白血病抑制因子通过STAT和MAPK信号转导通路上调气道上皮细胞中NK-1R表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景白血病抑制因子(leukemia inhibitory factor,LIF)具有神经营养功能,对神经元的生存、分化和功能成熟起到促进作用,能够促使神经元产生神经激肽受体-1(neurokinin receptor 1,NK-1R)等速激肽类相关物质。研究表明,哮喘患者及哮喘模型动物体内LIF表达水平显著高于相应的对照群体,LIF可能参与哮喘等气道炎症性疾病的发病过程,并且发现哮喘患者气道NK-1R表达的上调可能系体内LIF增加所致。作为细胞因子,LIF必须依赖于信号转导通路的介导才能发挥其生物学作用。JAK/STAT和MAPK信号转导通路与LIF的生物学效应密切关联,而这些通路已被证实参与哮喘气道炎症的诸多病理生理过程。支气管上皮细胞作为气道的重要保护屏障,哮喘等多种气道炎症性疾病的发生与支气管上皮的受损存在直接关系。我们的前期研究发现,LIF和NK-1R在哮喘大鼠支气管肺组织中表达均显著高于对照组,支气管上皮细胞是其主要阳性反应细胞。因此,本研究拟以正常人支气管上皮细胞作为靶细胞,探讨LIF通过调节NK-1R等的变化参与气道神经源性炎症形成过程中的信号转导机制。
     第一章LIF通过STAT和MAPK信号转导通路上调哮喘大鼠肺组织中NK-1R的表达
     目的观察抗LIF干预对哮喘大鼠支气管肺组织中NK-1R表达的影响,以及在此过程中p-STAT3和p-ERK1/2的表达变化情况,以期探讨LIF参与气道炎症形成过程中的信号转导机制及其与NK-1R之间的调控关系。
     方法30只SD大鼠随机均分为3组,每组10只(正常对照组,哮喘模型组,LIF抗体干预组)。用OVA致敏、激发方法建立哮喘模型,对哮喘大鼠施以LIF抗体。干预完成后,取各组大鼠肺组织。观察各组大鼠支气管肺组织病理学变化,用免疫组化方法检测各组大鼠支气管肺组织中LIF、p-STAT3、p-ERK1/2及NK-1R的蛋白表达情况。
     结果哮喘模型组大鼠气道周围有大量炎症细胞浸润,支气管壁和肺泡间隔显著增厚;而与之相比,LIF抗体干预组大鼠气道周围炎症细胞浸润程度明显减轻,支气管壁和肺泡间隔增厚亦有所改善。免疫组化结果提示,哮喘组大鼠气道上皮及其周围组织可见大量的NK-1R、LIF、p-STAT3及p-ERK1/2蛋白阳性细胞,其阳性产物的平均灰度值均明显低于正常对照组(灰度值越低提示表达量越高,反之亦然),而抗LIF干预组大鼠气道上皮及其周围组织中NK-1R、LIF、p-STAT3及p-ERK1/2蛋白阳性细胞较哮喘组明显减少,呈中等偏弱的表达强度,其阳性产物的平均灰度值均明显高于哮喘组。
     结论哮喘大鼠气道炎症形成过程中其支气管肺组织中NK-1R的表达水平可能受到LIF的调控,而LIF的作用可能通过JAK/STAT和MAPK信号转导通路的介导得以实现。
     第二章LIF通过STAT和MAPK信号转导通路上调NHBE细胞中NK-1R的表达
     目的观察JAK/STAT和MAPK信号转导通路的抑制剂及激动剂对LIF诱导的NHBE细胞中NK-1R的表达的影响,进一步探讨LIF通过调节NK-1R的变化参与气道神经源性炎症形成过程中的信号转导机制。
     方法培养正常人支气管上皮细胞(NHBE细胞),用LIF对NHBE细胞进行刺激,在此过程中分别用AG490(JAK2抑制剂)、PD98059(ERK1/2抑制剂)、PMA(蛋白激酶C激动剂)及STAT3-siRNA对NHBE细胞进行预处理。采用Western-blot、RT-PCR及免疫细胞化学方法对上述各干预组细胞进行检测,观察NK-1R、p-STAT3、total-STAT3、p-ERK1/2及total-ERK1/2等指标的表达变化情况。
     结果LIF能够诱导NHBE细胞中NK-1R、p-STAT3和p-ERK1/2的表达,而total-STAT3和total-ERK1/2的表达水平在LIF刺激前后无明显变化。进一步发现,LIF对NK-1R的诱导表达作用能够分别被AG490和PD98059所抑制;AG490能够抑制LIF对p-STAT3的诱导表达作用,而PD98059对p-STAT3的表达水平无明显影响;反过来,PD98059能够抑制LIF对p-ERK1/2的诱导表达作用,而AG490对p-ERK1/2的表达水平亦无明显影响。PMA能够诱导NHBE细胞中p-ERK1/2和NK-1R表达增加,但未发现PMA能够增强LIF的诱导效应。STAT3-siRNA能够特异性地抑制LIF对p-STAT3的诱导作用,但对p-ERK1/2的表达水平无明显影响;进一步发现,STAT3-siRNA能够抑制LIF对NK-1R的诱导表达作用。
     结论LIF能够上调NHBE细胞中NK-1R的表达,LIF的上述作用可能是通过JAK/STAT和MAPK信号转导通路的介导得以实现;在LIF上调NHBE细胞中NK-1R表达的过程中,本研究未发现JAK/STAT和MAPK两个信号转导通路之间存在交叉作用。
Background: leukemia inhibitory factor(LIF) has been implicated invarious processes of neuronal development, differentiation, survival andneurogenesis, and it was indicated that LIF could increase the expressionof substance P and its receptor(neurokinin-1 receptor, NK-1R). Highlevels of LIF were found in atopic patients and asthmatic rats, and LIFmay be an important signal molecule in the airway response toinflammation. As a kind of cytokines, the biological effects of LIFdepend on signal transduction pathway such as janus kinase/signaltransducer and activator of transcription (JAK/STAT) pathway and theras-mitogen activated protein kinase (MAPK) pathway. It is indicated thatboth JAK/STAT pathway and MAPK pathway are related to asthma.Bronchial epithelial cell is a barrier to airway structure, and it is animportant target cell type in most respiratory diseases such as asthma.High levels of LIF and NK-1R were observed in bronchial epithelial cellsof asthmatic rats, so the bronchial epithelial cell is considered as thetarget cell to explore the signal transduction mechanism of NK-1Rregulation by LIF in this study.
     Chapter One LIF up-regulates NK-1R expression in lungs ofasthmatic rats via JAK/STAT pathway and MAPK pathway.
     Objective: To explore the regulation mechanism between LIF andNK-1R in asthma through comparing the expression of NK-1R, LIF,p-STAT3 and p-ERK1/2 between asthmatic rats and asthmatic rats treatedwith anti-LIF.
     Methods: 30 Sprague-Dawley rats were divided into 3 groups atrandom(asthmatic group, anti-LIF group and control group, n=10), andthey were housed under specific pathogen-free conditions. Sensitizationand provocation(the asthmatic group and the anti-LIF group) wereproduced with OVA, in this process, the anti-LIF group were treated withanti-LIF. Then the rats were killed and lung tissues were fixed in 4%polyoxymethylene, embedded in paraffin, and finally sliced into sections. Immunoreactivity for p-STAT3, p-ERK1/2, NK-1R and LIF proteins weredetected in the lungs of these rats.
     Results: Compared with the control, inflammatory cell infiltration werefound around airway in asthmatic rats, in addition, alveolar septum andbronch-wall were thickened in asthmatic rats. Compared with theasthmatic, the extent of inflammatory cells infiltration was relieved in therats treated with anti-LIF, and the pathological changes of bronch-wallwere also improved. Immunohistochemistry indicated a higher expressionof LIF in the asthmatic rats compared to that in the control group.Consistent with that, similar changes were observed for NK-1R, p-STAT3and p-ERK1/2. The main positive cell type was airway epithelial cell, andother positive types were also observed such as lymphocyte.
     Conclusions: NK-1R expression in lungs of asthmatic rats may beregulated by LIF, and it is possible that the effect of LIF is mediated byJAK/STAT pathway and MAPK pathway.
     Chapter Two LIF up-regulates NK-1R expression in NHBE cellsvia JAK/STAT pathway and MAPK pathway.
     Objective: To investigate whether LIF induces the expression of NK-1Rin bronchial epithelial cells and whether JAK/STAT pathway andMAPK/ERK pathway participate in this process.
     Methods: we treated normal human bronchial epithelial (NHBE) cellswith LIF in the presence or absence of AG490(JAK2 inhibitor),PD98059(ERK inhibitor), PMA(the activator of protein kinase C) and thesiRNA against STAT3. Then the expression of NK-1R, p-STAT3,total-STAT3, p-ERK1/2 and total-ERK1/2 in NHBE cells were detectedby Western-blot, RT-PCR or immunocytochemistry.
     Results: LIF induced activation of p-STAT3, and p-STAT3 expressionwas inhibited by AG-490 but not by PD-98059. Nevertheless, theexpression of total-STAT3 was not affected by the factors mentionedabove. LIF induced activation of p-ERK1/2, and p-ERK1/2 was inhibited by PD-98059 but not by AG-490. Similar to total-STAT3, the expressionof total-ERK1/2 did not change. PMA increased the expression ofp-ERK1/2 in NHBE cells, but there were no significant differencebetween the cells stimulated with LIF and the cells stimulated with LIF inthe presence of PMA. LIF induced expression of NK-1R in NHBE cells,both AG-490 and PD-98059 suppressed the LIF-induced expression ofNK-1R; on the contrary, PMA increased the expression of NK-1R inNHBE cells. LIF-induced p-STAT3 was inhibited by STAT3-siRNA, inaddition, the expression of total-STAT3 was also inhibited bySTAT3-siRNA. However, STAT3-siRNA did not affect the expression ofp-ERK1/2 and total-ERK1/2. The LIF-induced expression of NK-1R wasinhibited by STAT3-siRNA both at the mRNA level and the pretein level,but it was not affected by negative control siRNA and sham plasmid.
     Conclusions: LIF up-regulates NK-1R expression in NHBE cells viaJAK2/STAT3 pathway and MAPK pathway, in this process, noobservable interaction was found between the two pathways.
引文
[1] Kim EJ, Simpson PJ, Park DJ, et al. Leukemia inhibitory factor is a proliferative factor for olfactory sensory neurons. Neuroreport, 2005; 16:25-28
    [2] Yamamori T, Fukada K, Aebersold R, et al. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science, 1989; 246: 1412-1416.
    [3] Murphy M, Reid K, Brown MA, et al. Involvement of leukemia inhibitory factor and nerve growth factor in the development of dorsal root ganglion neurons. Development, 1993; 117:1173-1182.
    [4] Ludlam WH, Chandross KJ, Kessler JA. LIF and IL-1 beta-mediated increases in substance P receptor mRNA in axotomized, explanted or dissociated sympathetic ganglia. Brain Res. 1995; 685:12-20
    [5] Ludlam WH, Zang Z, Mccarson KE, et al. mRNAs encoding muscarinic and substance P receptors in cultured sympathetic neurons are differentially regulated by LIF or CNTF. Dev Biol, 1994; 164: 528-539
    [6] Freidin M, Kessler JA. Cytokine regulation of substance P expression in sympathetic neurons. Proc Natl Acad Sci U S A. 1991; 88: 3200-3203
    [7] Zheng X, Knight DA, Zhou D, et al. Leukemia inhibitory factor is synthesized and released by human eosinophils and modulates activation state and chemotaxis. J Allergy Clin Immunol. 1999; 104: 136-144.
    [8] 林敏娟,劳学军,马洪明,等.支气管哮喘大鼠肺组织中白血病抑制因子与神经激肽受体表达的相关性分析,中华结核和呼吸杂志,2005,28:820-824
    [9] 朱锦琪,冯俊涛,胡成平,等.神经生长因子、白血病抑制因子调控支气管哮喘大鼠神经源性炎症机制的研究.中华结核和呼吸杂志,2006,29:376-380
    [10] Knight DA, D'Aprile AC, Spalding LJ, et al. Leukaemia inhibitory factor(LIF) upregulates excitatory non-adrenergic non-cholinergic and maintains cholinergic neural function in tracheal explants. Br J Pharmacol, 2000, 130:975-979
    [11] Knight DA, McKay K, Wiggs B, et al. Localization of leukaemia inhibitory factor to airway epithelium and its amplification of contractile responses to tachykinins. British Journal of Pharmacology. 1997; 120: 883-891.
    [12] Ulich T. R., Fann M. J., Patterson P. H., et al. Intratracheal injection of LPS and cytokines. V. LPS induces expression of LIF and LIF inhibits acute inflammation. Am J Physiol. 1994 ;267(4 Pt 1): L442-446.
    [13] 林敏娟,胡成平,吴鄂生,等.支气管哮喘大鼠肺组织中白血病抑制因子的表达变化.中华结核和呼吸杂志,2003,26:727-728
    [14] Ip WK, Wong CK, Lam CW. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol. 2006; 145: 162-172.
    [15] Wong WS, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta. 2004; 1697:53-69.
    [16] Chue SC, Scow CJ, Duan W, et al. Inhibitor of p42/44 mitogen-activated protein kinase, but not p38 MAPK, attenuated antigen challenge of guinea pig airways in vitro. Int Immunopharmacol. 2004; 4: 1089-1098.
    [17] 汤渝玲,胡成平,冯俊涛,等.神经生长因子调控哮喘神经源性炎症Ras-MAPK信号转导通路.中南大学学报医学版,2006,31:319-325
    [18] Brown MA, Metcalf D, Gough NM. Leukaemia inhibitory factor and interleukin-6 are expressed at very low levels in the normal adult mouse and are induced by inflammation. Cytokine, 1994, 6:300-309
    [19] Grosset C, Taupin JL, Lemercier C, et al. Leukaemia inhibitory factor expression is inhibited by glucocorticoids through posttranscriptional mechanisms. Cytokine, 1999, 11: 29-36
    [20] Knight DA, Lydell CP, Zhou D, et al. Leukemia inhibitory factor (LIF) and LIF receptor in human lung. Distribution and regulation of LIF release. Am J Respir Cell Mol Biol. 1999;20(4) :834-41.
    [21] Ichinose M, Miura M, Yamauchi H, et al. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med. 1996;153:936-941
    [22] Boehme SA, Sullivan SK, Crowe PD, et al. Activation of mitogen-activated protein kinase regulates eotaxin-induced eosinophil migration. J Immunol. 1999 Aug 1; 163(3): 1611-8.
    [23] Kumano K, Nakao A, Nakajima H, et al. Blockade of JAK2 by tyrphostin AG-490 inhibits antigen-induced eosinophil recruitment into the mouse airways. Biochem Biophys Res Commun. 2000; 270: 209-214.
    [24] Park JI, Strock CJ, Ball DW, et al. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol, 2003; 23:543-554
    [25] Schuringa JJ, van der chaaf S, Vellenga E, et al. LIF-Induced STAT3 Signaling in Murine versus Human Embryonal Carcinoma (EC) Cells. Exp Cell Res, 2002; 274:119-129
    [26] Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J, 1998;334:297-314
    [27] Stahl N, Boulton TG, Farruggella T, et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science, 1994;263: 92-95.
    [28] Jo C, Kim H, Jo I, et al. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta, 2005;1743:187-197
    [29] Schiemann WP, Bartoe JL, Nathanson NM. Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J Biol Chem, 1997;272: 16631-16636
    [30] Park JI, Strock CJ, Ball DW, et al. Interleukin-1 beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 2005; 29: 125-134
    [31] Park JI, Powers JF, Tischler AS, et al. GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nfl-heterozygous knockout mice. Exp Cell Res, 2005; 303: 79-88
    [32] Lee SO, Lou W, Qureshi KM, et al. RNA interference targeting stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate, 2004;60:303-309
    [33] Konnikova L, Kotecki M, Kruger MM, et al. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC cancer, 2003 ;3:23-31
    [34] 林敏娟.白血病抑制因子调控哮喘气道神经源性炎症的初步研究[博士学位论文].长沙,中南大学,2004
    [35] Kessler JA, Freidin MM, Kalberg C, et al. Cytokines regulate substance P expression in sympathetic neurons. Regul Pept, 1993;46:70-75
    [36] Patterson PH. Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology. Proc Natl Acad Sci USA, 1994;91:783,3-7835
    [37] Jorens PG, De Jongh R, Bossaert LL, et al. High levels of leukemia inhibitory factor in ARDS. Cytokine. 1996; 8:873-876
    [38] Schuiling M, Zuidhof AB, Zaagsma J, et al. Involvement of tachykinin NK_1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained guinea pigs. Am J Respir Crit Care Med, 1999; 159: 423-430
    [39] Kodama H, Fukuda K, Pan J, et al. Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp 130-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol, 2000;279:H1635-1644
    [40] Bai TR, Zhou D, Weir T, et al. Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol, 1995;269:L309-317
    [41] Deng XF, Rokosh DG, Simpson PC. Autonomous and growth factor-induced hypertrophy in cultured neonatal mouse cardiac myocytes comparison with rat. Circ Res, 2000; 87: 781-788.
    [1] Baumgarten CR, Witzel A, Schierhorn K, et al. Neuro-immuno regulatory mechanisms of asthma. Acta Microbiol Immunol Hung. 1998;45(1):31-412.
    [2] Ball TM, Anderson D, Minto J, et al. Cortisol circadian rhythms and stress responses in infants at risk of allergic disease. J Allergy Clin Immunol. 2006; 117(2): 306-311.
    [3] Wright RJ. Stress and atopic disorders. J Allergy Clin Immunol. 2005;116(6):1301-1306.
    [4] Theoharides TC, Kempuraj D, Tagen M, et al. Human umbilical cord blood-derived mast cells: a unique model for the study of neuro-immuno-endocrine interactions. Stem Cell Rev. 2006;2(2):143-154.
    [5] Besedovsky HO, del Rey A. Interactions between immunological cells and the hypothalamus pituitary-adrenal axis: an example of neuroendocrine immunoregulation. Recenti Prog Med. 1988; 79(7-8): 300-304.
    [6] Besedovsky HO, del Rey A, Sorkin E, et al. T lymphocytes affect the development of sympathetic innervation of mouse spleen. Brain Behav Immun. 1987 Jun;1(2): 185-193.
    [7] Besedovsky HO, del Rey A. Feed-back interactions between immunological cells and the hypothalamus-pituitary-adrenal axis. Neth J Med. 1991;39(3-4):274-280.
    [8] Blalock J E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev. 1989;69(1):1-32.
    [9] 范少光,丁桂凤.神经内分泌与免疫系统之间相互作用的介导物质:共用的生物学语言.生理科学进展,1995;26(2):175-183
    [10] Imura H. Immuno-neuro-endocrine network Rinsho Byori. 1997;45(6):505-10.
    [11] Weigent DA, Blalock JE. Associations between the neuroendocrine and immune systems. J Leukoc Biol. 1995; 58(2):137-150.
    [12] Nockher WA, Renz H. Neurotrophins and asthma: novel insight into neuroimmune interaction. J Allergy Clin Immunol. 2006;117(1):67-71.
    [13] Nassenstein C, Kutschker J, Tumes D, et al. Neuro-immune interaction in allergic asthma: role of neurotrophins. Biochem Soc Trans. 2006;34(Pt 4):591-593.
    [14] Feng JT, Hu CP. Dysfunction of releasing adrenaline in asthma by nerve growth factor. Med Hypotheses. 2005;65(6):1043-1046.
    [15] 黄芳,费俭,刘晓,等.神经营养因子.细胞生物学杂志,1996;18:17-20.
    [16] Rochlitzer S, Nassenstein C, Braun A. The contribution of neurotrophins to the pathogenesis of allergic asthma. Biochem Soc Trans. 2006;34(Pt 4):594-599.
    [17] Nassenstein C, Schulte-Herbruggen O, Renz H, et al. Nerve growth factor: the central hub in the development of allergic asthma? Eur J Pharmacol. 2006 8;533(1-3):195-206.
    [18] Zheng X, Knight DA, Zhou D, et al. Leukemia inhibitory factor is synthesized and released by human eosinophils and modulates activation state and chemotaxis. J Allergy Clin Immunol. 1999;104(1):136-144.
    [19] 林敏娟,胡成平.白血病抑制因子在哮喘中的作用.国外医学呼吸系统分册.2004,24(1):23-26
    [20] Levi-Montalcini R, Dal Toso R, della Valle F, et al. Update of the NGF saga. J Neurol Sci. 1995; 130(2): 119-127.
    [21] Aloe L, Bracci-Laudiero L, Bonini S, et al. The expanding role of nerve growth factor: from neurotrophic activity to immunologic diseases. Allergy. 1997;52(9):883-894.
    [22] 周敏,徐永健,熊盛道,等.神经生长因子在哮喘患者诱导痰炎性细胞的表达.中华内科杂志,2003;42(11):764-767
    [23] Scott J, Selby M, Urdea M, et al. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature. 1983;302(5908):538-40.
    [24] Ullrich A, Gray A, Berman C, et al. Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature. 1983;303(5920):821-825.
    [25] Braun A, Appel E, Baruch R, et al. Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur J Immunol. 1998;28(10):3240-3251.
    [26] Marconi A, Vaschieri C, Zanoli S, et al. Nerve growth factor protects human keratinocytes from ultraviolet-B-induced apoptosis. J Invest Dermatol. 1999; 113(6): 920-927.
    [27] Peters EM, Stieglitz MG, Liezman C, et al. p75 Neurotrophin Receptor-Mediated Signaling Promotes Human Hair Follicle Regression (Catagen). Am J Pathol. 2006; 168(1): 221-234.
    [28] Ehrhard PB, Ganter U, Stalder A, et al. Expression of functional trk protooncogene in human monocytes. Proc Natl Acad Sci U S A. 1993 ;90(12):5423-7. [29] 尹方明.P75和TrKA:两种NGF受体系.国外医学神经病学神经外科分册, 1997, 24: 205-208
    [30] Lee KF, Bachman K, Landis S, et al. Dependence on p75 for innervation of some sympathetic targets. Science. 1994;263(5152):1447-1449.
    [31] Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993;261(5119):345-348
    [32] Levi-Montalcini R. The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect. 1966;60:217-259.
    [33] Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989 ;337(6205):362-364. [34] Lindsay RM, Lockett C, Sternberg J, et al. Neuropeptide expression in cultures of adult sensory neurons: modulation of substance P and calcitonin gene-related peptide levels by nerve growth factor. Neuroscience. 1989;33(l):53-65. [35] Gadient RA, Patterson PH. Leukemia inhibitory factor, Interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. Stem Cells. 1999;17(3): 127-137.
    [36] Brown MA, Metcalf D, Gough NM. Leukaemia inhibitory factor and interleukin 6 are expressed at very low levels in the normal adult mouse and are induced by inflammation. Cytokine. 1994;6(3):300-309
    [37] Chabaud M, Fossiez F, Taupin JL, et al. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998 ; 161 (1 ):409-414. [38] Grosset C, Taupin JL, Lemercier C, et al. Leukaemia inhibitory factor expression is inhibited by glucocorticoids through post-transcriptional mechanisms. Cytokine. 1999 ;11(1):29-36
    [39] Undem BJ, Hunter DD, Liu M, et al. Allergen-induced sensory neuroplasticity in airways. Int Arch Allergy Immunol, 1999;118:150-153
    [40] Virchow JC, Julius P, Lommatzsch M, et al. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med, 1998; 158: 2002-2005
    [41] Sahico AM, Stanisz AM, Gleeson TD, et al. Nerve growth factor expression and release in allergic inflammatory disease of the upper airways. Am J Respir Crit Care Med, 2000;161:1631-1635
    
    [42] Bonini S, Lambiase A, Bonini S, et al. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA, 1996; 93:10955-10960
    
    [43] Olgart Hoglund C, Frossard N. Nerve growth factor and asthma. Pulm Pharmacol Ther, 2002; 15:51-60
    
    [44] Carr MJ, Hunter DD, Undem BJ. Neurotrophins and asthma. Curr Opin Pulm Med, 2001; 7:1-7
    
    [45] Fox AJ, Patel HJ, Barnes PJ, et al. Release of nerve growth factor by human pulmonary epithelial cells:role in airway inflammatory diseases. Eur J Pharmacol 2001; 424: 159-162
    
    [46] Olgart C, Frossard N. Human lung fibroblasts secrete nerve growth factor:effect of inflammatory cytokines and glucocorticoids. Eur Respir J, 2001;18:115-121
    
    [47] Bonini S, Lambiase A, Bonini S, et al. Nerve growth factor:an important molecule in allergic inflammation and tissue remodelling. Int Arch Allergy Immunol, 1999; 118:159-162
    
    [48] Sanico AM, Koliatsos VE, Stanisz AM, et al. Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol, 1999; 118: 154-158.
    
    [49] Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize,store and release nerve growth factor. Proc Natl Acad Sci USA, 1994; 91:3739-3743
    
    [50] Braun A, Lommatzsch M, Mannsfeldt A, et al. Cellular sources of enhanced brain -derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol, 1999; 21:537-546
    
    [51] Lommatzsch M, Braun A, Mannsfeldt A, et al. Abundant production of brain -derived neurotrophic factor by adult visceral epithelia: implications for paracrine and target-derived neurotrophic functions. Am J Pathol, 1999; 155: 1183-1193
    
    [52] Solomon A, Aloe L, Pe'er J, et al. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol, 1998; 102: 454-460
    
    [53] 李东培,才丽平,赵金茹,等.NGF在哮喘豚鼠支气管肺泡灌洗液细胞中的 表达.神经解剖学杂志,2002;18(4):333-336
    [54] 李东培,才丽平,方秀斌.哮喘豚鼠下呼吸道及内脏传入部位NGF表达的研究.解剖学报,2002;33(4):350-354
    [55] 林敏娟,胡成平,吴鄂生,等.支气管哮喘大鼠肺组织中白血病抑制因子的表达变化.中华结核和呼吸杂志,2003,26:727-728
    [56] 朱锦琪,冯俊涛,胡成平,等.神经生长因子、白血病抑制因子调控支气管哮喘大鼠神经源性炎症机制的研究.中华结核和呼吸杂志,2006,29(6):376-380
    [57] Cheng-Ping Hu, Jun-Tao Feng. LIF upregulates expression of NK-1R in NHBE cells. Mediators of Inflammation, 2006, Aug: 1-8
    [58] Smeyne RJ, Klein R, Schnapp A, et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368(6468):246-9.
    [59] Hunter DD, Myers AC, Undem BJ. Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons. Am J Respir Crit Care Med. 2000;161(6):1985-90.
    [60] Hoyle GW, Graham RM, Finkelstein JB, et al. Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol. 1998; 18(2): 149-57.
    [61] Barnes PJ. Non-adrenergic non-cholinergic neural control of human airways. Arch Int Pharmacodyn Ther. 1986;280(2 Suppl):208-28.
    [62] Casale TB. Neuropeptides and the lung. J Allergy Clin Immunol. 1991;88(1): 1-14.
    [63] Barnes PJ. Neuropeptides and asthma. Am Rev Respir Dis. 1991;143(3Pt 2):S28-32.
    [64] Ollerenshaw SL, Jarvis D, Sullivan CE, et al. Substance P immunoreactive nerves in airways from asthmatics and nonasthmatics. Eur Respir J. 1991;4(6):673-82.
    [65] Nieber K, Baumgarten CR, Rathsack R, et al. Substance P and beta-endorphin-like immunoreactivity in lavage fluids of subjects with and without allergic asthma. J Allergy Clin Immunol. 1992;90(4 Pt 1): 646-52.
    [66] 才丽平,方秀斌,高杰,等.实验性哮喘豚鼠的内脏感觉传人部位SP免疫反应的研究.神经解剖学杂志,200117:68-70.
    [67] 方秀斌,刘晓湘,佟晓杰,等.降钙素基因相关肽在哮喘豚鼠内脏传入系统的定量分析.神经解剖学杂志,2000,16:157-159.
    [68] 方秀斌,刘晓湘,张鸿.实验性哮喘时神经生长因子对神经激肽A的上调作用.中国病理生理杂志,2004,20:80-82.
    [69] 刘晓湘,方秀斌,张鸿,等.实验性哮喘时神经生长因子对P物质的上调作用.中国病理生理杂志,2005,21(10):1978-1980
    [70] de Vries A, Dessing MC, Engels F, et al. Nerve growth factor induces a neurokinin-1 receptor- mediated airway hyperresponsiveness in guinea pigs. Am J Respir Crit Care Med. 1999;159(5 Pt 1): 1541-4
    [71] 曹德寿,刘晓湘,方秀斌.哮喘豚鼠初级传入神经元ERK的表达及NGF的调节作用.解剖科学进展,2004,10(1):23-25,29
    [72] Hu CP, Wedde-Beer K, Auais A, et al. Nerve growth factor and nerve growth factor receptors in respiratory syncytial virus-infected lungs. Am J Physiol Lung Cell Mol Physiol, 2002,283(2):L494-502.
    [73] King KA, Hu C, Rodriguez MM, et al. Exaggerated neurogenic inflammation and substance P receptor upregulation in RSV-infected weanling rats. Am J Respir Cell Mol Biol, 2001, 24(2): 101-107.
    [74] Carr MJ, Undem BJ. Inflammation-induced plasticity of the afferent innervation of the airways. Environ Health Perspect. 2001; 109 Suppl 4:567-571.
    [75] Ozturk G. Regulation of calcitonin gene-related peptide expression in vitro: possibility of a new role for leukemia inhibitory factor. Brain Res ,2002,931:74-80.
    [76] Cafferty WB, Gardiner NJ, Gavazzi I, et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci. 2001;21(18):7161-7170.
    [77] Blesch A, Uy HS, Grill RJ, et al. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci. 1999; 19(9):3556-3566.
    [78] Knight DA, D'Aprile AC, Spalding LJ, et al. Leukaemia inhibitory factor (LIF) upregulates excitatory non-adrenergic non-cholinergic and maintains cholinergic neural function in tracheal explants. Br J Pharmacol. 2000;130(5):975-979.
    [79] Otten U, Gadient RA. Neurotrophins and cytokines-intermediaries between the immune and nervous systems. Int J Dev Neurosci. 1995;13(3-4):147-51.
    [80] Lambiase A, Bracci-Laudiero L, Bonini S, et al. Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol. 1997; 100(3): 408-414.
    [81] Melamed I, Turner CE, Aktories K, et al. Nerve growth factor triggers microfilament assembly and paxillin phosphorylation in human B lymphocytes. J Exp Med. 1995; 181(3): 1071-1079.
    [82] Quarcoo D, Schulte-Herbruggen O, Lommatzsch M, et al. Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation. Clin Exp Allergy. 2004;34(7): 1146-1151.
    [83] Path G, Braun A, Meents N, et al. Augmentation of allergic early-phase reaction by nerve growth factor. Am J Respir Crit Care Med. 2002; 166(6):818-826.
    [84] De Vries A, Engels F, Henricks PA, et al. Antibodies directed against nerve growth factor inhibit the acute bronchoconstriction due to allergen challenge in guinea-pigs. Clin Exp Allergy. 2002; 32(2): 325-328.
    [85] Tokuoka S, Takahashi Y, Masuda T, et al. Disruption of antigen-induced airway inflammation and airway hyper-responsiveness in low affinity neurotrophin receptor p75 gene deficient mice. Br J Pharmacol. 2001 Dec; 134(7): 1580-1586.
    [86] Nassenstein C, Braun A, Erpenbeck VJ, et al. The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma. J Exp Med. 2003; 198(3): 455-467.
    [87] la Sala A, Corinti S, Federici M, et al. Ligand activation of nerve growth factor receptor TrkA protects monocytes from apoptosis. J Leukoc Biol. 2000;68(1):104-10.
    [88] 欧阳若芸,胡成平,陈平,等.神经生长因子对哮喘大鼠Th1/Th2类细胞因子表达的调控研究.中国实用内科杂志,2006,26(20):1613-1616
    [89] 欧阳若芸,胡成平,朱锦琪,等.神经生长因子及其受体在哮喘大鼠肺组织的变化以及对气道炎症的影响.中南大学学报(医学版),2005,30(6):660-665
    [90] Marshall JS, Waserman S. Mast cells and the nerves—potential interactions in the context of chronic disease. Clin Exp Allergy. 1995;25(2):102-10.
    [91] Piccinni MP, Scaletti C, Mavilia C, et al. Production of IL-4 and leukemia inhibitory factor by T cells of the cumulus oophorus: a favorable microenvironment for pre-implantation embryo development. Eur J Immunol. 2001 ;31(8):2431-2437.
    [92] Viallard JF, Taupin JL, Ranchin V, et al. Analysis of leukemia inhibitory factor, type 1 and type 2 cytokine production in patients with eosinophilic fasciitis. J Rheumatol. 2001;28(1):75-80.
    
    [93] Gay J, More J, Bueno L, Fioramonti J. CCK-induced Fos expression in brain stem is enhanced after intestinal nematode infection in rats. Brain Res. 2002;942(l-2):124-127.
    
    [94] Sugiura S, Lahav R, Han J, et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci. 2000;12(2):457-466.
    
    [95] Escary JL, Perreau J, Dumenil D, et al. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993;363(6427):361-364.
    [96] Gyotoku E, Morita E, Kameyoshi Y, et al. The IL-6 family cytokines, interleukin-6, interleukin-11, oncostatin M, and leukemia inhibitory factor, enhance mast cell growth through fibroblast-dependent pathway in mice. Arch Dermatol Res. 2001;293(10):508-514.
    [97] Tofaris GK, Patterson PH, Jessen KR, et al. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci. 2002;22(15):6696-6703.
    [98] Ikezono T, Wu T, Yao XL, et al. Leukemia inhibitory factor induces the 85-kDa cytosolic phospholipase A2 gene expression in cultured human bronchial epithelial cells. Biochim Biophys Acta. 1997;1355(2):121-130.
    [99] Kubota T, Koga K, Araki H, et al. The relationships of mononuclear leukocyte beta-adrenergic receptors to aerobic capacity and exercise-induced asthma in asthmatic children. Arerugi. 2000 ;49:40-51.
    [100] Counil FP, Varray A, Karila C, et al. Wingate test performance in children with asthma: aerobic or anaerobic limitation? Med Sci Sports Exerc. 1997 ;29:430-435.
    [101] Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA, 1976,73:2424-2428
    [102] 吴克复,马小彤,宋玉华.细胞的功能冗余性及其意义.生物化学与生物物理进展,2004,311054—1057
    [103] Unsicker K, Krisch B,Otten U, et al. Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids. Proc Natl Acad Sci USA. 1978; 75: 3498-3502
    [104] 汪俊,胡成平,冯俊涛.NGF启动哮喘哮喘肾上腺髓质细胞冗余性致肾上腺素释放障碍.中华结核和呼吸杂志,2006,29(12):812-815
    [105] Olgart Hoglund C, de Blay F, Oster JP, et al. Nerve growth factor levels and localisation in human asthmatic bronchi. Eur Respir J. 2002;20(5): 1110-6.
    [106] Zhou XF, Oldfield B J, Livett BG., et al. Substance P-containing sensory neurons in the rat dorsal root ganglia innervate the adrenal medulla. J Auton Nerv Syst, 1991, 33: 247-254.
    [107] Zhou XF, Livett BG. Substance P has biphasic effects on catecholamine secretion evoked by electrical stimulation of perfused rat adrenal glands in vitro. J Auton Nerv Syst, 1990, 31: 31-39.
    [108] Zhou XF, Marley PD, Livett BG. Substance P modulates the time course of nicotinic but not muscarinic catecholamine secretion from perfused adrenal glands of rat. Br J Pharmacol, 1991, 104: 159-165.
    [109] Noga O, Hanf G, Gorges D, et al. Regulation of NGF and BDNF by dexamethasone and theophylline in human peripheral eosinophils in allergics and non-allergics. Regul Pept. 2005; 132(1-3): 74-79.
    [110] Lommatzsch M, Schloetcke K, Klotz J, et al. Brain-derived neurotrophic factor in platelets and airflow limitation in asthma. Am J Respir Crit Care Med. 2005; 171(2): 115-20.
    [111] 李静.活血化瘀法治疗哮喘病的机理研究.山东中医学院学报,1994,18:174-176
    [112] 邵长荣.喘有夙根——治喘务求其本.中国中西医结合杂志 1997(4):197-198
    [113] 侯天印,王春华.痰证论.北京:人民军医出版社,1989:1-2
    [114] Cohn L, Whittaker L, Niu N, et al. Cytokine regulation of mucus production in a model of allergic asthma. Novartis Found Symp. 2002; 248: 201-213
    [115] 欧正武,肖长江,帅明华.哮喘伏痰新识.湖南中医学院学报,1998(4):25-26
    [116] 李杰.中医药对哮喘嗜酸性粒细胞凋亡及白细胞介素-5的研究概况.湖南中医学院学报,2002(2):64-65
    [117] 王琳,田建辉.“痰饮伏肺”与哮喘病机.陕西中医,2003,24:334-336
    [118] 陈可冀,史载祥.实用血瘀证学.北京:人民卫生出版社,1999:58-60
    [119] 陈可冀,史载祥.实用血瘀证学.北京:人民卫生出版社,1999:4-8
    [120] Sharma A, Bansal S, Nagpal RK. Lipid peroxidation in bronchial asthma. Indian J Pediatr. 2003;70:715-717
    [121] Abraha D, Cho SH, Agrawal DK, et al. (S,S)-formoterol increases the production of IL-4 in mast cells and the airways of a murine asthma model. Int Arch Allergy Immunol. 2004;133(4):380-388
    [122] Wierzbicki T, Iqbal SM, Cuvelier SL, et al. IL-4 primes human endothelial cells for secondary responses to histamine. J Leukoc Biol. 2003; 74(3): 420-427
    [123] Packard KA, Khan MM. Effects of histamine on Th1/Th2 cytokine balance. Int Immunopharmacol. 2003; 3(7): 909-920
    [124] Weltman JK. Histamine as a regulator of allergic and asthmatic inflammation. Allergy Asthma Proc. 2003; 24(4):227-229
    [125] Nagai T, Arai Y, Emori M, et al. Anti-allergic activity of a Kampo (Japanese herbal) medicine "Sho-seiryu-to (Xiao-Qing-Long-Tang)" on airway inflammation in a mouse model. Int Immunopharmacol. 2004 ;4(10-11):1353-1365.
    [126] 唐兴荣,李达仁,谭金华.镇喘颗粒对支气管哮喘患者神经生长因子及嗜酸性粒细胞的影响.中医药导报,2005;11(8):10-11
    [127] de Vries A, Engels F, Henricks PA, et al. Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P: a potential role for trkA. Clin Exp Allergy. 2006;36(9): 1192-200.
    [128] 崔承斌,王京京,吴中朝.从背俞穴与夹脊穴的关系论背俞功能带,中国针灸.2005,25(7):483-486
    [129] 李洁,魏建子,刘世敏.针灸治疗支气管哮喘的选穴用穴规律探析,针刺研究.2000,25(1):78-80
    [130] 刘乡.以痛制痛—针刺镇痛的基本机制,科学通报.2001,46(7):609-616
    [131] 崔龙苹,杨永清,陈汉平,等.针刺对肾上腺切除大鼠哮喘模型肺功能影响的 研究,针刺研究.1999,24(1):44-47
    [132] 崔龙苹,杨永清,王正田,等.针刺对肾上腺切除大鼠哮喘模型嗜酸性粒细胞计数及血清皮质酮水平的影响,中国针灸,2000,19(8):501-503
    [133] 王新家,孔抗美,叶卫莲,等.针刺影响慢性脊髓损伤大鼠脊髓组织神经生长因子及其受体的表达.中医正骨,2005;17(5):6-7
    [134] 王新家,孔抗美,齐伟力.针刺影响慢性脊髓损伤大鼠BDNF及其受体TrkB的表达.汕头大学医学院学报,2002;15(1):20-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700