神经激肽NK1、NK3对基底前脑神经元兴奋性毒性损伤的不同调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老年性痴呆(Alzheimer’s disease,AD)是常见的中枢神经变性疾病,其确切的病因不清。研究发现,AD患者基底前脑胆碱能神经元死亡明显,兴奋性毒性损伤是导致神经元损伤与AD发病的重要因素。神经激肽是包括P物质(Neurokinin-1,NK1)、神经激肽A(Neurokinin-2,NK2)、神经激肽B(Neurokinin-3,NK3)的速激肽家族,其生物学效应由相应的NK1、NK2和NK3受体来介导。研究表明,神经激肽-神经激肽受体在基底前脑胆碱能神经元分布丰富,但其功能尚不清楚。我们课题组以往的实验研究发现,神经激肽在调节基底核纹状体和黑质神经元兴奋性毒性损伤中具有重要作用。进一步探讨神经激肽对基底前脑胆碱能神经元兴奋性毒性的调节作用,对于揭示AD的病理发生机制和探索其治疗策略,具有重要意义。
     因此,本研究采用海人藻酸(kainic acid,KA)诱导兴奋性毒性小鼠模型、分别给予NK1、NK3受体特异性激动剂(septide、senktide),NK3受体拮抗剂(SB218795)干预方法、Fluoro-Jade B染色、免疫荧光双标记与激光共聚焦显微镜等技术,观察分析了神经激肽NK1、NK3对基底前脑神经元兴奋性毒性损伤和死亡的调节作用及其可能机制。主要结果如下:
     1.神经激肽NK1、NK3受体与离子型谷氨酸受体共存于基底前脑神经元。细胞计数结果表明,约57-95%NK1受体阳性神经元表达AMPA受体亚基GluR1、2、3、4,约14%-77%NK3受体阳性神经元表达AMPA受体亚基GluR1、2、3和NMDA受体亚基NR1
     2.神经激肽NK1、NK3对KA注射诱导基底前脑神经元兴奋性毒性损伤产生不同的调节作用。NK1受体激动剂具有神经保护作用,而NK3受体激动剂具有兴奋性毒性的协同效应。结果表明:与KA注射组相比,NK1受体激动剂septide干预组的Fluoro-Jade B阳性神经元数量减少,ChAT阳性神经元存活率增加(28%)。而NK3受体激动剂senktide处理组Fluoro-Jade B阳性神经元数目增多,ChAT阳性神经元存活率减少(22%)。NK3受体拮抗剂SB218795处理组Fluoro-Jade B阳性神经元降低,ChAT阳性神经元存活率增加(18%)。
     3.应用不同的双标记方法分析,几乎全部(约100%)基底前脑死亡细胞为神经元,Fluoro-Jade B染色神经元数量与磷酸化NMDA受体上调和D-serine阳性神经元具有密切关系(正相关)。初步结论:
     1.神经激肽NK1、NK3受体和谷氨酸AMPA、NMDA受体共存于基底前脑神经元,提供了神经激肽调节兴奋性信号的受体学基础。
     2.神经激肽NK1、NK3对基底前脑神经元兴奋性毒性损伤具有不同的调节作用,其中NK1具有神经保护作用,而NK3则具有兴奋性神经毒性的协同效应。
     本研究提供了神经激肽NK1、NK3调节基底前脑神经元兴奋性毒性损伤和死亡的新证据,对于揭示AD的病理发生机制和进一步探索AD治疗的药物干预靶位,均具有重要意义。
Alzheimer’s disease (AD) is one common and severe neurodegenerative disease in human beings, but so far the pathogenesis of AD has been ambiguous. Previous studies have shown that massive loss of cholinergic neurons in the basal forebrain are obvious in the AD pathogenesis, and the glutamate-driving excitotoxicity consititutes one of main reasons resulting in the death of these neurons. Intervention ways of excitotoxicity has thus raised much research interests, which may promte to set up new therapy against AD.
     Mammalian neurokinins(NKs)are a family of tachykinin peptides that include substance P (neurokinin-1,NK1), neurokinin A (neurokinin-2, NK2) and neurokinin B (neurokinin-3, NK3). Their biological functions are mediated by three distinct neurokinin receptors, namely NK1 receptor, NK2 receptor and NK3 receptor. Neurokinin peptides and neurokinin receptors are abundantly distributed in the basal forebrain regions, but their function is unclear. In the previous observations we have found that neurokinins are involved in regulating excitotoxicity in the striatal and substantia nigra neurons. Further studies should be devoted to elucidate whether neurokinins are involved in modulating exicitotoxicity or exicitotoxic death of basal forebrain neurons.
     Therefore, the intervention roles of neurokinins NK1, NK3 in regulation of excitotoxicity of cholinergic neurons in the basal forebrain and possible interaction substrate were studied by using animal models induced by kainic acid (KA) leison, administration of neuronkinin receptor specific agonists and antagonist, Fluoro-Jade B (FJB) staining for visualizing neuronal degeneration, choline acetyltransferase (ChAT)-immunohistochemistry, double immuno- fluorescence and laser scanning confocal microscopy.
     Firstly, colocalization of AMPA and NMDA glutamate receptor subunits were found in both NK1R-containing neurons and NK3R-containing neurons in the basal forebrain of mice. Semiquantitative analysis revealed that majority (57-95%) of NK1R-positive neurons express AMPA receptor subunits GluR1-4, and NK3R-positive neurons (14%-77%) express AMPA receptor subunits GluR1-3 and NMDA receptor subunit 1.
     Secondly, the differential interventions roles of neurokinins NK1 and NK3 were found in regulating KA-induced excitotoxic neuronal injuries of basal forebrain in animal models. It revealed that NK1 exhibited neuronal protection, while the NK3 potentated neuronal excitotoxicity. In compared with single KA injection group, pretreatment with NK1 receptor agonist septide decreased FJB-positive neurons and increased ChAT-postive ones, while pretreatment with NK3 receptor agonist senktide increased FJB-positive neurons and decreased ChAT-positive ones. Experiment with NK3 receptor antagonist SB218795 confirmed effect of NK3 on excitotoxicity.
     Thirdly, double labeling experiments were further applied to identify cell types of FJB stained cells and possible involvement of D-serine or phosphorylation of NMDA receptor 1 (pNMDAR1) in the death of basal forebrain neurons. It revealed that nearly all (100%) of FJB-positive cells were neurons, and they overlapped with that of pNMDAR1 or D-serine-positive neurons in the injured basal forebrain.
     This study presents evidence on neuronal colocalization of NK1/NK3 and AMPA/NMDA receptors, which provided substrate for functional interaction between neurokinins and glutamate signals in the basal forebrain. More interestingly, differential intervention roles of neurokinins NK1 and NK3 have been found in regulation of excitotoxic injuries of neurons in the basal forebrain, in which NK1 has neuroprotection effect, while NK3 exhibits synergistic effect on neurotoxicity in the basal forebrain. This study suggests that neurokinin peptides may implicate in pathogenesis of neurodegenerative diseases and neurokinin receptors may act as potential intervention targets in the neuroprotection treatment of AD in human beings.
引文
1. Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol. 2000; 150(1):165-176.
    2. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5.Proc Natl Acad Sci U S A. 2000; 97(6):2910-2915.
    3. Bajaj NP, Miller CC. Phosphorylation of neurofilament heavy-chain side-arm fragments by cyclin-dependent kinase-5 and glycogen synthase kinase-3alpha in transfected cells. J Neurochem. 1997; 69(2):737-743.
    4. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. 2000; 485(1):87-93.
    5. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003; 9(9):1180-1186.
    6. Brownlees J, Yates A, Bajaj NP, Davis D, Anderton BH, Leigh PN, Shaw CE, Miller CC. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci. 2000; 113 (Pt 3):401-407.
    7. Busciglio J, Lorenzo A, Yeh J, Yankner BA. beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995;14(4):879-888.
    8. Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell. 2003;4(4):521-533.
    9. Che Y, Yu YM, Han PL, Lee JK. Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure.Brain Res Mol Brain Res. 2001; 94(1-2):157-165.
    10. Cheung ZH, Ip NY.Cdk5: mediator of neuronal death and survival.Neurosci Lett. 2004;361(1-3):47-51.
    11. Cruz JC, Tsai LH. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med. 2004;10(9):452-458.
    12. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles.Neuron 2003; 40(3):471-483.
    13. Daly NL, Hoffmann R, Otvos L Jr, Craik DJ. Role of phosphorylation in the conformation of tau peptides implicated inAlzheimer's disease. Biochemistry. 2000; 39(30):9039-9046.
    14. Darios F, Muriel MP, Khondiker ME, Brice A, Ruberg M. Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J Neurosci. 2005; 25(16):4159-4168.
    15. Drewes G, Eb neth A, Preuss U, Mandelkow EM, Mandelkow E.MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption.Cell. 1997;89(2):297-308.
    16. Duran y N, Munch G, Michel T. Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci. 1999;249(3):68-73
    17. Elyaman W, Terro F, Wong NS, Hugon J. In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3beta in neuronal apoptosis: links to tau phosphorylation. Eur J Neurosci. 2002;15 (4):651-660.
    18. Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci. 2002; 22(22):9733-41.
    19. Gelderblom M, Eminel S, Herdegen T, Waetzig V.c-Jun N-terminal kinases (JNKs) and the cytoskeleton functions beyond neurodegeneration. Int J Dev Neurosci. 2004; 22(7):559-564.
    20. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer'sdisease. J Biol Chem. 2000;275(8):5535-5544.
    21. Gong CX, Wegiel J, Lidsky T, Zuck L, Avila J, Wisniewski HM, Grundke-Iqbal I, Iqbal K. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res. 2000;853(2):299-309.
    22. Goodenough S, Conrad S, Skutella T, Behl C. Inactivation of glycogen synthase kinase-3beta protects against kainic acid-induced neurotoxicity in vivo. Brain Res. 2004;1026(1):116-125.
    23. Han P, Dou F, Li F, Zhang X, Zhang YW, Zheng H, Lipton SA, Xu H, Liao FF. Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation.J Neurosci. 2005;25(50):11542-11552.
    24. Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem. 2002;80(4):589-597.
    25. Hernandez F, Perez M, Lucas JJ, Avila J. Sulfo-glycosaminoglycan content affects PHF-tau solubility and allows the identification of different types of PHFs. Brain Res. 2002;935(1-2):65-72.
    26. Jiang Q, Gu Z, Zhang G, Jing G. N-methyl-D-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death. Brain Res. 2000; 887(2):2852-92.
    27. Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J Neurochem. 2003; 85(1):115-122.
    28. Lau LF, Schachter JB, Seymour PA, Sanner MA. Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem. 2002;2(4):395-415.
    29. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004;279(48):50078-50088.
    30. Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci. 2003;23(5):1605-1611.
    31. Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett. 2002; 530(1-3):209-214.
    32. Maccioni RB, Otth C, Concha II, Munoz JP. The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer's pathology. Eur J Biochem. 2001; 68(6):1518-1527.
    33. Maccioni RB, Munoz JP, Barbeito L. The molecular bases of Alzheimer's disease and other neurodegenerative disorders.Arch Med Res. 2001;32(5):367-81.
    34. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S. GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila.Mol Psychiatry. 2004; 9(8):812.
    35. Necula M, Kuret J. Site-specific pseudophosphorylation modulates the rate of tau filament dissociation. FEBS Lett. 2005;579(6):1453-1457.
    36. Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell. 2004;116(5):671-682.
    37. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 2005;102(19):6990-6995.
    38. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna, Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 2003;38(4):555-565.
    39. Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. Am J Pathol. 2003;163(3):845-858.
    40. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to beta -amyloid-induced neurotoxicity.Proc Natl Acad Sci U S A. 2002;99(9):6364-6369.
    41. Sayre LM, Perry G, Harris P. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Atzheimer's disease: A central role for bound transition metals. Neurochem. 2000; 74(1):270-279.
    42. Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K, Lasrado R, Vandezande K, Laenen I, Boon T, Van Lint J, Vandenheede J, Moechars D, Loos R, Van Leuven F. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem. 2000; 275(52):41340-41359.
    43. Szatmari E, Habas A, Yang P, Zheng JJ, Hagg T, Hetman M. A positive feedback loop between glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons. J Biol Chem. 2005; 280(45):37526-37535.
    44. Town T, Zolton J, Shaffner R, Schnell B, Crescentini R, Wu Y, Zeng J, DelleDonne A, Obregon D, Tan J, Mullan M. p35/Cdk5 pathway mediates soluble amyloid-beta peptide-induced tau phosphorylation in vitro. J Neurosci Res. 2002;69(3):362-72.
    45. Tseng HC, Zhou Y, Shen Y, Tsai LH. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett. 2002;523(1-3):58-62.
    46. Tsujio I, Zaidi T, Xu J, Kotula L, Grundke-Iqbal I, Iqbal K. Inhibitors of protein phosphatase-2A from human brain structures,immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Lett. 2005;579(2):363-372.
    47. Weishaupt JH, Kussmaul L, Grotsch P, Heckel A, Rohde G, Romig H, Bahr M, Gillardon F. Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci. 2003; 24(2):489-502.
    48. Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N, Albers W, Grant P, Pant HC. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J.2005; 24(1):209-220.
    49. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, Lu KP. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell.2000; 6(4):873-883.
    1. Arenas E, Alberch J, Perez-Navarro E, Solsona C, Marsal J. Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. J Neurosci. 1991;11(8):2332-2338.
    2. Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol. 1983;216(1):53-68.
    3. Barker R.Tachykinins, neurotrophism and neurodegenerative diseases: a critical review on the possible role of tachykinins in the aetiology of CNS diseases. Rev Neurosci. 1996; 7(3):187-214.
    4. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 1992; 6(15):3338-3344.
    5. Bolam JP, Ingham CA, Izzo PN, Levey AI, Rye DB, Smith AD, Wainer BH. Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 1986; 397(2):279-289.
    6. Caicedo A, Eybalin M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur J Neurosci. 1999;11(1):51-74.
    7. Calvo N, Reiriz J, Perez-Navarro E, Alberch J. Tachykinins protect cholinergic neurons from quinolinic acid excitotoxicity in striatal cultures. Brain Res. 1996; 740(1-2):323-328.
    8. Chapman V, Buritova J, Honore P, Besson JM. Physiological contributions of neurokinin 1 receptor activation, and interactions with NMDA receptors, to inflammatory-evoked spinal c-Fos expression. J Neurophysiol. 1996;76(3):1817-1827.
    9. Chen LW, Wei LC, Liu HL, Ding YQ, Zhang H, Rao ZR, Ju G, Chan YS. Cholinergic neurons expressing neuromedin K receptor (NK3) in the basal forebrain of the rat: a double immunofluorescence study. Neuroscience 2001a;103(2):413-422.
    10. Chen LW, Wei LC, Liu HL, Qiu Y, Chan YS. Cholinergic neurons expressing substance P receptor (NK(1)) in the basal forebrain of the rat: a double immunocytochemical study. Brain Res. 2001b;904(1):161-166.
    11. Chen LW, Yung KK, Chan YS. Neurokinin peptides and neurokinin receptors as potential therapeutic intervention targets of basal ganglia in the prevention and treatment of Parkinson's disease. Curr Drug Targets. 2004;5(2):197-206.
    12. Gerfen CR. Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res. 1991; 556(1):165-170.
    13. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neuronscaused by differential GluR-B subunit expression. Neuron 1994;12(6):1281-1289.
    14. Kemel ML, Perez S, Godeheu G, Soubrie P, Glowinski J. Facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum. J Neurosci. 2002;22(5):1929-1936.
    15. Lehericy S, Hirsch EC, Cervera-Pierot P, Hersh LB, Bakchine S, Piette F, Duyckaerts C, Hauw JJ, Javoy-Agid F, Agid Y. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. J Comp Neurol. 1993;330(1):15-31.
    16. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258(5082):597-603.
    17. Nakaya Y, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N. Immunohistochemical localization of substance P receptor in the central nerv ous system of the adult rat. J Comp Neurol. 1994;347(2):249-274.
    18. Nilsson J, von Euler AM, Dalsgaard CJ. Stimulation of connective tissue cell growth by substance P and substance K. Nature 1985;315(6014):61-63.
    19. Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 1993;73(2):229-308.
    20. Page KJ, Sirinathsinghji DJ, Everitt BJ. AMPA-induced lesions of the basal forebrain differentially affect cholinergic and non-cholinergic neurons: lesion assessment using quantitative in situ hybridization histochemistry. Eur J Neurosci. 1995; 7(5):1012-1021.
    21. Petralia RS, Esteban JA, Wang YX, Partridge JG, Zhao HM, Wenthold RJ, Malinow R. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci. 1999;2(1):31-36.
    22. Petralia RS, Wenthold RJ. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol. 1992; 318(3):329-354.
    23. Siegel SJ, Janssen WG, Tullai JW, Rogers SW, Moran T, Heinemann SF, Morrison JH. Distribution of the excitatory amino acid receptor subunits GluR2(4) in monkey hippocampus and colocalization with subunits GluR5-7 and NMDAR1. J Neurosci. 1995; 15(4):2707-2719.
    24. Simmons LK, Schuetze SM, Role LW. Substance P modulates single-channel properties of neuronal nicotinic acetylcholine receptors. Neuron 1990;4(3):393-403.
    1. Arenas E, Alberch J, Perez-Navarro E, Solsona C, Marsal J. Neurokinin receptors differentiallymediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. J Neurosci. 1991;11(8):2332-23388.
    2. Barker R. Tachykinins, neurotrophism and neurodegenerative diseases: a critical review on the possible role of tachykinins in the aetiology of CNS diseases. Rev Neurosci. 1996; 7(3):187-214.
    3. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 1992; 6(15):3338-3344.
    4. Blanchet F, Gauchy C, Perez S, Soubrie P, Glowinski J, Kemel ML. Distinct modifications by neurokinin1 (SR140333) and neurokinin2 (SR48968) tachykininreceptor antagonists of the N-methyl-D-aspartate-evoked release of acetylcholine in striosomes and matrix of the rat striatum. Neuroscience 1998;85(4):1025-1036.
    5. Calvo N, Reiriz J, Perez-Navarro E, Alberch J. Tachykinins protect cholinergic neurons from quinolinic acid excitotoxicity in striatal cultures. Brain Res. 1996; 740(1-2):323-328.
    6. Chen LW, Guan ZL, Ding YQ. Mesencephalic dopaminergic neurons expressing neuromedin K receptor (NK3): a double immunocytochemical study in the rat. Brain Res. 1998;780(1):150-154.
    7. Chen LW, Wei LC, Liu HL, Ding YQ, Zhang H, Rao ZR, Ju G, Chan YS. Cholinergic neurons expressing neuromedin K receptor (NK3) in the basal forebrain of the rat: a double immunofluorescence study. Neuroscience 2001; 103(2):413-422.
    8. Chizh BA, Cumberbatch MJ, Birch PJ, Headley PM. Endogenous modulation of excitatory amino acid responsiveness by tachykinin NK1 and NK2 receptors in the rat spinal cord. Br J Pharmacol. 1995;115(6):1013-1019.
    9. Cumberbatch MJ, Chizh BA, Headley PM. Modulation of excitatory amino acid responses by tachykinins and selective tachykinin receptor agonists in the rat spinal cord. Br J Pharmacol. 1995;115(6):1005-1012.
    10. Hopkins KJ, Wang G, Schmued LC. Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res. 2000; 864(1):69-80.
    11. Hu HJ, Chen LW, Yung KK, Chan YS. Differential expression of AMPA receptor subunits in substance P receptor-containing neurons of the caudate-putamen of rats. Neurosci Res. 2004;49(3):281-288.
    12. Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T. Trophic effect of various neuropeptides on the cultured ventral spinal cord of rat embryo. Neurosci Lett. 1989;101(3):316-320.
    13. Kemel ML, Perez S, Godeheu G, Soubrie P, Glowinski J. Facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum. J Neurosci. 2002;22(5):1929-1936.
    14. Liu X, Andre D, Puizillout JJ. Substance P post-synaptically potentiatesglutamate-induced currents in dorsal vagal neurons. Brain Res. 1998; 804(1):95-104.
    15. Raffa RB. Possible role(s) of neurokinins in CNS development and neurodegenerative or other disorders. Neurosci Biobehav Rev. 1998; 22(6):789-813.
    16. Salthun-Lassalle B, Traver S, Hirsch EC, Michel PP. Substance P, neurokinins A and B, and synthetic tachykinin peptides protect mesencephalic dopaminergic neurons in culture via an activity-dependent mechanism. Mol Pharmacol. 2005; 68(5):1214-1224.
    17. Sanberg PR, Emerich DF, Aebischer P, Amisetti SM, Ouellette W, Koutouzis TK, Cahill DW, Norman AB. Substance P containing polymer implants protect against striatal excitotoxicity. Brain Res. 1993;628(1-2):327-329.
    18. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123-130.
    19. Simmons LK, Schuetze SM, Role LW. Substance P modulates single-channel properties of neuronal nicotinic acetylcholine receptors. Neuron 1990; 4(3):393-403.
    20. Wang YQ, Hu HJ, Cao R, Chen LW. Differential co-localization of neurokinin-3 receptor and NMDA/AMPA receptor subunits in neurons of the substantia nigra of C57/BL mice. Brain Res. 2005; 1053(1-2):207-212.
    21. Whitty CJ, Kapatos G, Bannon MJ. Neurotrophic effects of substance P on hippocampal neurons in vitro. Neurosci Lett. 1993;164(1-2):141-144.
    1. Berman FW, Murray TF. Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. J Neurochem. 1997;69(2):693-703.
    2. Coyle JT. Neurotoxic action of kainic acid. J Neurochem. 1983;41(1):1-11.
    3. Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther. 1999;81(3):163-221.
    4. Ferkany JW, Zaczek R, Coyle JT. Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature 1982;298(5876):757-759.
    5. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K. Thepresence of free D-serine in rat brain. FEBS Lett. 1992;296(1):33-36.
    6. Izumi Y, Clifford DB, Zorumski CF. Glycine antagonists block the induction of long-term potentiation in CA1 of rat hippocampal slices. Neurosci Lett. 1990; 112(2-3):251-256.
    7. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529-531.
    8. Llansola M, Sanchez-Perez A, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 2005;4(3):154-161.
    9. Mayadevi M, Praseeda M, Kumar KS, Omkumar RV. Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. Biochim Biophys Acta. 2002;1598(1-2):40-45.
    10. McNamara D, Dingledine R. Dual effect of glycine on NMDA-induced neurotoxicity in rat cortical cultures. J Neurosci. 1990;10(12):3970-3976.
    11. Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998; 54(4):369-415.
    12. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97(9):4926-4931.
    13. Newell DW, Barth A, Malouf AT. Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures. Brain Res. 1995;675(1-2):38-44.
    14. Patel J, Zinkand WC, Thompson C, Keith R, Salama A. Role of glycine in the N-methyl-D-aspartate-mediated neuronal cytotoxicity. J Neurochem. 1990; 54(3):849-854.
    15. Prehn JH, Lippert K, Krieglstein J. Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury? Eur J Pharmacol. 1995;292(2):179-189.
    16. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A. 1993;90(14):6591-6595.
    17. Sanchez-Perez AM, Felipo V. Serines 890 and 896 of the NMDA receptor subunit NR1 are differentially phosphorylated by protein kinase C isoforms. Neurochem Int. 2005; 47(1-2):84-91.
    18. Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995; 92(9):3948-3952.
    19. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH. D-serine as a neuromodulator: regional and d evelopmental localizations in rat brain glia resemble NMDA receptors. J Neurosci. 1997;17(5):1604-1615.
    20. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123-130.
    21. Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry. 2000;157(11):1738-1751.
    22. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A. 2003; 100(11):6789-94.
    23. Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem. 1997;272(8):5157-5166.
    24. Watanabe Y, Himi T, Saito H, Abe K. Involvement of glycine site associated with the NMDA receptor in hippocampal long-term potentiation and acquisition of spatial memory in rats. Brain Res. 1992;582(1):58-64.
    25. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A. 1999;96(23):13409-13414.
    26. Zhang X, Wu J, Lei Y, Fang L, Willis WD. Protein phosphatase modulates the phosphorylation of spinal cord NMDA receptors in rats following intradermal injection of capsaicin. Brain Res. 2005;138(2):264-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700