神经退行性疾病小鼠模型中神经祖细胞分布及神经元再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去相当长时间里人们认为,哺乳动物和人的脑一经发育成熟,神经细胞就不再进行增殖和分化,只有细胞的逐步退化和死亡。然而,近来大量研究表明,成体脑中存在着一类能自我增殖、分化且产生特定神经元的细胞,称之为神经干细胞。成脑的脑室和脑室下区(ventricular and subventricular zones,VZ and SVZ)及脑室周边的室管膜下区(subependymal zone),海马齿状回粒细胞下区(Subgranular Zone,SGZ)是成脑干细胞的源头。成脑干细胞的发现为干细胞治疗神经退行性疾病提供了更广阔的前景。本文利用小鼠模型,研究了人类老年痴呆(Alzheimer’s disease,AD)、帕金森氏病(Parkinson’s disease,PD)、肌萎缩侧索硬化症(Amyotrophic lateral sclerosis,ALS)三大神经退行性疾病中神经元的退行性病变、神经干/祖细胞的分布变化及神经元的再生,为AD、PD、ALS三类神经退行性疾病的发病机理提供了重要的基础资料,同时也为三类疾病的防治指明了新的方向。
     1. Aβ沉积对老年痴呆转基因小鼠模型中神经元再生的影响
     研究表明:在老年痴呆病人中,认知功能障碍与Aβ斑块的形成与大量沉积有关。然而,Aβ沉积对神经祖细胞的影响以及对神经元再生的影响仍然不是很清楚。目前已有的关于老年痴呆病人和老年痴呆动物模型中神经元再生的数据存在很大的争议。因此,我们采用了含有巢蛋白第二内含子的启动子所控制的LacZ报告基因(pNes-LacZ)的转基因小鼠(pNes-Tg)和同时含有pPDGF-APPSw,Ind和pNes-LacZ基因的双转基因小鼠(Bi-Tg)来研究Aβ沉积对脑部海马和其它区域神经祖细胞分布的影响以及对神经元再生的影响。根据体内Aβ沉积的状况,我们选择了2月、8月和12月的小鼠,分别对应于无Aβ沉积,Aβ开始沉积,Aβ大量沉积三个阶段。结果表明,与同龄对照组pNes-Tg小鼠相比,在没有Aβ沉积的2月AD双转基因小鼠中,海马区的神经祖细胞数目略有增加;在Aβ开始沉积和大量沉积的阶段,海马区的神经祖细胞数目显著减少。同时,我们发现Aβ沉积增加了海马神经元的再生但是没有明显的胶质细胞的增生。在8月,Brdu阳性细胞也显著增加。另外,Aβ斑块刚开始形成和大量沉积阶段,皮质区神经祖细胞是先增加后减少;侧脑室区,在没有Aβ沉积的2月,神经祖细胞显著增加,而当体内开始出现Aβ沉积时,神经祖细胞开始减少。Aβ沉积对体内神经祖细胞分布的影响、对神经祖细胞向神经元方向分化的影响以及对Brdu阳性细胞引起的变化揭示了刺激体内神经元的再生可能是治疗老年痴呆疾病的一个有效途径。
     2.锰超氧化物歧化酶对MPTP-帕金森氏症小鼠模型中多巴胺能神经元的保护作用及对神经元再生的影响
     PD的特征是黑质区多巴胺能神经元损伤,数目减少,导致纹状体多巴胺含量下降。目前PD病因还不是很清楚,但普遍观点认为自由基生成、氧化反应增强、谷胱甘肽含量降低以及线粒体功能异常、内源性和外源性毒物等因素,导致黑质DA神经元细胞变性,其中线粒体功能异常起主导作用。因此,我们采用了MPTP氧化损伤的PD小鼠模型(正常小鼠组)和β-actin启动子所调控的人锰超氧化物歧化酶(MnSOD)基因的转基因小鼠(MnSOD小鼠组)来研究MnSOD对多巴胺能神经元损伤的保护作用及对PD小鼠模型中神经元再生的影响。我们选取了3个时间点,即0天、10天和15天,分别代表没有注射MPTP,连续注射MPTP 10天和15天。结果表明,MPTP通过AIF和Caspase3两条凋亡通路引起正常小鼠SNC区多巴胺能神经元的凋亡,导致正常小鼠SNC区多巴胺能神经元数目的减少。尤其是在连续腹腔注射15天后正常小鼠多巴胺能神经元显著减少;而高表达MnSOD小鼠则能抑制这两条凋亡通路,神经元只有轻度减少。MPTP抑制了抗凋亡蛋白Bcl2的表达;而MnSOD小鼠维持了Bcl2的正常表达。注射MPTP后,正常小鼠组线粒体中Cyto-c、COX IV、GSH、GPX、MnSOD等抗氧化物质的表达均呈下降趋势,细胞内脂质、蛋白、DNA过氧化产物增加;MnSOD小鼠则能维持这些抗氧化物质的高表达,显著减少体内过氧化产物HNE、MDA、8-OHG、3-NT的产生。连续注射15天MPTP的正常小鼠SNC区小胶质细胞大量激活;MnSOD小鼠则没有。注射MPTP 15天时正常小鼠SNC区星形胶质细胞显著增加,Brdu免疫阳性的增殖细胞显著增加。注射了MPTP的正常小鼠和MnSOD小鼠的SNR区nestin免疫阳性的神经干/祖细胞呈增加趋势;SN区没有检测到特异性多巴胺能神经元的生成。同时,注射MPTP后,正常小鼠海马DG区nestin免疫阳性的神经干/祖细胞呈减少趋势;在10天和15天时,均可以检测到增殖的nestin免疫阳性的神经干/祖细胞。MnSOD对MPTP造成多巴胺能神经元损伤的保护作用为治疗PD药物开发提供了靶点;而MPTP损伤引起的体内神经干/祖细胞的变化及MnSOD对其的影响揭示了刺激体内神经元的再生可能是治疗帕金森氏病的一个有效途径。
     3.肌萎缩侧索硬化症转基因小鼠疾病发展过程中体内神经祖细胞变化的研究
     作用于神经干细胞或者神经祖细胞的神经再生类药物被认为是恢复ALS疾病患者损伤神经功能的途径之一。在运用再生类药物治疗ALS之前,了解体内成体神经祖细胞在运动神经元退行性病变过程中的组织与变化是极为重要的。因此,我们采用了含有巢蛋白第二内含子的启动子所控制的LacZ报告基因(pNes-LacZ)的转基因小鼠(pNes-Tg)和同时含有G93A-SOD1和pNes-LacZ基因的双转基因小鼠(Bi-Tg)来研究脊髓和脑内神经祖细胞在运动神经元退行性病变过程中的变化。结果显示:与同龄对照组pNes-Tg小鼠相比,在ALS双转小鼠疾病起始和发展阶段,脊髓背角区的神经祖细胞数目增加;而脊髓腹角区的神经祖细胞数目仅在疾病发展阶段检测到增加。在疾病开始和发展阶段,与对照组小鼠相比,在脊髓腰椎段神经祖细胞的数目远高于脊髓颈椎段和胸椎段的。在疾病整个发展过程中,与疾病起始状态相比,背角的神经祖细胞数目是降低的,而腹角的神经祖细胞数目是增加的。另一方面,运动皮质区的神经祖细胞数目在疾病起始阶段有增加,但到了疾病发展阶段,这种增加的趋势不是很明显。在侧脑室区,疾病进展期神经祖细胞的数目显著减少;而在海马区,无论在疾病的起始或进展阶段,都没有检测到神经祖细胞的变化。在ALS转基因小鼠模型中,体内神经祖细胞在疾病起始和进展阶段的重新组织与分布给刺激体内神经再生治疗ALS提供了坚实的理论基础。
Last quite a long time, it was thought that once maturation, nerve cells in mammalian and human brain were no longer undergoing proliferation and differentiation, and only went to gradual degradation and death. However, a large number of recent studies show that neural stem cells also are found in adult brain, which can self-proliferate and differentiate to specific neuronal cells. Adult neural stem cells exist in brain ventricle and the subventricular zone (VZ and SVZ), ependymal and periventricular zone (subependymal zone), subgranular Zone (SGZ) in hippocampus dentate gyrus region. The discovery of stem cells in adult brain provides a broad prospect for treatment of neurodegenerative diseases with stem cell. In our experiments, mouse models of human neurodegenerative diseases for Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) have been used to study neuron degeneration, distribution of neural stem/progenitor cells under the pathologic condition and neuroregeneration, which will be benefit to treatment of neurodegenerative diseases using neurogenesis in vivo and development of drugs.
     1. Neurogenic Responses to Amyloid-Beta Plaques in Alzheimer’s Disease-Like Mice
     Formation and accumulation of beta-amyloid (Aβ) plaques are associated with declined memory and other neurocognitive function in AD patients. However, the effects of Aβplaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ reporter (pNes-LacZ) transgenic mice (pNes-Tg) and Bi-transgenic mice (Bi-Tg) containing both pPDGF-APPSw,Ind and pNes-LacZ transgenes to investigate the effects of Aβplaques on neurogenesis in the hippocampus and other brain regions of the AD–like mice. We chose transgenic mice at 2, 8 and 12 months of age, corresponding to the stages of Aβplaque free, plaque onset and plaque progression to analyze the effects of Aβplaques on the distribution and de novo neurogenesis of (from) NPCs. We demonstrated a slight increase in the number of NPCs in the hippocampal regions at the Aβplaque free stage, while a significant decrease in the number of NPCs at Aβplaque onset and progression stages. On the other hand, we showed that Aβplaques increase neurogenesis, but not gliogenesis from post-mitotic NPCs in the hippocampus of Bi-Tg mice compared with age-matched control pNes-Tg mice. In addition, the number of NPCs in cortex region increased first and then decreased from Aβplaque onset to progression stages. The number of NPCs in lateral ventricle increased at Aβfree stage, and decreased when Aβplaque began to form. The alteration of NPCs distribution and neurogenic responses of NPCs to Aβplaques suggest that experimental approaches to promote de novo neurogenesis may improve neurocognitive function and provide an effective therapy for AD.
     2. Protective Effect of MnSOD on Depletion and Effect on Regeneration of Dopaminergic Neurons in MPTP-PD Mice Model
     PD is characterized by substantia nigra pars compacta (SNC) dopaminergic neurons injury, the number reduced, causing the dopamine content. PD etiology is not clear at present, but common perception is that the production of free-radical oxidation reaction and mitochondrial dysfunction and reduced glutathione levels, endogenous and exogenous factors such as toxicants lead to degeneration of the substantia nigra dopaminergic neurons. Mitochondrial dysfunction may play a leading role. Therefore, We used MPTP- PD mouse model of oxidative damage (normal mice), and transgenic mice ofβ-actin promoter driven human manganese superoxide dismutase (MnSOD) gene (MnSOD mice) to study the protective effect of MnSOD on depletion and effect on regeneration of dopaminergic neurons in SNC of MPTP-PD mice. We used three time points, namely D0 days, D10 days, D15 days, respectively on behalf of no MPTP, MPTP with consecutive injection for 10 and 15 days. The results showed that by two apoptosis pathway of AIF and Caspase3 dopaminergic neurons were undergoing apoptosis induced by MPTP, which led to the reduction in the number of dopaminergic neurons in SNC of normal mice. Especially after intraperitoneal injection of MPTP for 15days, dopaminergic neurons in normal mice markedly reduced; while overexpression of MnSOD inhibited these two apoptotic pathways and dopaminergic neurons only slightly reduced. MPTP inhibited the anti-apoptotic protein Bcl-2 expression, and MnSOD mice maintained Bcl2 expression. With MPTP treatment, expression of antioxidant substances such as cytochrome c, cytochrome c oxidase (COX IV), glutathione (GSH), glutathione peroxidase (GPX), manganese superoxide dismutase (MnSOD) in mitochondria of normal mice tended to decrease, and peroxidative products of lipid, protein, DNA increased dramatically. MnSOD mice were able to maintain high expression of these antioxidant substances, and significantly reduced peroxidative products in vivo like 4-hydroxy-2-nonenol (HNE), malondialdehyde (MDA), 8-hydroxy-2’-deoxyguanosine (8-OHG), 3-nitro tyrosine (3-NT). With injection of MPTP for 15 days, microglia cells in SNC of normal mice were activated in a large of amount. Astrocytes and Brdu immunoreactive cells in SNC of normal mice also presented significant increases. Furthermore, with injection of MPTP, nestin immunopositive neural stem / progenitor cells in SNR of both normal mice and MnSOD mice were increased. No regeneration of dopaminergic neurons was detected in SN. At the same time, nestin immunopositive neural stem / progenitor cells in DG of normal mouse hippocampus tended to decrease. At the D10 and D15, proliferate neural stem / progenitor cells represented by nestin staining can be detected. The protective effect of MnSOD on dopaminergic neuron injury caused by MPTP provides a basis for anti-PD drug design. And the alteration of NPCs distribution and proliferation of NPCs to dopaminergic neuron injury suggest that experimental approaches to promote de novo neurogenesis may improve motor function and provide an effective therapy for PD.
     3. Temporal Response of Neural Progenitor Cells to Disease Onset and Progression in ALS-Like Transgenic Mice
     Regenerative medicine through neural stem or neural progenitor cells (NPCs) has been proposed as an alterative avenue to restore neurological dysfunction in ALS. It is critical to understand the organization and distribution of endogenous adult NPCs in response to motor neuron degeneration before regenerative medicine can be applied for ALS therapy. For this reason, we analyzed the temporal response of NPCs to motor neuron degeneration in the spinal cord and brain using nestin enhancer driven LacZ reporter transgenic mice (pNes-Tg mice: control) and Bi-transgenic mice containing both nestin enhancer driven LacZ reporter gene and mutant G93A-SOD1 gene (Bi-Tg mice). We observed an increase of NPCs in the dorsal horns of the spinal cord at the disease onset and progression stages in the Bi-Tg mice compared with that of age-matched pNes-Tg control mice. In contrast, an increase of NPCs in the ventral horns was detected at the disease progression stage. Compared to control mice, the number of NPCs in lumbar region was much higher than those of cervical region and thoracic region.
     On the other hand, an increase of NPCs in the motor cortex at the disease onset stage, but not at the disease progression stage was detected. Furthermore, a decrease of NPCs in the lateral ventricle at the disease progression stage was observed, while no difference in the number of NPCs in the hippocampus was detected at the disease onset and progression stages. The organization and distribution of endogenous adult NPCs in the ALS-like transgenic mice at the disease onset and progression stages provide fundamental bases for consideration of regenerative therapy of ALS by increasing de novo neurogenesis.
引文
1. Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, et al: A seed for Alzheimer amyloid in the brain. J Neurosci 2004, 24:4894-4902.
    2. Metsaars WP, Hauw JJ, van Welsem ME, Duyckaerts C: A grading system of Alzheimer disease lesions in neocortical areas. Neurobiol Aging 2003, 24:563-572.
    3. Selkoe DJ: Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 2001, 3:75-80.
    4. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH: Functional neurogenesis in the adult hippocampus. Nature 2002, 415:1030-1034.
    5. Temple S: The development of neural stem cells. Nature 2001, 414:112-117.
    6. Bjorklund A, Lindvall O: Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000, 3:537-544.
    7. Cameron HA, McKay R: Stem cells and neurogenesis in the adult brain. Curr Opin Neurobiol 1998, 8:677-680.
    8. Gage FH: Neurogenesis in the adult brain. J Neurosci 2002, 22:612-613.
    9. Horner PJ, Gage FH: Regeneration in the adult and aging brain. Arch Neurol 2002, 59:1717-1720.
    10. Chi L, Ke Y, Luo C, Li B, Gozal D, Kalyanaraman B, Liu R: Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells 2006, 24:34-43.
    11. Gould E, Reeves AJ, Graziano MS, Gross CG: Neurogenesis in the neocortex of adult primates. Science 1999, 286:548-552.
    12. Greenberg DA, Jin K: Regenerating the brain. Int Rev Neurobiol 2007, 77:1-29.
    13. Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R: Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 2006, 24:1011-1019.
    14. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH: The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002, 22:6639-6649.
    15. Rietze R, Poulin P, Weiss S: Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 2000, 424:397-408.
    16. Monje ML, Mizumatsu S, Fike JR, Palmer TD: Irradiation induces neural precursor-cell dysfunction. Nat Med 2002, 8:955-962.
    17. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M: Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002, 110:429-441.
    18. Jin K, Minami M, Xie L, Sun Y, Mao XO, Wang Y, Simon RP, Greenberg DA: Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell 2004, 3:373-377.
    19. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN: GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 2005, 16:509-521.
    20. Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA: Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci U S A 2004, 101:13363-13367.
    21. Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M: Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 2005, 19:436-450.
    22. Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T: Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. Neuroscience 2004, 128:431-441.
    23. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA: Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A 2004, 101:343-347.
    24. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL: Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc Natl Acad Sci U S A 2003, 100:9023-9027.
    25. Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL: The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience 2005, 132:777-788.
    26. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ: Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol 2006, 495:70-83.
    27. Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP: Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer's disease. Neuromolecular Med 2002, 1:125-135.
    28. Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP: Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J Neurochem 2002, 83:1509-1524.
    29. German DC, Yazdani U, Speciale SG, Pasbakhsh P, Games D, Liang CL: Cholinergic neuropathology in a mouse model of Alzheimer's disease. J Comp Neurol 2003, 462:371-381.
    30. Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE: Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci U S A 2003, 100:4837-4842.
    31. Janus C, Westaway D: Transgenic mouse models of Alzheimer's disease. Physiol Behav 2001, 73:873-886.
    32. Lendon CL, Ashall F, Goate AM: Exploring the etiology of Alzheimer disease using molecular genetics. Jama 1997, 277:825-831.
    33. Sheng C, Harper JE: Shoot versus Root Signal Involvement in Nodulation and Vegetative Growth in Wild-Type and Hypernodulating Soybean Genotypes. Plant Physiol 1997, 113:825-831.
    34. Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PT, Jr., Kosik KS: A detergent-insoluble membrane compartment contains A beta in vivo. Nat Med 1998, 4:730-734.
    35. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L: Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 1999, 96:3228-3233.
    36. Aoki Y, Huang Z, Thomas SS, Bhide PG, Huang I, Moskowitz MA, Reeves SA: Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. Faseb J 2000, 14:1965-1973.
    37. Mitsuhashi T, Aoki Y, Eksioglu YZ, Takahashi T, Bhide PG, Reeves SA, Caviness VS, Jr.: Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci U S A 2001, 98:6435-6440.
    38. Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R: Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells 2006, 24:1280-1287.
    39. Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F: Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004, 9:664-683.
    40. Imbimbo BP, Lombard J, Pomara N: Pathophysiology of Alzheimer's disease. Neuroimaging Clin N Am 2005, 15:727-753, ix.
    41. Calafiore M, Battaglia G, Zappala A, Trovato-Salinaro E, Caraci F, Caruso M, Vancheri C, Sortino MA, Nicoletti F, Copani A: Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to beta-amyloid. Neurobiol Aging 2006, 27:606-613.
    42. Lopez-Toledano MA, Shelanski ML: Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci 2004, 24:5439-5444.
    43. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A: Solubleform of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004, 131:2173-2181.
    44. Cameron HA, McEwen BS, Gould E: Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995, 15:4687-4692.
    45. Monje ML, Toda H, Palmer TD: Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003, 302:1760-1765.
    46. Triarhou LC: Introduction. Dopamine and Parkinson's disease. Adv Exp Med Biol 2002, 517:1-14.
    47. Shimohama S, Sawada H, Kitamura Y, Taniguchi T: Disease model: Parkinson's disease. Trends Mol Med 2003, 9:360-365.
    48. Orth M, Tabrizi SJ: Models of Parkinson's disease. Mov Disord 2003, 18:729-737.
    49. Smeyne RJ, Jackson-Lewis V: The MPTP model of Parkinson's disease. Brain Res Mol Brain Res 2005, 134:57-66.
    50. Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM: Animal models of Parkinson's disease in rodents induced by toxins: an update. J Neural Transm Suppl 2003:89-100.
    51. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ: A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 1983, 80:4546-4550.
    52. Schmidt N, Ferger B: Neurochemical findings in the MPTP model of Parkinson's disease. J Neural Transm 2001, 108:1263-1282.
    53. Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K: Experimental models of Parkinson's disease: insights from many models. Lab Anim Sci 1999, 49:363-371.
    54. Macleod AD, Counsell CE, Ives N, Stowe R: Monoamine oxidase B inhibitors for early Parkinson's disease. Cochrane Database Syst Rev 2005:CD004898.
    55. Jenner P: Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson's disease. Neurology 2004, 63:S13-22.
    56. Przedborski S, Tieu K, Perier C, Vila M: MPTP as a mitochondrial neurotoxic model of Parkinson's disease. J Bioenerg Biomembr 2004, 36:375-379.
    57. Uhl GR: Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2003, 18 Suppl 7:S71-80.
    58. Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK: The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 1996, 98:1253-1260.
    59. Klivenyi P, St Clair D, Wermer M, Yen HC, Oberley T, Yang L, Flint Beal M: Manganesesuperoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol Dis 1998, 5:253-258.
    60. Schulz JB, Falkenburger BH: Neuronal pathology in Parkinson's disease. Cell Tissue Res 2004, 318:135-147.
    61. Tatton WG, Chalmers-Redman R, Brown D, Tatton N: Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol 2003, 53 Suppl 3:S61-70; discussion S70-62.
    62. Lev N, Melamed E, Offen D: Apoptosis and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:245-250.
    63. Cao XQ, Arai H, Ren YR, Oizumi H, Zhang N, Seike S, Furuya T, Yasuda T, Mizuno Y, Mochizuki H: Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 2006, 99:861-867.
    64. Kanthasamy AG, Kitazawa M, Kaul S, Yang Y, Lahiri DK, Anantharam V, Kanthasamy A: Proteolytic activation of proapoptotic kinase PKCdelta is regulated by overexpression of Bcl-2: implications for oxidative stress and environmental factors in Parkinson's disease. Ann N Y Acad Sci 2003, 1010:683-686.
    65. Jellinger KA: Cell death mechanisms in Parkinson's disease. J Neural Transm 2000, 107:1-29.
    66. Merad-Saidoune M, Boitier E, Nicole A, Marsac C, Martinou JC, Sola B, Sinet PM, Ceballos-Picot I: Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced by glutathione depletion. Exp Neurol 1999, 158:428-436.
    67. Hajimohamadreza I, Treherne JM: The role of apoptosis in neurodegenerative diseases. Prog Drug Res 1997, 48:55-98.
    68. Szeto HH: Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. Aaps J 2006, 8:E521-531.
    69. Liang CL, Wang TT, Luby-Phelps K, German DC: Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson's disease. Exp Neurol 2007, 203:370-380.
    70. Rego AC, Oliveira CR: Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 2003, 28:1563-1574.
    71. Tretter L, Sipos I, Adam-Vizi V: Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease. Neurochem Res 2004, 29:569-577.
    72. Perier C, Tieu K, Guegan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M: Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U SA 2005, 102:19126-19131.
    73. Fiskum G, Starkov A, Polster BM, Chinopoulos C: Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease. Ann N Y Acad Sci 2003, 991:111-119.
    74. Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Picot I: Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem Pharmacol 1998, 56:645-655.
    75. Mytilineou C, Kramer BC, Yabut JA: Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 2002, 8:385-387.
    76. Kubatova A, Honzatko A, Brichac J, Long E, Picklo MJ: Analysis of HNE metabolism in CNS models. Redox Rep 2007, 12:16-19.
    77. Zarkovic K: 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 2003, 24:293-303.
    78. Selley ML: (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson's disease. Free Radic Biol Med 1998, 25:169-174.
    79. Shukla R, Rajani M, Srivastava N, Barthwal MK, Dikshit M: Nitrite and malondialdehyde content in cerebrospinal fluid of patients with Parkinson's disease. Int J Neurosci 2006, 116:1391-1402.
    80. Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT: Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 2005, 280:42026-42035.
    81. Abe T, Isobe C, Murata T, Sato C, Tohgi H: Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease. Neurosci Lett 2003, 336:105-108.
    82. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y: Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiol Dis 2002, 9:244-248.
    83. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B: Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in
    8-hydroxyguanine levels in substantia nigra. J Neurochem 1997, 69:1196-1203.
    84. Przedborski S, Ischiropoulos H: Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid Redox Signal 2005, 7:685-693.
    85. Duncan AJ, Heales SJ: Nitric oxide and neurological disorders. Mol Aspects Med 2005, 26:67-96.
    86. Carreras MC, Franco MC, Peralta JG, Poderoso JJ: Nitric oxide, complex I, and themodulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 2004, 25:125-139.
    87. Chung KK, Dawson TM, Dawson VL: Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand) 2005, 51:247-254.
    88. Tieu K, Ischiropoulos H, Przedborski S: Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life 2003, 55:329-335.
    89. Gerlach M, Blum-Degen D, Lan J, Riederer P: Nitric oxide in the pathogenesis of Parkinson's disease. Adv Neurol 1999, 80:239-245.
    90. Ebadi M, Sharma SK: Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson's disease. Antioxid Redox Signal 2003, 5:319-335.
    91. Cagnin A, Kassiou M, Meikle SR, Banati RB: In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 2006, 185:107-114.
    92. Wojtera M, Sikorska B, Sobow T, Liberski PP: Microglial cells in neurodegenerative disorders. Folia Neuropathol 2005, 43:311-321.
    93. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL: Role of microglia in the central nervous system's immune response. Neurol Res 2005, 27:685-691.
    94. Streit WJ, Mrak RE, Griffin WS: Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004, 1:14.
    95. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP: The role of glial reaction and inflammation in Parkinson's disease. Ann N Y Acad Sci 2003, 991:214-228.
    96. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K: The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 2003, 4:727-738.
    97. Burke RE: Recent advances in research on Parkinson disease: synuclein and parkin. Neurologist 2004, 10:75-81.
    98. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P: Alpha-synuclein and Parkinson's disease. Faseb J 2004, 18:617-626.
    99. Norris EH, Giasson BI, Lee VM: Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 2004, 60:17-54.
    100. Chen LW, Yung KL, Chan YS: Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's disease. Curr Drug Targets 2005, 6:821-833.
    101. Sofroniew MV: Reactive astrocytes in neural repair and protection. Neuroscientist 2005, 11:400-407.
    102. Aldskogius H: Repairing CNS myelin--astrocytes have to do their jobs. Exp Neurol 2005, 192:7-10.
    103. Tom VJ, Doller CM, Malouf AT, Silver J: Astrocyte-associated fibronectin is criticalfor axonal regeneration in adult white matter. J Neurosci 2004, 24:9282-9290.
    104. Privat A: Astrocytes as support for axonal regeneration in the central nervous system of mammals. Glia 2003, 43:91-93.
    105. Chen Y, Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab 2003, 23:137-149.
    106. Brooks BR: Diagnostic dilemmas in amyotrophic lateral sclerosis. J Neurol Sci 1999, 165 Suppl 1:S1-S9.
    107. Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O: Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996-2000. J Neurol Neurosurg Psychiatry 2003, 74:1258-1261.
    108. Cleveland DW: From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 1999, 24:515-520.
    109. Rosen DR, Sapp P, O'Regan J, Kenna-Yasek D, Schlumpf KS, Haines JL, Gusella JF, Horvitz HR, Brown RH, Jr.: Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am J Med Genet 1994, 51:61-69.
    110. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59-62.
    111. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW: ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997, 18:327-338.
    112. Dunlop J, Beal MH, She Y, Howland DS: Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. JNeurosci 2003, 23:1688-1696.
    113. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264:1772-1775.
    114. Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH, Jr., Itoyama Y: Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. JNeurosci 2001, 21:9246-9254.
    115. Guegan C, Vila M, Rosoklija G, Hays AP, Przedborski S: Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 2001, 21:6569-6576.
    116. Higgins CM, Jung C, Ding H, Xu Z: Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 2002,22:RC215.
    117. Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney ME: Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 1998, 44:763-770.
    118. Wu AS, Kiaei M, Aguirre N, Crow JP, Calingasan NY, Browne SE, Beal MF: Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J Neurochem 2003, 85:142-150.
    119. Silani V, Fogh I, Ratti A, Sassone J, Ciammola A, Cova L: Stem cells in the treatment of amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Other Motor Neuron Disord 2002, 3:173-181.
    120. Clarke D, Frisen J: Differentiation potential of adult stem cells. Curr Opin Genet Dev 2001, 11:575-580.
    121. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J: Generalized potential of adult neural stem cells. Science 2000, 288:1660-1663.
    122. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999, 96:25-34.
    123. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH: Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004, 44:399-421.
    124. Seri B, Herrera DG, Gritti A, Ferron S, Collado L, Vescovi A, Garcia-Verdugo JM, varez-Buylla A: Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb Cortex 2006, 16 Suppl 1:i103-i111.
    125. varez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron 2004, 41:683-686.
    126. varez-Buylla A, Lois C: Neuronal stem cells in the brain of adult vertebrates. Stem Cells 1995, 13:263-272.
    127. Darsalia V, Heldmann U, Lindvall O, Kokaia Z: Stroke-induced neurogenesis in aged brain. Stroke 2005, 36:1790-1795.
    128. Kokaia Z, Lindvall O: Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 2003, 13:127-132.
    129. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA: Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 2003, 24:171-189.
    130. Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR: Proliferation and neuronal differentiation of mitotically active cells followingtraumatic brain injury. Exp Neurol 2003, 183:406-417.
    131. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B: Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 2004, 127:319-332.
    132. Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M: Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 2001, 32:1890-1896.
    133. Goh EL, Ma D, Ming GL, Song H: Adult neural stem cells and repair of the adult central nervous system. J HematotherStem Cell Res 2003, 12:671-679.
    134. Lindvall O, Kokaia Z, Martinez-Serrano A: Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004, 10 Suppl:S42-S50.
    135. Silani V, Cova L, Corbo M, Ciammola A, Polli E: Stem-cell therapy for amyotrophic lateral sclerosis. Lancet 2004, 364:200-202.
    136. Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, et al: Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 2001, 159:2215-2225.
    137. Li B, Ryder J, Su Y, Moore SA, Jr., Liu F, Solenberg P, Brune K, Fox N, Ni B, Liu R, Zhou Y: Overexpression of GSK3betaS9A resulted in tau hyperphosphorylation and morphology reminiscent of pretangle-like neurons in the brain of PDGSK3beta transgenic mice. Transgenic Res 2004, 13:385-396.
    138. varez-Buylla A, Garcia-Verdugo JM: Neurogenesis in adult subventricular zone. J Neurosci 2002, 22:629-634.
    139. Bonnert TP, Bilsland JG, Guest PC, Heavens R, McLaren D, Dale C, Thakur M, McAllister G, Munoz-Sanjuan I: Molecular characterization of adult mouse subventricular zone progenitor cells during the onset of differentiation. Eur J Neurosci 2006, 24:661-675.
    140. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, varez-Buylla A: Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006, 494:415-434.
    1. Clarke D, Frisen J: Differentiation potential of adult stem cells. Curr Opin Genet Dev 2001, 11:575-580.
    2. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J: Generalized potential of adult neural stem cells. Science 2000, 288:1660-1663.
    3. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999, 96:25-34.
    4. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH: Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004, 44:399-421.
    5. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292:154-156.
    6. Emsley JG, Mitchell BD, Kempermann G, Macklis JD: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005, 75:321-341.
    7. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI: Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995, 168:342-357.
    8. Liu Z, Martin LJ: Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol 2003, 459:368-391.
    9. Lennington JB, Yang Z, Conover JC: Neural stem cells and the regulation of adult neurogenesis. Reprod Biol Endocrinol 2003, 1:99.
    10. Tabar V, Panagiotakos G, Greenberg ED, Chan BK, Sadelain M, Gutin PH, Studer L: Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 2005, 23:601-606.
    11. Altman J, Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965, 124:319-335.
    12. Altman J: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969, 137:433-457.
    13. Kaplan MS: Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 1981, 195:323-338.
    14. Reynolds BA, Tetzlaff W, Weiss S: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992, 12:4565-4574.
    15. Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255:1707-1710.
    16. Richards LJ, Kilpatrick TJ, Bartlett PF: De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A 1992, 89:8591-8595.
    17. Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL: The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. Neuroscience 2005, 132:777-788.
    18. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA: Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A 2004, 101:343-347.
    19. Darsalia V, Heldmann U, Lindvall O, Kokaia Z: Stroke-induced neurogenesis in aged brain. Stroke 2005, 36:1790-1795.
    20. Kokaia Z, Lindvall O: Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 2003, 13:127-132.
    21. Seri B, Herrera DG, Gritti A, Ferron S, Collado L, Vescovi A, Garcia-Verdugo JM, varez-Buylla A: Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb Cortex 2006, 16 Suppl 1:i103-i111.
    22. varez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron 2004, 41:683-686.
    23. varez-Buylla A, Lois C: Neuronal stem cells in the brain of adult vertebrates. Stem Cells 1995, 13:263-272.
    24. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA: Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 2003, 24:171-189.
    25. Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR: Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 2003, 183:406-417.
    26. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B: Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 2004, 127:319-332.
    27. Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M: Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 2001, 32:1890-1896.
    28. Goh EL, Ma D, Ming GL, Song H: Adult neural stem cells and repair of the adult central nervous system. J HematotherStem Cell Res 2003, 12:671-679.
    29. Lindvall O, Kokaia Z, Martinez-Serrano A: Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004, 10 Suppl:S42-S50.
    30. Silani V, Cova L, Corbo M, Ciammola A, Polli E: Stem-cell therapy for amyotrophic lateral sclerosis. Lancet 2004, 364:200-202.
    31. Gage FH: Mammalian neural stem cells. Science 2000, 287:1433-1438.
    32. Bonfanti L: PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006, 80:129-164.
    33. Iso H, Simoda S, Matsuyama T: Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice. Behav Brain Res 2007, 179:90-98.
    34. Levi O, Michaelson DM: Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J Neurochem 2007, 100:202-210.
    35. Mesulam M: The cholinergic lesion of Alzheimer's disease: pivotal factor or side show? Learn Mem 2004, 11:43-49.
    36. Samii A, Nutt JG, Ransom BR: Parkinson's disease. Lancet 2004, 363:1783-1793.
    37. Cleveland DW, Rothstein JD: From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001, 2:806-819.
    38. Pincus DW, Keyoung HM, Harrison-Restelli C, Goodman RR, Fraser RA, Edgar M, Sakakibara S, Okano H, Nedergaard M, Goldman SA: Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann Neurol 1998, 43:576-585.
    39. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, et al: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000, 6:271-277.
    40. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, et al: Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004, 427:740-744.
    41. Schaffer DV, Gage FH: Neurogenesis and neuroadaptation. Neuromolecular Med 2004, 5:1-9.
    42. Suhonen JO, Peterson DA, Ray J, Gage FH: Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 1996, 383:624-627.
    43. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH: Functional neurogenesis in the adult hippocampus. Nature 2002, 415:1030-1034.
    44. Lai K, Kaspar BK, Gage FH, Schaffer DV: Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003, 6:21-27.
    45. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA: Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996, 17:595-606.
    46. Gomes WA, Mehler MF, Kessler JA: Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 2003, 255:164-177.
    47. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A: Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000, 28:713-726.
    48. Chmielnicki E, Benraiss A, Economides AN, Goldman SA: Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci 2004, 24:2133-2142.
    49. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS: Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000, 20:2896-2903.
    50. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH: IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 2004, 164:111-122.
    51. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M: Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002, 110:429-441.
    52. Chen JK, Taipale J, Young KE, Maiti T, Beachy PA: Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A 2002, 99:14071-14076.
    53. Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, et al: Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 2002, 1:10.
    54. Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C, Zhang YJ, Nestler EJ, Duman RS: Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 2002, 22:3673-3682.
    55. Wu X, Ding S, Ding Q, Gray NS, Schultz PG: Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 2004, 126:1590-1591.
    56. Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG: Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 2003, 100:7632-7637.
    57. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT: Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002, 34:895-903.
    58. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH: Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 2004, 24:6402-6409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700