 36.70±4.48μm) increased significantly, MAN (11.07±0.26/μm~2 vs 24.40±2.83/μm~2) decreased significantly (P<0.01); The BALF total cell count(10~4/ml) (23.93±3.52 VS 15.27±2.40) and the BALF neutrophilsincreased significantly (%) (7.56±1.47 VS 1.80±0.68)(P<0.01).
     In study content 2, presenting with airway inflammation andemphysema, obstructive ventilation functional impairment,we createdCOPD model successfully.
     3. nerver growth factor roles and its mechanism of regulatingairway neurogenic inflammation in COPD.
     To explore the roles and mechanisms of NGF in COPD and confirmour hypothesis,an anti-NGF group besides the COPD group and thenormal control group was established meanwhile. Lung function、HEstaining and the total cell count and differential cell count in the BALFwere also performed. NGF Quantitative analysis in the BALF weredetermined by ELISA.furthermore,a series of experimental methods were adopted.the localization and half quantitative analysis of NGF in thelungs and dorsal root ganglion(DRG) in the three groups were detectedrespectively by immunohistochemistry assay and Western-blot.NGFmRNA expression in lungs and DRG in the COPD and the control groupwere determined by reverse transcription-polymerase chain reaction(RT-PCR),the changes of SP or NK-1R were investigated byimmunohistochemistry assay or in situ hybridization in the DRG or lungsin the three groups.
     Results showed: (1) compared COPD group with the normal group,the levels of NGF in the BALF were significantly enhanced (ng/L)(187.18±64.76 vs 75.13±20.44, P<0.001); the expression of NGF in thelungs and DRG increased significantly in the lungs and DRG inimmunohistochemistry average gray scale (104.23±7.74 vs153.50±8.02, 108.95±7.02 vs 171.03±8.14) (P<0.01); NGF increasedin Western blot assay(400.4±51.6ng/L vs 198.5±46.2ng/L,318.8±52.6ng/L vs 144.2±32.7ng/L)(P<0.01); NGF mRNA are enhancedin the lungs (82.07±7.89 vs 51.80±8.34) (P<0.01), on the contrary, nodifference were found in the DRG (56.67±6.28 vs 51.87±7.01) (P>0.05);NK-1R increased in the lungs in immunohistochemistry (average grayscale 101.33±6.31 vs 157.67±8.15) (P<0.01), while SP increased in theDRG in immunohistochemistry (average gray scale 103.40±7.08 vs167.06±7.83) (P<0.01), no SPmRNA change found in the lungs inimmunohistochemistry (165.53±7.30 vs 168.07±7.05) (P>0.05),whereas increased in the DRG (103.58±9.63 vs 173.37±12.83)(P<0.01). (2) compared the anti-NGF group with the COPD group:NGF wre decreased in the lungs and DRG both in immunohistochemistry(average gray scale 130.78±6.35 vs 104.23±7.74, 135.68±7.13 vs108.95±7.02) and Western blot (297.9±43.3ng/L vs 400.4±51.6ng/L,222.3±46.6ng/L vs 318.8±52.6ng/L) (P<0.01); meanwhile NK-1R decreased significantly in the lungs in immunohistochemistry (averagegray scale 138.20±7.99 vs 101.33±6.31) (P<0.01); also SP decreased inthe DRG in immunohistochemistry (average gray scale 138.00±9.32 vs103.40±7.08) (P<0.01); correspondingly SPmRNA decreased in theDRG in immunohistochemistry (average gray scale 143.21±11.30 vs103.58±9.63) (P<0.01); in BALF, the total cell count and the neutrophilratio decreased (17.13±3.94 vs 23.93±3.52,4.65±0.80 vs7.56±1.47)(P<0.01); in lung function,PEF, FEV0.3 and FEV0.3/FVC(27.88±2.98 vs 23.61±2.67, 3.93±0.25 vs 3.49±0.42,71.48±5.38 vs62.25±4.84)were elevated significantly (P<0.05), morphologically, MLIdecreased significantly (101.88±19.67 vs 136.92±16.71,P<0.01). (3)the significant correlation was found between the NGFmRNA in thelungs and the SPmRNA in the DRG inthe COPD group (rs=-0.81,P<0.001).
     we can conclude that NGF contribute to COPD developing.We canalso conclude that NGF may modulate the neurogenic inflammation inCOPD through down regulation the synthesis and secretion ofSP, anti-NGF can amend the pathological change and relieve the airflowlimitation.
     In conclusion, our current studies showed: NGF can regulateneurogenic inflammation through adjust the SP synthesis and release ofsensory neuron;NGF contribute to the airflow limitation in COPD;dealing with anti-NGF can bring SPmRNA and SP protein downregulation,palliate the airway inflammation in COPD. After the studycontents, we can clarify our hypothesis that NGF serving as an importantregulator in neurogenic inflammation in COPD.
引文
[1] Lewin G R, Barde Y A. Physiology of neurotrophins. Annu Rev Neurosci, 1996, 19:289-317.
    [2] Donnerer J, Schuligoi R, Stein C. Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience, 1992,49:693-698.
    [3] Woolf CJ, Safieh-Garabedian B, Ma QP, et al. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience, 1994, 62:327-331.
    [4] Woolf CJ, Allchorne A, Safieh-Garabedian B, et al. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumor nercrosis factor-α. Br J Pharmacol, 1997,121:417-424.
    [5] Santambrogio L, Benedetti M, Chao MV, et al. Nerve growth factor production by lymphocytes. J Immunol, 1994, 153:4488-4495.
    [6] Lambiase A, Bracci-Laudiero L, Bonini S, et al. Human CD4+ T cell clones produce and release nerve growth factor and express high affinity nerve growth factor receptors. J Allergy Clin Immunol, 1997, 100: 408-414.
    [7] Mallat M, Houlgatte R, Brachet P, et al. Lipopolysaccharide -stimulated rat brain macrophages release NGF in vitro. Dev Biol, 1989, 133:309-311.
    [8] Torcia M, Bracci-Laudiero L, Lucibello M, et al. Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell, 1996, 85: 345-356.
    [9] Otten U, Westkamp G, Hardung M, et al. Synthesis and release of nerve growth factor by rat macrophages. Soc Neurosci Abstr, 1987, 13:184.
    [10] Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA, 1994, 91: 3739-3743.
    [11] Nilsson G, Forsberg-Nilsson K, Xiang Z, et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol, 1997, 27: 2295-2301.
    [12] Levi-Montalcini R, Skaper SD, Dal Toso R, et al. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci, 1996, 19: 514-520.
    [13] Frossard N, Naline E, Olgart Hoglund C, et al. Nerve growth factor is released by IL-1β and induces hyperresponsiveness of the human isolated bronchus. Eur Respir J 2005; 26:15-20.
    [14] Fox AJ, Patel HJ, Barnes PJ, et al. Release of nerve growth factor by human pulmonary epithelial cells: role in airway inflammatory diseases. Eur J Pharmacol, 2001, 424: 159-162.
    [15] Olgart C, Frossard N. Human lung fibroblasts secrete nerve growth factor: Effect of inflammatory cytokines and glucocorticoids. Eur Respir J, 2001, 18: 115-121.
    [16] Freund V, Pons F, Joly V, et al. Upregulation of nerve growth factor expression by human airway smooth muscle cells in inflammatory conditions. Eur Respir J, 2002, 20(2):458-63.
    [17] 翁心植,慢性阻塞性肺疾病[M],北京:北京出版社,1999,23-24.
    [18] Bull HA, Leslie TA, Chopra S, et al. Expression of nerve growth factor receptors in cutaneous inflammation. Br J Dermatol, 1998, 139 (5):776.
    [19] Finkelstein R, Fraser RS, Ghezzo H, et al. Alveolar inflammation and its relation to emphysema in smokers. Am. J. Respir. Crit. Care Med. 1995, 152(5):1666-1672.
    [20] Lappalainen U, Whitsett JA, Wert SE, et al. Interleukin-1β Causes Pulmonary Inflammation, Emphysema, and Airway Remodeling in the Adult Murine Lung. American Journal of Respiratory Cell and Molecular Biology. 2005, 32:311-318.
    [21] Cazzola, Marioa, Polosa, et al. Anti-TNF-[alpha] and Th1 cytokine-directed therapies for the treatment of asthma. Current Opinion in Allergy & Clinical Immunology, 2006,6(1):43-50.
    [22] Freund V, Frossard N. Expression of nerve growth factor in the airways and its possible role in asthma. Prog Brain Res. 2004,146:335-346.
    [23] 朱元珏,陈文斌。呼吸病学,人民卫生出版社,2003,1565—1576.
    [24] 翁心植, 慢性阻塞性肺疾病. 北京: 北京出版社, 1999,23-24.
    [25] Lommatzsch M, Braun A, Renz H. Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us. Ann N Y Acad Sci, 2003, 992:241-9.
    [26] Braun A , Appel E , Baruch R , et al. Role of nerve growth factor ina mouse model allergic airway inflammation and asthma. Eur J Immunol , 1998 , 28 (10) :32-40.
    [27] Ehrhard PB, Ganter U , Stalder A , et al. Expression of functional trk protooncogene in human monocytes. Proc Natl Acad Sci USA, 1993,90:5423-5427.
    [28] Murase K, Murakami Y, Takayanagi K, et al. Human fibroblast cells synthezise and secrete nerve growth factor in culture. Biochem Biophys Res Commun, 1992, 184: 373-379.
    [29] Hattori A, Iwasaki S, Murase K, et al. Tumor necrosis factor is markedly synergistic with interleukin-1 and interferon-gamma in stimulating the production of nerve growth factor in fibroblasts. FEBS Lett, 1994, 340: 177-180.
    [30] Ueyama T, Hamada M, Hano T, et al. Production of nerve growth factor by cultured vascular smooth muscle cells from spontanously hypertensive and Wistar-Kyoto rats. J Hypertens, 1993, 11: 1061-1065.
    [31] Olgart C , Kassel O , Behra M , et al. Secretion of nerve growth factor (NGF) from human lung fibroblasts in culture : effect of inflammatory cytokines. Am J Respir Crit Care Med , 1997 , 159 :A336
    [32] Fox AJ , Barnes PJ , Belvisi MG. Release of nerve growth factor from human airway epothelial cells. Am J Respir Crit Care Med , 1997 , 155 : A157.
    [33] Kannan Y, Matsuda H, Ushio H, Murine granulocyte-macrophage and mast cell colony formation promoted by nerve growth factor. Int Arch Allergy Immunol, 1993, 102(4):362-7.
    [34] Smeyne RI, Klein R, Schnapp A, et al. Severe sensory and sympathetic neuropathies in mice carrying a disruped Trk/ NGF recepror gene. Nature , 1994 , 368 : 246.
    [35] Spina D, Shah S, Harrison S. Modilation of sensory nerve function on the airways. Trends Pharmacol Sci, 1998, 19: 460.
    [36] Barnes PJ. Neuroeffector mechanisms:the interface between inflammation and neuronal responses. J Allergy Clin Immunol, 1996, 98:73-81.
    [37] 邓星奇,施劲东,徐火根等.慢性阻塞性肺疾病缓解期患者血浆P物质和血管活性肠肽水平与吸烟指数的相关分析,Chinese Journal of Clinical Rehabilitation,2005,9(23):96-97.
    [38] 蒋毋右,俞峰,刘德宗等.慢性阻塞性肺疾病患者血管活性肽、降钙素基因相关肽、P物质的研究,Central China Medic Jouna.2002,26(1):52—53.
    [39] 姜明,李玉.慢性阻塞性肺疾病患者中央气道P物质、血管活性肠肽的分布及其意义.山东医药,2001,41(20):1-3.
    [40] 方秀斌,刘晓湘,张鸿.实验性哮喘时神经生长因子对神经激肽A的上调作用.中国病理生理杂志,2004,20(1):80-82.
    [41] Bischoff SC, Dahinden CA. c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J Exp Med, 1992,175: 237.
    [42] Martin D, Merkel E, Tucker KK. Cachectic effect of ciliary neurotrophic factor on in nervated skeletal muscle. Am J Physiol,1996,271:R1422-1428.
    [43] Wang MC, Forsberg NE. Effects of ciliary neurotrophic factor (CNTF) on protein turnover in cultured muscle cells. Cytokine,2000, 12:41-48.
    [44] Kwon YW, Gurney ME. Systemic injections of ciliary neurotrophic factor induce sprouting by adult mator neurons. Neuroreport, 1994, 5:789-792.
    [45] 蔡柏蔷.不断深化对慢性阻塞性肺疾病的认识.新医学,2005,36(7):376-378.
    [46] Calverley P, Bellamy D. The challenge of providing better care for patients with chronic obstructive pulmonary disease: the poor relation of airways obstruction? Thorax, 2000,55:78-82.
    [47] Shapiro SD. End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on. Am J Respir Crit Care Med. 2001, 164:339-340.
    [48] 丁东杰,朱元珏,赵鸣武.制定《慢性阻塞性肺疾病诊治规范》的重要性.中华结核和呼吸杂志,1997,20(4):197-198.
    [49] 何权瀛.我国25年来慢性阻塞性肺病研究工作的回顾性分析.中华结核和呼吸杂志,1999,22(2):85-87.
    [50] 龚太乾,蒋耀光,王如文等.烟熏加气管内滴入PPE诱发大鼠肺气肿模型.重庆医学,2005,34,(5):725-726.
    [51] Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nature Med 1997; 3: 675-677.
    [52] 宋一平,崔德健,茅培英等.生长因子在慢性阻塞性肺疾病大鼠模型气道重塑中的作用.中华内科杂志,2000,39(11):751-754.
    [53] 申严,戴爱国.丝裂原活化蛋白激酶、蛋白激酶B和γ谷氨酰半胱氨酸合成酶在慢性阻塞性肺疾病患者肺组织中的表达.中华结核和呼吸杂志,2005,28(10):725-726.
    [54] 徐凌,蔡柏蔷,朱元珏等。吸入糖皮质激素对慢性阻塞性肺疾病大鼠模型白细胞介素-4/干扰素γ和基质金属蛋白酶的影响。中国呼吸与危重监护杂志,2004,3(2):86-90.
    [55] Tokuoka S, Takahashi Y, Masuda T, et al. Disruption of antigen-induced airway inflammation and airway hyper-responsiveness in low affinity neurotrophin receptor p75 gene deficient mice. British Journal of Pharmacology.2001, 134, 1580-1586.
    [56] Albrecht C, Knaapen AM, Becker A, et al. The crucial role of particle surface reactivity in, respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respir Res. 2005; 6(1): 129-132.
    [57] 支气管肺泡灌洗液细胞学检测技术规范(草案).中华结核和呼吸杂志,2002,25(7):390-391
    [58] Nagai H, Maeda Y &,Tanaka H. The effect of anti-IL-4 monoclonal antibody, rapamycin and interferon-γ on airway hyperreactivity to acetylcholine in mice.. Clin. Exp. Allergy. 1997,27: 218-224.
    [59] Tanka H, Nagai H &, Maeda Y. Effect of anti-IL-4 and anti-IL-5 antibodies on allergic airway hyperresponsiveness in mice. Life Sci. 1998,62: PL169-PL174.
    [60] 谭群友,龚太乾,李东亮等.烟雾和弹性蛋白酶诱导大鼠肺气肿模型的实验研究.(第三军医大学学报,2004,26(19):1788-1789.
    [61] 曾勉,郭禹标,谢灿茂等.猪胰弹性蛋白酶肺气肿模型复制的实验研究.现代复,2001,5(3):59-60.
    [62] Wright JL, Churg A. Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am Rev Respir Dis. 1990, 142:1422-1428.
    [63] Wright JL. The importance of ultramicroscopic emphysema in cigarette smoke-induced lung disease. Lung. 2001,179:71-81.
    [64] David AG, K Fan Chung. Models of chronic obstructive pulmonary disease. Respir Res. 2004,5(1): 18.
    [65] Snider GL, Lucey EC, Faris B, et al. Cadmium chloride induced air space enlargement with interstitial pulmonary fibrosisis not associated with destruction of lung elastin. Implicationsfor the pathogenesis of lung elastin. AM Rev Respir Dis, 1998,137:918-923.
    [66] Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest. 2000, 106:1311-1319.
    [67] Meshi B, Vitalis TZ, Ionescu D, et al. Emphysematous Lung Destruction by Cigarette Smoke. The Effects of Latent Adenoviral Infection on the Lung Inflammatory Response. Am J Respir Cell Mol Biol. 2002,26:52-57.
    [68] Imai K, Dalal SS, Chen ES, et al. Human collagenase expression in the lungs of patients with emphysema. Am J Res Crit Care Med, 2001,163:786-791.
    [69] 蔡如升,主编.慢性肺心病20年防治研究[M].北京:科学技术文献出社,1994.
    [70] 许三林,吴人亮,陈春莲,等.E-cadherin在吸烟小鼠气道上皮损伤修复中表达的研究.中华结核和呼吸杂志,1999,22:417-419.
    [71] Churg A, Zay K, Shay S, et al. Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol. 2002,27:368-374.
    [72] Marino G. Vitamin C helps cigarette- smoking hamster [J]。Science News,1994,146:86.
    [73] Hunninghake GW, Crystal RG. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis. 1983,128:833-838.
    [74] 陈祥银,赵青,赵磊等.中药制剂对烟雾刺激所致地鼠呼吸道炎症的保护作用.基础医学与床,1999,19:69-72.
    [75] Gross PE, Pfitzer E, Tolker M, et al. Experimental emphysema: its production with papain in normal and silicotic rats. Arch. Environ. Health. 1965,11:50-58.
    [76] Snider GL. Emphysema: The first two centuries-and beyond: A historical overview, with suggestions for future research: Part 2. Am Rev Respir Dis. 1992,146:1615-1622.
    [77] 张旭晨,阮英茆.动物实验性肺气肿的发生及其机制研究进展.国外医学呼吸系统分册,1998,18:132-135.
    [78] 张旭晨,阮英茆,徐新林等.应用弹性蛋白酶复制金黄地鼠肺气肿模型.天津医药,1999,27:536-537.
    [79] 韩晓男,阮英茆,张旭晨等。金黄地鼠实验性肺气肿肺泡Ⅱ型上皮表面活性物质蛋白A和B的变化。中华病理学杂志,2000,29(1):43-45.
    [80] Won-dong Kim. pathogenesis of chronic obstructive pulmonary disease [symposis]. 10th congress of the APSR first joint congress of the APSR/ACCP. Gangzhou, 2005:29.
    [81] Balansky RB, D'Agostini F, Zanacchi Pet al. Protection by Nacetyicysteine of the histopathological and cytogenetical damage produced by exposure of rats to cigarette smoke. Cancer Lett. 1992,15;64(2):123-31.
    [82] Rubio ML, Sanchez-Cifuentes MW, Ortega M, et al.N-acetylcysteine prevents cigarette smoke induced small airways alterations in rats. Eur Respir J, 2000,15:505-511.
    [83] 陈平,蔡珊,朱应群等.肺泡巨噬细胞在慢性阻塞性肺疾病气道炎症中的作用。中华内科杂志,2001,40(4):232-235.
    [84] 刘杰波,陈平.慢性支气管炎气道巨噬细胞计数及淋巴细胞功能相关抗原1的研究.中华结核和呼吸杂志,2001,24(5):280-282.
    [85] Abboud RT, Ofulue AF, Sansores RH, et al. Relationship of alveolar macrophage plasminogen activator and elastase activities to lung function and CT evidence of emphysema. Chest. 1998,113: 1257-1263.
    [86] Ofulue AF, Mary K. Effects of depletion of neutrophils or macrophages on development of cigarette smoke-induced emphysema Am J Physiol Lung Cell Mol Physiol 1999,277(i): L97-L105.
    [87] 刘先胜,徐永健,杨丹蕾.慢性阻塞性肺疾病大鼠肺泡巨噬细胞延迟整流钾通道的活性研究.中国病理生理杂志,2005,21(9):1728-1730.
    [88] 王曦,郝天玲,吴人亮,等.香烟烟雾提取物对动物气道上皮细胞E钙粘着蛋白表达的影响.中华结核和呼吸杂志,1999,22(7):414-416.
    [89] Feldman C, Anderson R, Kanthakumar K, et al. Oxidant-mediated ciliary dysfunction in human respiratory epithelium. Free Radic Biol Med, 1994,17:1-10.
    [90] Krupski WC. The peripheral vascular consequences of smoking. Ann Vasc Surg, 1991,4: 291-304.
    [91] Barnes PJ. Neurogenic inflammation and asthma. J Asthma, 1992, 29:165-180.
    [92] Joos GF, Swert DK, Schelfhout V, et al. The role of neural inflammation in asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci, 2003,992:218-30.
    [93] Dinh QT, Klapp BF, Fischer A. Airway Sensory Nerve and Tachykinins in Asthma and COPD. Pneumologie, 2006,60(2):80-85.
    [94] Groneberg DA, Quarcoo D, Frossard N, et al. Neurogenic mechanisms in bronchial inflammatory diseases. Allergy, 2004, 59(11):1139-52.
    [95] Swert DK, Joos GF. Extending the understanding of sensory neuropeptides. Eur J Pharmacol, 2006, 533(1-3):171-81.
    [96] Bai TR, Zhou D, Weir T, et al. Substance P (NK1)-and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol, 1995,269(3):L309-L317.
    [97] Springer J, Amadesi S, Trevisani M, et al. Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept, 2004,118(3):127-34.
    [98] Xu H, Zhao M, Wang X. Changes of calcitonin gene-related peptide content in induced sputum from patients with COPD and asthma.Zhonghua Jie He He Hu Xi Za Zhi, 1999,22(9):558-61.
    [99] Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptidebased drug therapy: Vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol, 2006,533(1-3):182-194.
    [100] Miotto D, Boschetto P, Bononi I, et al. Vasoactive intestinal peptide receptors in the airways of smokers with chronic bronchitis. Eur Respir J, 2004,24(6):958-63.
    [101] Kevin K, Wu ZX, Michael LK, et al. Chronic Smoking Enhances Tachykinin Synthesis and Airway Responsiveness in Guinea Pigs.Am. J. Respir. Crit. Care Med. 1995, 151(3):613-617.
    [102] Reynolds PN, Scicchitano R, Holmes MD. Pre-protachykinin-A mRNA is increased in the airway epithelium of smokers with chronic bronchitis. Respirology, 2001, 6(3):187-97.
    [103] Kwong K, Wu ZX, Kashon ML, et al. Chronic Smoking Enhances Tachykinin Synthesis and Airway Responsiveness in Guinea Pigs.Am. J. Respir. Crit. Care Med, 2001,151 (3): 613-617.
    [104] Tomaki M, Ichinose M, Miura M, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am. J. Respir. Crit. Care Med, 1995,151(3 Pt 1):613-7
    [105] 谭宇蓉,秦晓群,管茶香等.肺内调节肽对兔支气管上皮细胞分泌白介素的影响.生理学报,2002,54(2):107-110
    [106] Malcangio M, Ramer MS, Boucher TJ, et al. Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur J Neurosci, 2000,12(1):139-144.
    [107] 刘晓湘,方秀斌.神经生长因子对实验性哮喘豚鼠降钙素基因相关肽的调节作用.中国临床康复,2004,8(24):5020-5021
    [108] 刘晓湘,方秀斌,张鸿.实验性哮喘时神经生长因子对P物质的上调作用.中国病理生理杂志,2005,21(10):1978-1980.
    [109] Graham RM, Friedman M, Hoyle GW. Sensory nerves promote ozoneinduced lung inflammation in mice. Am J Respir Crit Care Med, 2001,164(2):307-13.
    [110] Perng DW, Huang HY, Chen HM, et al. Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest, 2004,126(2):329-31.
    [111] Hu CP, Katrin W, Alexander A, et al. Nerve growth factor and nerve growth factor receptors in respiratory syncytial virus-infected lungs. Am J Physiol Lung Cell Mol Physiol, 2002, 283:494-502.
    [112] Rodriguez MM, Romaguera R, Jiang XB, et al. Exaggerated neurogenic inflammation and substance P receptor upregulation in RSV-infected weanling rats. Am J Respir Cell Mol Biol, 2001,24(2):101-107.
    [113] 胡淳玲,喻伦银,陈德基等.大鼠试验性肺癌癌变各阶段微血管密度及VEGF、FLK-1表达的动态变化.癌症杂志,2001,20:713-717.
    [114 ]邢传平,刘斌,董亮.免疫组织化学标记结果的判断方法.中华病理学杂志,2001,30(4):318.
    [115] Chung RF. Cytokines in chronic obstructive pulmonary disease. Eur. Respir, 2001, 34 (Suppl.), 50s-59s.
    [116] 刘春丽,赖克方,钟南山。气道神经源性炎症与慢性咳嗽的发病机制国外医学呼吸系统分册,2004,24(4):237-242.
    [117] Folkerts G, Ni jkamp FP. (1998). Airway epithelium: more than just a barrier! Trends Pharmacol. Sci, 19, 334-341.
    [118] Barnes PJ. Non-adrenergic non-cholinergic neurol control of human airways. Arch Int Pharmacodynother, 1986, 280:208.
    [119] Casale TB. Neuropeptides and the lung. J Allergy Clin Immunol, 1991; 88:1.
    [120] Shahrooz R, Justin OH, Zhong CT, et al. Induction of apoptosis by the low-affinity NGF receptor. Science, 1993, 261:345-348.
    [121] Barrett GL, Bartlett PF. The p75 nerve growth factor receptor mediated survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA, 1994, 91:6501-6505.
    [122] Undem BJ, Hunter DD, Liu M, et al. Allergen-induced sensory neuroplasticity in airways. Int Arch Allergy Immunol, 1999, 118:150-153.
    [123] Virchow JC, Julius P, Lommatzsch M, et al. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Red, 1998, 158:2002-2005.
    [124] Bost KL, Pascual DW. Substance P: a late-acting B lymphocyte differentiation cofactor. Am. J. Physiol, 1992,262:C537-C545
    [125] Yaraee R, Ebtekar M, Ahmadiani A, et al. Effect of neuropeptides (SP and CGRP) on antigen presentation by macrophages. Immunopharmacol Immunotoxicol, 2005,27(3):395-404.
    [126] O'Connor TM, O'Connell J, O'Brien DI, et al. rhe role of substance P in inflammatory disease. J Cell Physiol, 2004,201(2):167-80.
    [127] Guiard BP, Lanfumey L, Gardier AM. Microdialysis approach to study serotonin outflow in mice following selective serotonin reuptake inhibitors and substance P (neurokinin 1) receptor antagonist administration: a review. Curr Drug Targets, 2006, 7(2):187-201.
    [128] Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides, 2003,37(6):355-361.
    [129] Persson CG, Erjefalt I, Andersson P. Leakage of macromolecules from guinea-pig tracheobronchial microcirculation: effects of allergen, leukotrienes, tachykinins, and anti-asthma drugs. Acta Physiol. Scand, 1986,127: 95-105.
    [130] Rogers DF, Aursudkjii B, Barnes PJ. Effects of tachykininson mucus secretion on human bronchi in vitro. Eur. J. Pharmacol, 1989,174: 283-286.
    [131] Joos GF, Germonpre PR, Kips JC, et al. Sensory neuropeptides and the human lower airways: present state and future directions. Eur. Respir. J, 1994,7: 1161-1171.
    [132] 张丹,罗显荣,叶小群等.慢性阻塞性肺疾病和支气管哮喘患者血浆及痰液P物质的测定.第一军医大学学报,2005,25(10):1314-1315.
    [133] 田莉莉,才丽平,康健等.慢性阻塞性肺疾病和支气管哮喘患者血浆及痰中P物质变化及其与肺功能关系的研究.中华结核和呼吸杂志,2000,23(3):138-140.
    [134] Ehrhard PB, Erb P, Graumann U, et al. Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA, 1993, 90:10984-10988.
    [135] Bronzetti. E, Artico. M, Lovasco. V.R, et al. Expression of neurotransmitters and neurotrophins in human adenoid tissue. International Jouanal of Molecular Medicine, 2005,15:921-928.
    [136] Solomon A, Aloe L, Pe'er J, et al. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol, 1998, 102: 454-460.
    [137] Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 1989, 337:362-364.
    [138] Woolf CJ. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philosophical Transections of the Royal society of London series B, Biological Science, 1996,351(1338):441-448.
    [139] Kimata H. Passive smoking elevates neurotrophin levels in tears. Hum Exp Toxicol. 2004, 23(5):215-7.
    [140] Hoyle GW, GrahamS, Finkelstein JB, et al. Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol, 1998, 18:149-157.
    [141] 陈亚红,姚婉贞.感染在慢性阻塞性肺疾病急性加重中的作用——2004年欧洲呼吸学会年会综述.临床内科杂志,2005,22(5)357—358.
    [1] 尚云晓,赵淑琴,孔淑卿.感觉神经肽与支气管哮喘.国外医学儿科学分册,2001,28(4):178.
    [2] 刘春涛,王曾礼.气道炎症性疾病.北京:人民卫生出版社,2004.180-203.
    [3] 路长林.神经肽基础与临床.上海:第二军医大学出版社,2000,335-345.
    [4] 姜明,李玉.慢性阻塞性肺疾病患者中央气道P物质、血管活性肠肽的分布及其意义.山东医药,2001,41(20):1-3.
    [5] 吕正梅,费广鹤,陈晓蓉等.哮喘大鼠肺内CGRP免疫反应阳性神经纤维分布的变化.解剖学研究,2005,27(4):246-249.
    [6] 杨省玲,张宗平,牛汉璋。内脏躯体长轴突反射及其引起的神经源性炎症反应.西安医科大学学报,1995,16(1):23.
    [7] Bagust J,Kerkut GA, Rakkah NIA. The dorsal reflex in isolated mammalian spinal cord. Comp Bionchem Physiol, 1995,93A(1):151.
    [8] Barnes P. Asthma as an axon reflex. Lancet, 1986,327: 242-245.
    [9] Belvisi MG. Overview of the innervation of the lung. Curr Opin Pharmacol, 2002,2: 211-215.
    [10] Kingham PJ, Costello RW, McLean WG. Eosinophil and airway nerve interactions. Pulm Pharmacol Ther, 2003,16: 9-13.
    [11] Harrison S, Geppetti P. Substance P. Int J Biochem Cell Biol, 2001,33: 555-576.
    [12] Coleridge HM, Coleridge JC, Schultz HD. Afferent pathways involved in reflex regulation of airway smooth muscle. Pharmacol Ther, 1989,42: 61-63.
    [13] Coleridge JC, Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol, 1984,99: 100-110.
    [14] Lundberg JM, Hokfelt T, Martling CR, Saria A, Cuello C. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res, 1984,235: 251-261.
    [15] Salonen RO, Webber SE, Widdicombe JG. Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo. Br J Pharmacol, 1988,95: 1262-1270.
    [16] Lundberg JM, Brodin E, Hua X, Saria A. Vascular permeability changes and smooth muscle contraction in relation to capsaicin-sensitive substance P afferents in the guinea-pig. Acta Physiol Scand, 1984, 120: 217-227.
    [17] Coles SJ, Neill KH, Reid LM. Potent stimulation of glycoprotein secretion in canine trachea by substance P. J Appl Physiol, 1984, 57: 1323-1327.
    [18] Myers A, Undem B, Kummer W. Anatomical and electrophysiological comparison of the sensory innervation of bronchial and tracheal parasympathetic ganglion neurons. J Auton Nerv Syst,1996,61: 162-168.
    [19] Myers AC, Undem BJ. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones. J Physiol. 1993, 470: 665-679.
    [20] Belvisi MG, Patacchini R, Barnes PJ, Maggi CA. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences. Br J Pharmacol 1994,111: 103-110.
    [21] Laitinen LA, Laitinen A, Salonen RO, et al. Vascular actions of airway neuropeptides, 1987 ,136(6 Pt 2) :S59-64.
    [22] Heppt W, Peiser C, Cryer A, et al. Innervation of human nasal mucosa in environmentally triggered hyperreflectoric rhinitis. J Occup Environ Med, 2002, 44:924-929.
    [23] Kummer W, Fischer A, Kurkowski R, et al. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience, 1992, 49:715-737.
    [24] Saria A, Martling CR, Dalsgaard CJ, et al. Evidence for substance P-immunoreactive spinal afferents that mediate bronchoconstri- ction. Acta Physiol Scand, 1985,125: 407-414.
    [25] Colten HR , Krause J E. Pulmouary inflammation : a balancing act . N Engl J Med , 1997 ,338 :1094-1098.
    [26] Debeljuk L, Lasaga M. Modulation of the hypothalamo — pituitary- gonadal axis and the pineal gland by neurokin A , neuropeptide K and neuropeptide gamma. Peptides , 1999 ,20 :285- 299.
    [27] Komatsu T, Yamamoto M, Shimokata K, Nagura H. Distribution of substance P-immunoreactive and calcitonin gene-related peptideimmunoreactive nerves in normal human lungs. Int Arch Allergy Appl Immunol, 1991,95: 23-28.
    [28] Martling CR, Theodorsson-Norheim E, Lundberg JM. Occurrence and effects of multiple tachykinins; substance P, neurokinin A and neuropeptide K in human lower airways. Life Sci, 1987,40: 1633-1643.
    [29] Laitinen LA, Laitinen A, Haahtela T. A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol, 1992,90: 32-42.
    [30] Khawaja AM, Rogers DF. Tachykinins: receptor and effector. Int J Biochem Cell Biol, 1996,28 (7):721-738.
    [31] Holst B, Hastrup H, Raffetseder U, et al. Two active molecular phenotypes of the tachykinin NKl receptor revealed by G—protein fusions and mutagenesis. J Biol Chem, 2001, 276 (23):19793-19799.
    [32] 李冬梅,李玲香.神经肽在鼻黏膜超敏反应中的作用.国外医学耳鼻咽喉科学册,2002,26(2):79-83.
    [33] Maggi CA, Giachetti A, Dey RD, Said SI. Neuropeptides as regulators of airway function: vasoactive intestinal peptide and the tachykinins. Physiol Rev. 1995,75: 277-322.
    [34] Fischer A, McGregor GP, Saria A, Philippin B, Kummer W. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest 1996,98: 2284-2291.
    [35] Sekizawa K. Jia YX. Ebiharar, et al. Role of substance P in cough. Pulm Pharmacol, 1996, 9: 323-328.
    [36] Boichot E, Lagente V, Paubert-Braquet M, Frossard N. Inhaled substance P induces activation of alveolar macrophages and increases airway responses in the guinea-pig. Neuropeptides, 1993; 25: 307-313.
    [37] Mutoh T,Bonham AC,Joad JP. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am J I hysiol Regul Integr Comp Physiol. 2000, 279: R1225-1223.
    [38] Ichinose M, Nakajima N, Takahashi T, et al. Protection against bradykinin-induced bronchoconstriction in asthmatic patients by neurokinin receptor antagonist..Lancet. 1992,340(8830):1248-51.
    [39] Advenier C, Girml v, Nalin E, et al. Anti-bossive effect of SP48968, a nonpeptide tachykinin NK-2 receptor antagonist. Eur J Phammacol, 1992,250:169-173.
    [40] Takahama K, Fuchikami J, Isohama Y, et al. Neurokinin A but not neurokinin B and substance P induced codeine-resistant cough in awake guinea-piges. Regul Pept, 1992, (suppl 1):154
    [41] Brunelleschi S. Tachykinin receptor modulators: novel therapeutics for rheumatoid arthritis. Expert Opin Investig Drugs, 1999,8: 1873-1891.
    [42] Joos GF, Germonpre PR, PauwelsRA. Neural mechanisms in asthma. Clin Exp Allergy, 2000,30: 60-65.
    [43] Collins SM. Stress and the gastrointestinal tract Ⅳ. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance. Am J Physiol Gastrointest Liver Physiol, 2001,280: G315-G318.
    [44] 方秀斌,维为,于频等.哮喘时下呼吸道和血液中P物质含量的变化.中国病理生理杂志,1993,9:236.
    [45] 方秀斌,维为,于频等.哮喘时下呼吸道和血液中P物质能免疫反应纤维.中国医科大学学报,1993,22:1
    [46] Frossard N, Barnes J. Effect of tachykinins in small human airways. Neuropeptides, 1991,19:157-161.
    [47] Crimi N, Oliveri R, Polosa R, et al. Effect of oral terfenadine on bronchoconstrictor response to inhaled neurokinin A and histamine in asthmatic subjects. Eur Respir J, 1993,6:1462-1467.
    [48] Watson N, Maclagan J, Barnes PJ. Endogenous tachykinins facilitate transmission through parasympathetic ganglia in guinea-pig trachea. Br J Pharmacol, 1993,109: 751-759.
    [49] McDonald DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med, 2001, 164(10): 39-45.
    [50] Marek W , Potthast JJ ,Marcynski B , et al . Role of substance P and neurokinin A in toluence diisocyanate — induced increased airway responsiveness in rabbits . Lung ,1996 ,174(2) :83~97.
    [51] Maria DG, Bellof lore S, Geppetti P. Regulation of airway neurogenic inflammation by neutral endopeptidase. Eur Respir J 1998, 12: 1454-1462.
    [52] Seemungal T, Harper-Owen R, Bhowmik A, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001,164:1618-1623.
    [53] Quartara L, Maggi CA. The tachykinin NK1 receptor. Part11: Distribution and pathophysiological roles. Neuropeptides, 1998, 32(1): 1-49.
    [54] Groneberg DA, Quarcoo D, Frossard N, et al. Neurogenic mechanisms in bronchial inflammatory diseases. Allergy, 2004, 59:1139-1152.
    [55] Springer J, Geppetti P, Fischer A, et al. Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther, 2003, 16: 121-130.
    [56] Springer J, Amadesi S, Trevisani M, et al. Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept 2004;118: 127-134.
    [57] Olgart Hoglund C, de Blay F, Oster JP, et al. Nerve growth factor levels and localisation in human asthmatic bronchi. Eur Respir J, 2002, 20: 1110-1116.
    [58] Renz H, Kerzel S, Nockher WA. The role of neurotrophins in bronchial asthma: contribution of the pan-neurotrophin receptor p75. Prog Brain Res, 2004, 146: 325-333.
    [59] Robinson DS. The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J Allergy Clin Immunol, 2004, 114:58-65.
    [60] Cadieux A, Monast NP, Pomerleau F, et al. Bronchoprotector Properties of calcitonin gene-related peptide in guinea pig and human airways. Effect of pulmonary inflammation. Am J Respir Crit Care Med, 1999, 159: 235-243.
    [61] Dakhama A, Kanehiro A, Makela MJ, et, al. Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med, 2002, 165: 1137-1144.
    [62] Goetzl EJ, Sreedharan SP, Turck CW, et al. Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase (neutral endopeptidase, EC 3.4.24.11). Biochem Biophys Res Commun 1989; 158: 850-854.
    [63] Dunzendorfer S, Meierhofer C, Wiedermann CJ. Signaling in neuropeptide-induced migration of human eosinophils. J Leuk Biol 1998,64: 828-834.
    [64] Meloni F , Ballabio L , Bianchi L , et al . Bombesin enhances monocyte and macrophage activities : Possible role in the modulation of local pulmonary defenses in chronic bronchitis. Respiration ,1996 ,63(1) :28-34.
    [65] Meloni F .Bertoletti R ,Corsico A , et al . Bombesin/gastrin releasing peptide levels of peripheral mononuclear cells , monocytes and alveolar macrophages in chronic bronchitis. Int J Tissue React ,1992 ,14(4) :195-201.
    [66] Schaffer M, Beiter T , Becker HD , et al . Neuropeptides : mediators of inflammation and tissue repair. Arch Surg , 1998 , 133 (10) :1107 -1114.
    [67] Shah S, Page CP, Spina D. Nociceptin inhibits non-adrenergic non-cholinergic contraction in guinea-pig airway. Br J Pharmacol, 1998,125: 510-516.
    [68] Lilly CM, Bai TR, Shore SA, et al. Neuropeptide content of lungs from asthmatic and nonasthmatic patients. Am J Respir Crit Care Med, 1995, 151: 548-553.
    [69] Heaney LG, Cross LJ, McGarvey LP, et al. Neurokinin A is the predominant tachykinin in human bronchoalveolar lavage fluid in normal and asthmatic subjects. Thorax, 1998, 53: 357-362.
    [70] Tomaki M, Ichinose M, Miura M, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med, 1995, 151: 613-617.
    [71] Crimi N, Palermo F, Oliveri R, et al. Effect of nedocromil on bronchospasm induced by inhalation of substance P in asthmatic subjects. Clin Allergy, 1998, 18:375-382.
    [72] Cheung D, Timmers MC, Zwinderman AH, et al. Neutral endopeptidase activity and airway hyperresponsiveness to neurokinin A in asthmatic subjects in vivo. Am Rev Respir Dis, 1993, 148: 1467-1473.
    [73] Schuiling M, Zuidhof AB, Zaagsma J, et al. Involvement of tachykinin NK1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained guinea pigs. Am J Respir Crit Care Med, 1999,159: 432-430.
    [74] 季伟,夏春林,袁燕惠.豚鼠哮喘模型脑内P物质表达.江苏医药,2005,31(6):457-459.
    [75] 甘慧娟.支气管哮喘发作期冷、热哮证与ET-1、CGRP关系的临床研究.山西中医学院学报,2005,6(1):26-28.
    [76] 马洪明,黄志宏.降钙素基因相关肽在哮喘患者气道中的表达.临床内科杂志,2005,22(5):320-321
    [77] 鲁彦,林丽,袁文俊.内皮素家系的新成员—内皮素1-31.生理科学进展,2005,36(1):41-44.
    [78] Kevin K, Wu ZX, Michael LK, et al. Chronic Smoking Enhances Tachykinin Synthesis and Airway Responsiveness in Guinea Pigs.Am. J. Respir. Crit. Care Med. 1995, 151(3):613-617.
    [79] Reynolds PN, Scicchitano R, Holmes MD. Pre-protachykinin-A mRNA is increased in the airway epithelium of smokers with chronic bronchitis. Respirology, 2001, 6(3):187-97.
    [80] Kwong K, Wu ZX, Kashon ML, et al. Chronic Smoking Enhances Tachykinin Synthesis and Airway Responsiveness in Guinea Pigs.Am. J. Respir. Crit. Care Med, 2001,151 (3): 613-617.
    [81] Tomaki M, Ichinose M, MiuraM, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am. J. Respir. Crit. Care Med, 1995,151(3 Pt 1):613-7.
    [82] 张丹,岁显荣,叶小群等.慢性阻塞性肺疾病和支气管哮喘患者血浆及痰液P物质的测定.第一军医大学学报,2005,25(10):1314-1315.
    [83] 田莉莉,才丽平,康健等.慢性阻塞性肺疾病和支气管哮喘患者血浆及痰中P物质变化及其与肺功能关系的研究.中华结核和呼吸杂志,2000,23(3):138-140.
    [84] Bai TR, Zhou D, Weir T, et al. Substance P (NK1)-and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol, 1995,269(3 Pt 1):L309-L317.
    [85] Boschetto P, Miotto D, Bononi I, et al. Sputum substance P and neurokinin A are reduced during exacerbations of chronic obstructive pulmonary disease. Pulm Pharmacol Ther, 2005,18(3): 199-205.
    [86] Killingsworth CR,Paulauskis JD,Shore SA. Substance P content and preprotachykinin gene—I mRNA expression in rat model of chronic bronchitis. Am J Respir Cell Mol Bioi, 1996,14(4):334-340.
    [87] Lucchini RE,Facchini F, Turato G, et al. Increased VIP positive nerve fibers in the mucous glands of subjects with chronic bronchitis Am J Respir Crit Care Med,1997,156(6):1963-1968.
    [88] Chanez P,Springall D,Vignola AM, et al. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases Am J Respir Crit Care Med, 1998,158(3):985-990.
    [89] Lai JP, Douglas SD, Ho WZ, et al. Human lymphocytes express substance P and its receptor. J Neuro immunol, 1998, 86: 80-86.
    [90] Markus OH, Samir AS, Bruce KR. The Role of Airway Secretions in COPD—Clinical Applications. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2005,2:377-390.
    [91] Channick RN, Sitbon O, Barst RJ, et al. Endothelin receptor antagonists in pulmonary arterial hypertension. J Am Coll Cardiol 2004,43:62S-67S.
    [92] Davie N, Haleen SJ, Upton PD, et al. ETA and ETB receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med, 2002,165:389-405.
    [93] John QL, Efua ME, Rodney iF. Chronic Hypoxia-Enhanced Murine Pulmonary Vasoconstriction._Chest, 2005,128:594S-596S.
    [94] 袁晶.肺心病时血浆内皮素-1、心钠素和降钙素基因相关肽水平的变化.四川医学,2005,26(7):735-736.
    [95] 刘学东,葛云洁,纪霞.慢性阻塞性肺病患者血浆一氧化氮、内皮素和降钙素基因相关肽的含量变化.基础医学与临床,2004,24(1):102-103.
    [96] 杨敬业,张文梅,唐洁等.血浆VIP含量与缓解期慢性阻塞性肺病患者吸入糖皮质激素疗效的关系.中国临床医学,2003,10(2):160-163.
    [97] FujiwaraH, Kurihara N, Hirata K, et al. Effect of neuropeptide Y on human bronchus and its modulation of neutral endopeptidase. J Allergy Clin Immunol,1993,92:89-94.
    [98] Takahashi T, Ichinose M, Yamauchi H, et al Neuropeptide Y inhibits neurogenic inflammation in guinea pig airways. J Appl Physiol,1993,75(1):103-107.
    [99] 金元虹,潘炯伟,曹卓等.COPD患者血清NPY含量及其临床意义.放射免疫学杂志.2004,17(3):175-176.
    [100] O'Donnell CP, Schaub CD, Haines AS, et al. Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med,1999, 159:1477-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700