IGF-1诱导神经干细胞向少突胶质细胞系分化及其移植治疗脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用悬浮克隆培养技术,在体外从新生大鼠的海马分离神经干细胞,并进行扩增传代培养,观察其增殖、迁移及多潜能分化特性,为下一步试验打下基础。
     方法:解剖显微镜下取新生大鼠海马组织,0.125%的胰蛋白酶溶液消化后,分别以4×10~4/ml、4×10~5/ml和4×10~6/ml三种密度接种于25cm~2培养瓶中悬浮培养,2-3天半量换液,6-7天后传代。将培养的神经干细胞球接种在放入24孔内板涂有多聚赖氨酸的玻璃盖片上,在不同培养基条件下观察其贴壁后的迁移、增殖和分化。应用抗Nestin、抗MAP2、抗MBP和抗GFAP进行细胞化学染色鉴定。
     结果:自新生大鼠海马组织培养获得的细胞培养后形成的细胞球为Nestin阳性,能够耐受多次体外传代。10~4/ml这一接种密度由于细胞量少,发生细胞重聚的可能性降低,有利于干细胞的克隆形成。这些细胞接种后贴壁培养可以分化为MAP2阳性的神经元、MBP阳性少突胶质细胞及GFAP阳性星形胶质细胞。神经干细胞球贴壁后在含有bFGF及IGF-1培养基内分化,细胞迁移的距离明显较不完全及含小牛血清的培养基条件下远。
     结论:1、自新生大鼠海马组织培养获得的细胞球能够自我复制,具有多种分化潜能,即可以分化为神经元、少突胶质细胞及星形细胞,并能够耐受多次体外传代,具有神经干细胞的特点。
     2、bFGF及IGF-1可以促进贴壁培养的神经干细胞的迁移。
     3、本实验获得的神经干细胞细胞可以体外大量增殖,能够满足我们下一步试验的需要。
Objectives: To obtain neural stem cells from the hippocampus of newborn wister rats using floating culture method, and to study its characters of proliferation, migration and multipotential capacity of differentiation.
    Methods: The tissue mass was isolated from the hippocampus of newborn wister rats under the anatomical microscope, and was digested with trypsin. After being washed, cells were seeded into T25 Corning tissue culture flasks with three different densities of 4×10~4cells/ml, 4×10~5 cells /ml and 4×10~6 cells /ml, and incubated at 37℃ in a humidified 5% CO2-95% air atmosphere. The culture medium was composed of DMEM/F12, 20 ng/ml bFGF and B27. At day 3 or 4, half of the medium was echanged. Until day 6, neurospheres were collected, mechanically pipetted into single cells, and then passaged. To examine differentiation of NSCs, cells were seeded onto poly -lysine-coated coverslips in 24-well dishes for about 7-10 days. Mouse anti-MAP2 was used for identification of neurons, rabbit anti-MBP was used for oligodendrocytes and for and rabbit anti-GFAP for astrocytes anti-GFAP.
    Results: The neurospheres was composed of Nestin positive cells which could tolerate passging. The reunion of the cells could be avoided if the cells were seeded with adensity of 4×l0~4cells/ml. The cells could differentiate into neurons, oligodendrocytes and astrocytes. When the neurospheres were seeded onto poly - lysine-coated coverslips and were cultured with bFGF or IGF-1, these cells would migrate further.
    Conclusions: 1. The cells isolated from the hippocampus of newborn wister rats and cultured could proliferated, have multipotential capacity of differentiation and were
引文
1 Bernier PJ, Vinet J, Cossette M, et al. Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res2000,37(1):67-78.
    
    2 Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol, 1971,141(3):283-312.
    
    3 Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993, 11(1):173-189.
    
    4 Kordower JH, Rosenstein JM, Collier TJ, et al. Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol. 1996, 370(2):203-230.
    
    5 Hormigo A, McCarthy M, Nothias JM, et al. Radial glial cell line C6-R integrates preferentially in adult white matter and facilitates migration of coimplanted neurons in vivo. Exp Neurol, 2001,168(2):310-322.
    
    6 Wu W, Wong K, Chen J, et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature. 1999,400(6742):331-336.
    
    7 Klein R. Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Biol, 2001,13(2):196-203.
    
    8 Tabar V, Panagiotakos G, Greenberg ED, et al. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol. 2005, 23(5):601-606.
    
    9 Boockvar JA, Schouten J, Royo N, et al. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery, 2005,56(1):163-171.
    10 Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004,101(52):18117-18122.
    
    11 Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 2004, 427(6976):740-744.
    
    12 Wennersten A, Meier X, Holmin S, et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg, 2004,100(1):88-96.
    
    13 Tate MC, Shear DA, Hoffman SW, et al. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant, 2002, 11(3):283-295.
    
    14 Widera D, Holtkamp W, Entschladen F, et al. MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol, 2004, 83(8):381-387.
    
    15 Prestoz L, Relvas JB, Hopkins K, et al. Association between integrin-dependent migration capacity of neural stem cells in vitro and anatomical repair following transplantation. Mol Cell Neurosci, 2001, 18(5):473-484.
    
    16 Reynolds BA, Weiss A. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052): 1707-1710.
    
    17 Gage FH. Mammalian neural stem cells. Science. 2000, 287(5457):1433-1438.
    
    18 Nakamura M, Okana H, Blendy JA, et al. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron, 1994, 13(1): 67-81.
    
    19 Okabe M, Imai T, Kurusu M, et al. Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature, 2001, 411(6833): 94-98.
    
    20 Kaneko Y, Sakakibara S, Imai T, et al. Musashil: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci, 2000, 22(1-2): 139-153.
    
    21 Okano H, Imai T, Okabe M. Musashi: a translational regulator of cell fate. J Cell Sci, 2002,115 (Pt 7): 1355-1359.
    
    22 Sakakibara S, Nakamura Y, Yoshida T, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA, 2002, 99(23): 15194-15199.
    
    23 Sakakibara S, Imai T, Hamaguchi K, et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol, 1996,176(2): 230-242.
    
    24 Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA, 2000, 97(26) : 14720-14725.
    
    25 Price J. Neural development. Brain stems. Curr Biol, 1995; 5(3): 232- 234.
    
    26 Morrison SJ, White PM, Zock C, et al. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell, 1999, 96(5):737-749.
    
    27 Johansson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 1999, 96(1):25-34.
    
    28 Goldman SA, Luskin MB. Strategies utilized by migrating neurons of the postnatal vertebrate forebrain. Trends Neurosci, 1998, 21(3):107-114.
    
    29 Weiss S, Dunne C, Hew son J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and venericular neuroaxis. J Neuro sci, 1996,16(23): 7599-7609.
    
    30 Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development [J ]. Bioessays, 2000, 22(1):64-71.
    
    31 Galli R, Fiocco R, De Filippis L, et al. Emx2 regulates the proliferation of stem cells of the adult mammlian central nervous system [J] . Development, 2002, 129(7):1633-1644.
    32 Sakakibara S, Nakamura Y, Yoshida T, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA, 2002,99(23):15194-15199.
    
    33 Yung S, Solen G, J urcsak J, et al. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci USA, 2002, 99(25):16273-16278.
    
    34 Calza L, Fernandez M, Giuliani A, et al. Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci USA, 2002,99(5) :3258-3263.
    
    35 Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature, 2001, 414(6859):92-97.
    
    36 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000,164(2):247-256.
    
    37 Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893):41-49.
    
    38 Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 2001, 32(11):2682-2688.
    
    39 Steindler DA. Neural stem cells, scaffolds, and chaperones. Nat Biotechnol, 2002, 20(11): 1091-1093.
    
    40 Savitz SI, Rosenbaum DM, Dinsmore JH, et al. Cell transplantation for stroke. Ann Neurol, 2002, 52(3):266-275.
    
    41 Wilmut I, Beaujean N, de Sousa PA, et al. Somatic cell nuclear transfer. Nature, 2002, 419(6907):583-586.
    
    42 Keyoung HM, Roy NS, Benraiss A, et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain [J ]. Nat Biotechnol, 2001,19(9):843-850.
    
    43 Svendsen CN, Ter Borg MG, Armstrong RJE, et al. A new method for therapid and long term, growth of human neural precursor cells. J Neurosci Methods, 1998, 85(2):141-152.
    
    44 Kim HM, Qu T, Kriho V, et al. Reelin function in neural stem cell biology. Proc Natl Acad Sci USA, 2002,99(6):4020 -4025.
    
    45 Leavitt BR, Hernit-Grant CS, Macklis JD. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp Neurol, 1999,157(1):43-57.
    
    46 Gray JA, Hodges H, Sinden J. Prospects for the clinical application of neural transplantation with the use of conditionally immortalized neuroepithelial stem cells. Philos Trans R Soc Lond B Biol Sci, 1999,354(1388):1407-1421.
    1. Tsai HH, Tessier-Lavigne M, Miller RH. Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal. Development, 2003,130(10):2095-2105.
    
    2. Zhang H, Vutskits L, Calaora V, et al. A role for the polysialic acid - neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells Journal of Cell Science, 2004,117 (1): 93-103.
    
    3. Lalive PH, Paglinawan R, Biollaz G, et al. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur JImmunol, 2005,35(3):727-737.
    
    4. Frederick TJ, Wood TL. IGF-I and FGF-2 coordinately enhance cyclin D1 and cyclin E-cdk2 association and activity to promote G1 progression in oligodendrocyte progenitor cells. Mol Cell Neurosci, 2004,25(3):480-492.
    
    5. MacDonald SC, Simcoff R, Jordan LM, et al. A population of oligodendrocytes derived from multipotent neural precursor cells expresses a cholinergic phenotype in culture and responds to ciliary neurotrophic factor. J Neurosci Res, 2002, 68(3):255-264.
    
    6. Bambakidis NC, Miller RH. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J, 2004, 4(1): 16-26.
    
    7. Nistor GI, Totoiu MO, Haque N, et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia, 2005,49(3):385-396.
    
    8. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci, 2005, 25(19):4694-4705.
    
    9. Hsieh J, Aimone JB, Kaspar BK, et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol, 2004,164(1):111-122.
    10. D'Ercole AJ, Ye P, Calikoglu AS, et al. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol, 1996, 13(3):227-255.
    11. Barres, BA, Schmid R, Sendnter M, et al. Raff. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 1993, 118(1):283-295.
    12. Ye, P, Carson J, D'Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci, 1995, 15(11):7344-7356.
    13. Ye P, Li L, Richards RG, et al. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci, 2002, 22(14):6041-6051.
    14. Hu JG, Fu SL, Zhang KH, et al. Differential gene expression in neural stem cells and oligodendrocyte precursor cells: a cDNA microarray analysis. J Neurosci Res, 2004, 78(5):637-646.
    15. Pringle NP, Yu WP, Guthrie S, et al. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and Sonic hedgehog. Dev Biol, 1996, 177(1):30-42.
    16. Shihabuddin LS, Homer PJ, Ray J, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 2000, 20(23):8727-8735.
    17. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417(6884):39-44.
    18. Zhang SC, Lundberg C, Lipsitz D, et al. Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol, 1998, 27(7):475-489.
    19. Carre JL, Demerens C, Rodriguez-Pena A, et al. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J Neurosci Res, 1998, 54(5):584-94.
    20.刘奔,李兰英,刘春蓉等,庞智玲.T3对人神经干细胞分化为少突胶质细胞的影响.解剖学报,2003,34(2):213-216.
    21. O'Dell S D, Day IN. Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol, 1998,30(7):767-771.
    
    22. Ness JK, Scaduto RC Jr, Wood TL. IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in 04+ oligodendrocyte progenitors. Glia, 2004,46(2):183-194.
    
    23. Guan J, Beilharz EJ, Skinner SJ, et al. Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury. Brain Res, 2000, 853(2):163-173.
    
    24. Johnston BM, Mallard EC, Williams CE, et al. Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest, 1996,97(2):300-308.
    
    25. Aberg MA, Aberg ND, Hedbacker H, et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci, 2000,20(8):2896-2903.
    
    26. Arsenijevic Y, Weiss S. Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J Neurosci, 1998,18(6):2118-2128.
    
    27. Arsenijevic Y, Weiss S, Schneider B, et al.Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci, 2001, 21(18):7194-7202.
    
    28. Lee JC, Mayer-Proschel M, Rao MS. Gliogenesis in the central nervous system. Glia, 2000, 30(2):105-121.
    
    29. Wu YY, Mujtaba T, Han SS, et al. Isolation of a glial-restricted tripotential cell line from embryonic spinal cord cultures. Glia, 2002, 38(l):65-79.
    
    30. Scolding NJ, Rayner PJ, Compston DA. Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter. Neuroscience, 1999, 89(1): 1-4.
    
    31. Gregori N, Proschel C, Noble M, et al. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. J Neurosci, 2002,22(1):248-256.
    
    32. Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, et al. Expansion of rat oligodendrocyte progenitors into proliferative "oligospheres" that retain differentiation potential. J Neurosci Res, 1996,45(5):558-570.
    
    33. MacDonald SC, Simcoff R, Jordan LM, et al. A Population of Oligodendrocytes Derived From Multipotent Neural Precursor Cells Expresses a Cholinergic Phenotype in Culture and Responds to Ciliary Neurotrophic Factor. Journal of Neuroscience Research, 2002, 68(3):255-264.
    
    34. Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA, 1999, 96(7):4089-4094.
    
    35. Glaser T, Perez-Bouza A, Klein K, et al. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J, 2005,19(1):112-114.
    
    36. Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol, 2005, 15(2):131-142.
    
    37. Xian H, Gottlieb DI. Dividing Olig2-expressing progenitor cells derived from ES cells. Glia, 2004, 47(1):88-101.
    
    38. Mujtaba T, Piper DR, Kalyani A, et al. lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol, 1999, 214(1): 113-127.
    1. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dialocation of spinal column. JAMA, 1911, 57: 878-880.
    2.郭家松,曾园山,李海标.移植神经干细胞促进脊髓全横断大鼠结构与功能修复的研究[J].解剖学报,2003,34(2):113-117.
    3.马希峰,杨波,任新民.神经干细胞移植治疗大鼠脊髓损伤[J].郑州大学医药学报,2003,38(1):21-23.
    4. Cao QL, Zhang YP, Howard RM, et al. Howard. Pluripotent stem cells engrafted into the nomal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol, 2001, 167(1):48-58.
    5. De Leon RD, Hodgson JA, Roy RR, et al. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol, 1998, 80(1):83-91.
    6. Yukinori Akiyama, Osamu Honmou, Takaaki Kato. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neuro, 2001, 167(1):27-39.
    7. De Leon RD, Hodgson JA, Roy RR, et al. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol, 1998, 80(1):83-91.
    8. Muir GD, Whishaw IQ. Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. Eur J Neurosci, 2000, 12(3):1113-1122.
    9. Gruner JA. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma, 1992, 9(2):123-128.
    10. Anderson TE, Stokes BT. Experimental models for spinal cord injury research: physical and physiological considerations. J Neurotrauma, 1992, 9 Suppl 1:S135-142.
    11. Seki T, Hida K, Tada M, et al. Graded contusion model of the mouse spinal cord using a pneumatic impact device. Neurosurgery, 2002, 50(5):1075-1081.
    12. Nystrom B, Berglund JE, Bergquist E. Methodological analysis of an experimental spinal cord compression model in the rat. Acta Neurol Scand, 1988,78(6):460-466.
    
    13. Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat.Surg Neurol, 1978,10(1):38-43.
    
    14. Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol, 1995,132(2):220-228.
    
    15. Chavko M, Kalincakova K, Kluchova D, et al. Blood flow and electrolytes in spinal cord ischemia. Exp Neurol, 1991,112(3):299-303.
    
    16. David AM, Robert JF. The electrolytic lesion as a model of spinal cord damage and repair in the rat. J Neurosci Meth, 1991, 38(1):15-23.
    
    17. Bambakidis NC, Miller RH. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J, 2004,4(1): 16-26.
    
    18. Faden AI, Jacobs TP, Smith MT, et al. Comparison of thyrotropinreleasing, hormone(TRH), naloxone, and dexamethasone treatments in experimental spinal cord injury. Neurology, 1983, 33(3):673-654.
    
    19. Tator CH. Grading animals with spinal cord injury. Neurosurgy, 1975, 43(2):647-654.
    
    20. Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in rat. J Neurosurg, 1997,47(2): 577-582.
    
    21. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 1995,12(1): 1-12.
    1. Reynolds BA, Weiss A. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992; 255(5052): 1707-1709.
    
    2. Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci, 2002,3(5):401-409.
    
    3. Bambakidis NC, Wang RZ, Franic L, et al. Sonic hedgehog-induced neural precursor proliferation after adult rodent spinal cord injury. J Neurosurg, 2003, 99:70-75.
    
    4. Waxman SG, Utzschneider DA, Kocsis JD. Enhancement of action potential conduction following demyelination: experimental approaches to restoration of function in multiple sclerosis and spinal cord injury. Prog Brain Res, 1994,100:233-243.
    
    5. Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A, 2000, 97(11):6126-6131.
    
    6. Hsieh J, Aimone JB, Kaspar BK, et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol, 2004,164(1):111-122.
    
    7. D'Ercole, AJ, Ye P, Calikoglu AS, et al. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol, 1996, 13(2):227-255.
    
    8. Blesch A, Lu P, Tuszynski MH. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Research, 2002, 57(6):833-838.
    
    9. Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience, 2003,118(1):11-17.
    
    10. Chernoff EA, Sato K, Corn A. Spinal cord regeneration: intrinsic properties and emerging mechanisms. Semin Cell Dev Biol, 2002,13(5):361-368.
    
    11. Rink A, Fung KM, Trojanowski JQ, et al. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat[J]. Am J Pathol, 1995, 147(6): 1575-1583.
    12.杨成,刘同慎,吴洪华等.电针对脊髓损伤后少突胶质细胞再髓鞘化的影响.解剖学报,2005,28(4):391-394.
    13. Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol, 2005, 486(4):373-383.
    14. Kaptanoglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings. Neurosurg Rev, 2004, 7(2):113-120.
    15. Ibarra A, Correa D, Willms K, et al. Effects of cyclosporin-A on immune response, tissue protection and motor function of rats subjected to spinal cord injury. Brain Res, 2003, 979(1-2):165-178.
    16. Rosenberg LJ, Teng YD, Wrathall JR. 2,3-Dihydroxy-6-nitro-7-sulfamoyl- benzo(f) quinoxaline reduces glial loss and acute white matter pathology after experimental spinal cord contusion. J Neurosci, 1999, 19(1):464-475.
    17. Liu HG, Hong GX, Wang FB, et al. Motoneurotrophins derived from limb buds protect the motoneurons in anterior spinal cord after nerve injury and promote nerve regeneration. Brain Res, 1998, 800(2):216-226.
    18. Yan J, Welsh AM, Bora SH, et al. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol, 2004, 480(1):101-114.
    19. Gocer AI, Ildan F, Tuna M, et al. Effects of trapidil on ATPase, lipid peroxidation, and correlation with ultrastructure in experimental spinal cord injury. Neurosurg Rev, 2001, 24(2-3):136-142.
    20. Azanchi R, Bernal G, Gupta R, et al. Combined demyelination plus Schwann cell transplantation therapy increases spread of cells and axonal regeneration following contusion injury. J Neurotrauma, 2004, 21(6):775-788.
    21. Takeda Y, Asou H, Murakami Y, et al. A nonneuronal isoform of cell adhesion molecule LI: tissue-specific expression and functional analysis. J Neurochem, 1996, 66(6):2338-2349.
    
    22. David S, Lacroix S. Molecular approaches to spinal cord repair. Annu Rev Neurosci, 2003, 26:411-40.
    
    23. Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci, 2002,22(15):6670-6681.
    
    24. Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 1997, 277(5334):2000-2002.
    
    25. Ruitenberg MJ, Plant GW, Hamers FP, et al. Ex vivo adenoviral vector- mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci, 2003,23(18):7045-7058.
    
    26. Tisay KT, Key B. The extracellular matrix modulates olfactory eurite outgrowth on ensheathing cells. J Neurosci, 1999,19(22):9890-9899.
    
    27. Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia, 2000, 32(3):214-25.
    
    28. Verdu E, Garcia-Alias G, Fores J, et al. Effects of ensheathing cells transplanted into photochemically damaged spinal cord. Neuroreport, 2001,12(11):2303-2309.
    
    29. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res, 2001, 88(1-2):203-213.
    
    30. Zuo J, Neubauer D, Dyess K, et al. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol, 1998, 154(2):654-662.
    
    31. Bain G, Kitchens D, Yao M, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol, 1995,168(2):342-357.
    
    32. Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neural, 2001,172(2):383-397.
    
    33. Woodbury D. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4):364-370.
    
    34. Gage FH. Mammalian neural stem cells. Science, 2000,287(5457): 1433-1438.
    
    35. McDonald JW, Liu XZ, Qu Y, et al. Transplantated injuryed rat spinal cord. Nature Medicine, 1999,5(12):1410-1412.
    
    36. Ostenfeld T, Caldwell MA, Prowse KR, et al. Human neural precursor cells expresslow levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol, 2000, 164(l):215-226.
    
    37. Kim HM, Qu T, Kriho V, et al. Reelin function in neural stem cell biology. Proc Natl Acad Sci USA, 2002, 99(6):4020-4025.
    
    38. Leavitt BR, Hernit-Grant CS, Macklis JD. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp Neurol, 1999,157(l):43-57.
    
    39. Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci, 2006, 7(l):75-84.
    
    40. Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol, 1997,56(11):1191-1201.
    
    41. Crang AJ, Gilson J, Blakemore WF. The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol, 1998,27(7):541-553.
    
    42. Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 1997,19(1): 197-203.
    43. Franklin RJ, Blakemore WF. Transplanting oligodendrocyte progenitors into the adult CNS. J Anat, 1997,190(Pt 1):23- 33.
    
    44. Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol, 2005, 15(2):131-142.
    
    45. Barres BA, Schmid R, Sendnter M, et al. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 1993,118(1):283-295.
    
    46. Ye P, Carson J, D'Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci, 1995,15(11):7344-7356.
    
    47. Ye P, Li L, Richards RG, et al. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci, 2002, 22(14):6041-6051.
    
    48. Hsieh J, Aimone JB, Kaspar BK, et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol, 2004,164(1):111-122.
    
    
    49. Abdel-Gawad M, Elhilali MM, Huynh H. Alteration of the insulin-like growth factor system of mitogens in hyperplastic bladders of paraplegic rats. J Urol, 1999, 161(2):699-705.
    
    50. Winkler T, Sharma HS, Stalberg E, et al. Neurotrophic factors attenuate alterations in spinal cord evoked potentials and edema formation following trauma to the rat spinal cord. Acta Neurochir, Suppl, 2000, 76:291-296.
    
    51. Sharma HS, Nyberg F, Gordh T, et al. Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. An experimental study using immunohistochemistry in the rat. Amino Acids, 2000,19(l):351-361.
    
    52. Lwasaki Y, Ikeda K. Prevention by insulin-like growth factor-I and riluzole in motor neuron death after neonatal axotomy. J Neurol Sci, 1999, 169(1-2):148-155.
    
    53. Liu X, Linnington C, Webster HD, et al. Insulin-like growth factor-I treatment reduces immune cell responses in acute nondemyelinative experimental autoimmune encephalomyelitis. J Neurosci Res, 1997,47(5):531-538.
    
    54. Yao DL, Liu X, Hudson LD, et al. Insulin-like growth factor-I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA, 1995, 92(13):6190-6194.
    
    55. Silani V, Braga M, Cardin V, et al. The pathogenesis of ALS: implications for treatment strategies. Neurol Neurochir Pol, 2001,35 (1 Suppl):25-39.
    
    56. Winkler T, Sharma HS, Stalberg E, et al. Badgaiyan RD. Neurotrophic factorsattenuate alterations in spinal cord evoked potentials and edema formation following trauma to the rat spinal cord. Acta Neurochir Suppl, 2000,76:291-296.
    
    57. Sharma HS, Nyberg F, Gordh T, et al. Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. An experimental study using immunohistochemistry in the rat. Amino Acids, 2000,19(1):351-361.
    
    58. Chu K, Kim M, Jeong SW, et al. Human neural stem cells can migrate, differentiate, and intergrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett, 2003, 343(2): 129-133.
    
    59. Jeong SW, Chu K, Jung KH, et al. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke, 2003, 34(9): 2258-2263.
    
    60. Alcksandrova MA, Saburina IN, Korochkin LI, et al. Behavior and differentiation of the neural stem cells in vivo. Biology Bulletin, 2001, (6): 655-665.
    
    61. Alcksandrova MA, Saburina IN, Poltavtseva RA, et al. Behavior of human neural progenitor cells transplanted to rat brain. Developmental Brain Research, 2002, 134(1-2):143-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700