上肢康复训练机器人的肌电控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体神经肌肉系统的电活动可以反映肌肉运动状态,并可通过皮肤表面处的sEMG信号测量获取。由于sEMG信号采集方便、对身体无创伤,利用多通道sEMG信号实现基于模式识别的上肢康复训练机器人肌电控制成为当前康复工程领域的研究热点。基于模式识别的肌电控制原理是从多通道sEMG信号中提取能表征不同上肢动作模式的信号特征,通过模式分类器识别出目标动作模式,进而实现上肢康复训练机器人的运动控制。对于基于模式识别的肌电控制研究,评价指标主要包括识别准确率和计算速度。
     本文的研究目标是完善基于模式识别的上肢康复训练机器人肌电控制的实现技术,通过研制的上肢康复训练机器人和多通道sEMG信号采集系统,在以下几个方面进行了研究:(1)多通道sEMG信号的空间解耦;(2)表征不同上肢动作模式的sEMG信号特征提取;(3)上肢动作模式分类。
     根据sEMG信号微弱、易受干扰的特点,针对性地设计了面向上肢康复训练的sEMG信号采集方案,以降低sEMG信号的随机性,获得一致性好的sEMG信号。本研究中,设定受试者右侧上肢为机器人辅助康复训练的偏瘫侧,左侧为自主引导运动的健康侧,通过分析上肢运动与相关肌肉对应关系,确定了受试者左侧上肢的肱桡肌、肱二头肌、肱三头肌、三角肌中部为四通道sEMG信号的采集位置,测量电极沿肌纤维方向放置在肌腹处,参考电极放置在sEMG信号比较微弱的肌腱处。
     研究了基于ICA的多通道sEMG信号空间解耦,以消除四通道sEMG信号采集过程中电极串扰引起的空间耦合冗余信息。利用FastICA算法将四通道sEMG信号分解成四个不同的独立分量,针对多次ICA分解得到的独立分量排列次序不固定的问题,提出了独立分量次序与多通道sEMG信号的匹配方法,以ICA分解前后信号的相关性为依据建立了独立分量和四通道sEMG信号间的一一对应关系,保证了同一动作模式下独立分量的一致性,使得独立分量能取代原始的四通道sEMG信号而成为肌电控制源。特征提取结果表明,空间解耦虽然使得特征空间的可分性略有下降,但大幅提高了特征提取速度,减小了计算量,验证了ICA用于多通道sEMG信号空间解耦的有效性。
     研究中提取样本熵作为表征不同上肢动作模式的sEMG信号特征,针对样本熵用于特征提取时计算量大的问题,研究了小波包变换与样本熵相结合的sEMG信号特征提取方法,提取五层小波包分解后九个低频子空间的样本熵作为sEMG信号特征。针对特征空间维数大的问题,提出了一种改进小波包分解算法,在小波变换的基础上对某一高频子空间进行二次小波变换,提取改进小波包分解后四个低频子空间的样本熵作为sEMG信号特征,并与积分肌电值联合构造多域特征,即TDISaEn。基于CSI的特征可分性评价结果与BP神经网络测试结果表明,与常用的以小波包能量构造的特征(TDIEner)相比,TDISaEn特征的可分性要好,六种上肢动作模式的识别准确率也高,证明了特征提取算法的有效性。
     针对BP神经网络用于上肢动作模式分类时收敛速度慢、训练时间长的问题,提出了基于遗传BP神经网络的上肢动作模式分类方法,利用遗传算法优化BP神经网络的连接权值和阈值,将遗传迭代后得到的最优解用于训练BP神经网络。结果表明,经遗传算法优化后,虽然BP神经网络的识别准确率提高不大,但是网络训练时间大幅缩短,说明遗传算法对BP神经网络的优化是有效的。
     利用自行研制的上肢康复训练机器人构建了基于模式识别的肌电控制原型系统,将训练好的遗传BP神经网络模型集成到机器人控制系统中,用以生成机器人运动控制指令。测试结果表明,原型系统运行可靠,验证了基于模式识别的肌电控制的有效性。
     本文将sEMG信号分析处理与上肢康复训练机器人相结合,研究结果有助于提高上肢康复训练机器人性能。本文研究还存在一定的不足,主要有以下两个问题需要继续研究和完善:
     (1)肢体动作的不同幅度、速度对sEMG信号的影响规律:(2)受试者样本选
     取范围需要扩大,应考虑年龄、性别和偏瘫程度等临床因素。
The sEMG signal is the comprehensive overlay of the electrical activity in the nervous system at the skin surface in space and time. As it is easy to acquire and has no trauma to the body, it is a research focus to realize the upper limb rehabilitation robot myoelectric control utilizing sEMG signal in the field of rehabilitation engineering. The principle of myoelectric control based on pattern recognition is to extract the features that can characterize different motion patterns from muti-channel sEMG signals, and decode the features to the corresponding robot motion control instructions which can drive the upper limb rehabilitation robot and then put the hemiplegic side upper limb into training through the feature pattern classifier. The evaluation indexes of myoelectric control mainly include recognition accuracy and decoding speed.
     In this paper, the myoelectric control of upper limb rehabilitation robot based on pattern recognition is studied in order to drive the upper limb rehabilitation robot quickly and accurately utilizing the four channel sEMG signals of healthy side upper limb of hemiplegia patients. Problems need to be studied including:(1) the spatial decoupling pretreatment of multi-channel sEMG signals;(2) the features extraction of sEMG signals to characterize different upper limb movement patterns;(3) the classification of upper limb movement patterns.
     According to sEMG's weak and vulnerable to interference characters, the paper specifically designed the sEMG acquisition scheme in order to obtain the reliable sEMG signals. On the basis of analyzing the correspondence relation between upper limb movement and muscle, the four-channel sEMG signals acquisition position were placed on the central of the brachioradialis muscle, biceps, triceps and deltoid on subject's left upper limb, and we also placed the measuring electrodes along the direction of fibers on the muscle belly and reference electrodes on the tendons where the sEMG signals are faint, which reduced the randomness of the signal acquisition and provided the steady control source for the myoelectric control of upper limb rehabilitation robot.
     In order to eliminate the spatial coupling redundant information among the four-channel sEMG signals, the paper proposed the multi-channel sEMG signals spatial decoupling pretreatment method based on independent component analysis (ICA), and divided the four-channel sEMG signals into four different independent components. For the shortcoming that the order of the independent component after multiple ICA decomposition is not fixed, the paper proposed the matching method between the order of the independent component and the multi-channel sEMG signals and established the clear corresponding relation between the independent component and four-channel sEMG signals based on the correlation before and after ICA decomposition, which made it possible for the independent component to replace the original sEMG signals to become the myoelectric control source. The subsequent result of feature extraction shows that the spatial decoupling makes the feature space theoretically separability decreased slightly, but it significantly increased the speed of feature extraction and reduced the amount of calculation, which shows it is effective for the ICA multi-channel sEMG signals spatial decoupling pretreatment.
     The sample entropy can be used as a characterization of differernt upper limb patterns of sEMG signal feature. But it involves a large amount of calculation. For this limitation, the method by combining wavelet packet transform with sample entropy was studied to extract the sEMG signal feature in this paper. Extract sample entropy from nine subspaces after five layers wavelet packet decomposition as the features of the motion pattern. For the issue that the feature space dimension is too large, an improved wavelet packet decomposition algorithm was proposed, which made a high-frequency subspace quadratic wavelet transform based on the main wavelet transform, and then extracted sample entropy from four sub-spaces features and constructed joint multi-domain features with integrated EMG values that is TDISaEn. Compared to the feature constructed by the common wavelet packet energy (TDIEner), the results based on the CSI and BP neural network test results show that TDISaEn has a higher separability and recognition accruracy than TDIEner.
     The network convergence speed is slow and the training time is long using the BP neural network to classify the upper limb motion pattern. In order to overcome this defect, the genetic BP neural network was proposed, which optimize the BP neural network's connection weights and thresholds with genetic algorithm. Then, get the optimal solution after inheritance for training the BP neural network. The results show that after genetic algorithm optimization, the BP neural network recognition accuracy is not high, but the training time was greatly shortened.
     The myoelectric control based on pattern recognition was tested utilizing the upper limb rehabilitation robot self-developed. Then integrate the trained genetic BP neural network model into the robot control system and transformed the identified the target movment pattern into the robot motion control commands. The result shows that the upper limb rehabilitation robot performed well and verified the accuracy and stability of myoelectric control.
     The paper combines sEMG processing and upper limb rehabilitation robot, and the research results are helpful to improve the performance of the upper limb rehabilitation robot. However, there are still some inadequate, and two following problems need to research and improve:
     (1) The related laws between movement amplitude, speed and sEMG signal;(2) The selection range of subjects sample needs to be expanded, and some clinical factors such as age, gender, degree of hemiplegia should be considered.
引文
[1]姚泰,曹济民,樊小力,等.生理学[M].北京:人民卫生出版社,2003.
    [2]李敏,王凯.脑卒中后抑郁患者的心理治疗进展[J].医学综述,2010,16(10):1516-1519.
    [3]Loureiro R, Amirabdollahian F, Topping M, et al. Upper Limb Robot Mediated Stroke Therapy-GENTLE/s Approach [J]. Autonomous Robots,2003,15(1): 35-51.
    [4]谢财忠,徐格林,刘新峰.脑卒中后早期康复的研究进展[J].中国康复理论与实践,2009,15(10):908-912.
    [5]杨唐柱,黄晓琳.上肢治疗型康复机器人的研究进展[J].中国康复,2009,24(3):207-209.
    [6]Lum P S, Reinkensmeyer D J, Lehman S L. Robotic Assist Devices for Bimanual Physical Therapy:Preliminary Experiments [J]. IEEE Transactions on Rehabilitation Engineering,1993,1(3):185-191.
    [7]Lum P S, Lehman S L, Reinkensmeyer D J. The Bimanual Lifting Rehabilitated An Adaptive Machine for Therapy of Stroke Patients [J]. IEEE Transactions on Rehabilitation Engineering,1995,3(2):166-174.
    [8]Krebs HI, Hogan N, Aisen ML, et al. Robot-Aided Neurorehabilitation [J]. IEEE Transactions on Rehabilitation Engineering,1998,6(1):75-87.
    [9]Reinkensmeyer D J, Kahn L E, Averbuch M, et al. Understanding and Treating Arm Movement Impairment after Chronic Brain Injury:Progress with the ARM Guide [J]. Journal of Rehabilitation Research and Development,2000,37(6): 653-662.
    [10]Kirihara K, Saga N, Saito N. Design and Control of an Upper Limb Rehabilitation Support Device for Disabled People Using a Pneumatic Cylinder [J]. Industrial Robot:An International Journal,2010,37(4):347-353.
    [11]Rocon E, Belda-Lois J M, Ruiz A F, et al. Design and Validation of a Rehabilitation Robotic Exoskeleton for Tremor Assessment and Suppression [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007, 15(3):367-378.
    [12]Rahman M H, Kittel-Ouimet T, Saad M, et al. Development and Control of a Robotic Exoskeleton for Shoulder, Elbow and Forearm Movement Assistance [J]. Applied Bionics and Biomechanics,2012,9(3):275-292.
    [13]Nef T, Mihelj M, Riener R. ARMin:A Robot for Patient-Cooperative Arm Therapy [J]. Medical and Biological Engineering and Computing,2007,45(9): 887-900.
    [14]Nef T, Guidali M, Riener R, et al. ARMin Ⅲ Arm Therapy Exoskeleton with an Ergonomic Shoulder Actuation [J]. Applied Bionics and Biomechanics,2009, 6(2):127-142.
    [15]Guidali M, Duschau-Wicke A, Broggi S, et al. A Robotic System to Train Activities of Daily Living in a Virtual Environment [J]. Medical and Biological Engineering and Computing,2011,49(s):1213-1223.
    [16]Perry J C, Rosen J, Burns S. Upper-Limb Powered Exoskeleton Design [J]. IEEE/ASME Transactions on Mechatronics,2007,12(4):408-417.
    [17]Perry J C, Powell J M, Rosen J. Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm [J]. Applied Bionics and Biomechanics,2009,6(2):175-191.
    [18]Klein J, Spencer S J, Allington J, et al. Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton [J]. IEEE Transactions on Robotics,2010,26(4):710-715.
    [19]Klein J, Spencer S J, Reinkensmeyer D J. Breaking It Down Is Better:Haptic Decomposition of Complex Movements Aids in Robot-Assisted Motor Learning [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2012, 20(3):268-275.
    [20]Klein J, Spencer S J, Allington J, et al. Biomimetic Orthosis for the Neurorehabilitation of the Elbow and Shoulder (BONES) [C]. Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA,2008:535-541.
    [21]Wolbrecht E T, Chan V, Reinkensmeyer D J, et al. Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2008,16(3): 286-297.
    [22]Wolbrecht E T, Reinkensmeyer D J, Bobrow J E. Pneumatic Control of Robots for Rehabilitation [J]. International Journal of Robotics Research,2010,29(1): 23-28.
    [23]Balasubramanian S, He J P. Adaptive control of a Wearable Exoskeleton for Upper-Extremity Neurorehabilitation [J]. Applied Bionics and Biomechanics, 2012,9(1):99-115.
    [24]Sugar T G, He JP, Koeneman E J, et al. Design and Control of RUPERT:A Device for Robotic Upper Extremity Repetitive Therapy [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):336-346.
    [25]Rosati G, Gallina P, Masiero S. Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(4):560-569.
    [26]Deneve A, Moughamir S, Afilal L, et al. Control System Design of a 3-DOF Upper Limbs Rehabilitation Robot [J]. Computer Methods and Programs in Biomedicine,2008,89(2):202-214.
    [27]Velliste M, Spalding M C, Whitford A S, et al. Cortical Control of a Prosthetic Arm for Self-Feeding [J]. Nature,2008,453(7198):1098-1101.
    [28]Bell C J, Shenoy P, Chalodhorn R, et al. Control of a Humanoid Robot by a Noninvasive Brain-Computer Interface in Humans [J]. Journal of Neural Engineering,2008,5(2):214-220.
    [29]Xu B G, Peng S, Song A G, et al. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG [J]. International Journal of Advanced Robotic Systems,2011,8(4):88-97.
    [30]Gianfelici F, Farina D. An Effective Classification Framework for Brain-Computer Interfacing Based on a Combinatoric Setting [J]. IEEE Transactions on Signal Processing,2012,60(3):1446-1459.
    [31]Frisoli A, Loconsole C, Leonardis, et al. A New Gaze-BCI-Driven Control of an Upper Limb Exoskeleton for Rehabilitation in Real-World Tasks [J]. IEEE Transactions on Systems, Man, and Cybernetics—Part C:Applications and Reviews,2012,42(6):1169-1179.
    [32]Yang B H, Yan G Z, Yan R G, et al. Adaptive Subject-Based Feature Extraction in Brain-Computer Interfaces Using Wavelet Packet Best Basis Decomposition [J]. Medical Engineering and Physics,2006,83(3):198-204.
    [33]Yin Y H, Fan Y J, Xu L D. EMG and EPP-Integrated Human-Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton [J]. IEEE Transactions on Information Technology in Biomedicine,2012,16(4):542-549.
    [34]Hargrove L J, Englehart K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [J]. IEEE Transactions on Biomedical Engineering,2007,54(5):847-853.
    [35]Zecca M, Micera S, Carrozza M C, et al. Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal [J]. Critical Reviews in Biomedical Engineering,2002,30(4-6):459-468.
    [36]Berger N, Huppert C R. The Use of Electrical and Mechanical Muscular Forces for the Control of an Electrical Prosthesis [J]. The American Journal of Occupational Therapy:Official Publication of the American Occupational Therapy Association,1952,6(3):110-117.
    [37]Parker P, Englehart K, Hudgins B. Myoelectric Signal Processing for Control of Powered Limb Prostheses [J]. Journal of Electromyography and Kinesiology, 2006,16(6):541-548.
    [38]Merletti R, Parker P. Electromyography:Physiology, Engineering, and Noninvasive Applications [M]. Wiley-IEEE Press,2004.
    [39]Kiguchi K, Tanaka T, Fukuda T. Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals [J]. IEEE Transactions on Fuzzy Systems,2004,12(4): 481-490.
    [40]Graupe D, Cline W K. Functional Separation of EMG Signals via ARM A Identification Methods for Prosthesis Control Purposes [J]. IEEE Transactions on Systems, Man, and Cybernetics,1975,5(2):252-259.
    [41]Graupe D, Magnussen J, Beex A. A Microprocessor System for Multifunctional Control of Upper-Limb Prostheses via Myoelectric Signal Identification [J]. IEEE Transactions on Automatic Control,1978,23(4):538-544.
    [42]Doerschuk P C, Gustafon D E, Willsky, AS. Upper Extremity Limb Function Discrimination Using EMG Signal Analysis [J]. IEEE Transactions on Biomedical Engineering,1983,30(1):18-29.
    [43]Hudgins B, Parker P, Scott R N. A New Strategy for Multifunction Myoelectric Control [J]. IEEE Transactions on Biomedical Engineering,1993,40(1):82-94.
    [44]Micera S, Sabatini A M, Dario, P, et al. A Hybrid Approach to EMG Pattern Analysis for Classification of Arm Movements Using Statistical and Fuzzy Techniques [J]. Medical Engineering & Physics,1999,21(5):303-311.
    [45]Simon A M, Hargrove L J, Lock B A, et al. Target Achievement Control Test: Evaluating Real-Time Myoelectric Pattern-Recognition Control of Multifunctional Upper-Limb Prostheses [J]. Journal of Rehabilitation Research and Development,2011,48(6):619-628.
    [46]Zhou P, Kuiken T A. Eliminating Cardiac Contamination from Myoelectric Control Signals Developed by Targeted Muscle Reinnervation [J]. Physiological Measurement,2006,27(12):1311-1327.
    [47]Li G L, Schultz A E, Kuiken T A. Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2010,18(2): 185-192.
    [48]Huang H, Zhou P, Li G L, et al. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2008,16(1): 37-45.
    [49]Kuiken T A, Li G L, Lock B A, et al. Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms [J]. Journal of the American Medical Association,2009,301(6):619-628.
    [50]Stubblefield K A, Miller L A, Lipschutz R D, et al. Occupational Therapy Protocol for Amputees with Targeted Muscle Reinnervation [J]. Journal of Rehabilitation Research and Development,2009,46(4):481-488.
    [51]Huang H, Zhou P, Li G L, et al. Spatial Filtering Improves EMG Classification Accuracy Following Targeted Muscle Reinnervation [J]. Annals of Biomedical Engineering,2009,37(9):1849-1857.
    [52]Kuiken T A, Miller L A, Lipschutz R D, et al. Targeted Reinnervation for Enhanced Prosthetic Arm Function in a Woman with a Proximal Amputation:A Case Study [J]. Lancet,2007,369(9559):371-380.
    [53]Li G L, Li Y N, Yu L, et al. Conditioning and Sampling Issues of EMG Signals in Motion Recognition of Multifunctional Myoelectric Prostheses [J]. Annals of Biomedical Engineering,2011,39(6):1779-1787.
    [54]Chu J U, Moon I, Mun M S. A Real-Time EMG Pattern Recognition System Based on Linear-Nonlinear Feature Projection for a Multifunction Myoelectric Hand [J]. IEEE Transactions on Biomedical Engineering,2006,53(11): 2232-2239.
    [55]Chu J U, Moon I, Lee Y J, et al. A Supervised Feature-Projection-Based Real-Time EMG Pattern Recognition for Multifunction Myoelectric Hand Control [J]. IEEE/ASME Transactions on Mechatronics,2007,12(3):282-290.
    [56]Chu J U, Lee Y J. Conjugate-Prior-Penalized Learning of Gaussian Mixture Models for Multifunction Myoelectric Hand Control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2009,17(3):287-297.
    [57]Nazarpour K, Sharafat A R, Firoozabadi S M P. Application of Higher Order Statistics to Surface Electromyogram Signal Classification [J]. IEEE Transactions on Biomedical Engineering,2007,54(10):1762-1769.
    [58]Momen K, Krishnan S, Chau T. Real-Time Classification of Forearm Electromyographic Signals Corresponding to User-Selected Intentional Movements for Multifunction Prosthesis Control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(4):535-542.
    [59]Lucas M C, Gaufriau A, Pascual S, et al. Multi-Channel Surface EMG Classification Using Support Vector Machines and Signal-Based Wavelet Optimization [J]. Biomedical Signal Processing and Control,2008,3(2): 169-174.
    [60]Nielsen M, Kamavuako E N, Andersen M M, et al. Optimal Wavelets for Biomedical Signal Compression [J]. Medical and Biological Engineering and Computing,2006,44(7):561-568.
    [61]Brechet L, Lucas M F, Doncarli C, et al. Compression of Biomedical Signals With Mother Wavelet Optimization and Best-Basis Wavelet Packet Selection [J]. IEEE Transactions on Biomedical Engineering,2007,54(12):2186-2192.
    [62]Shenoy P, Miller K J, Crawford B, et al. Online Electromyographic Control of a Robotic Prosthesis [J]. IEEE Transactions on Biomedical Engineering,2008, 55(3):1128-1135.
    [63]Hargrove L J, Li G, Englehart K B, et al. Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control [J]. IEEE Transactions on Biomedical Engineering,2009,56(5):1407-1414.
    [64]Khezri M, Jahed M. An Exploratory Study to Design a Novel Hand Movement Identification System [J]. Computers in Biology and Medicine,2009,39(5): 433-442.
    [65]Khezri M, Jahed M. A Neuro-Fuzzy Inference System for sEMG-Based Identification of Hand Motion Commands [J]. IEEE Transactions on Industrial Electronics,2011,58(5):1952-1960.
    [66]Bu N, Okamoto M, Tsuji T. A Hybrid Motion Classification Approach for EMG-Based Human-Robot Interfaces Using Bayesian and Neural Networks [J]. IEEE Transactions on Robotics,2009,25(3):502-511.
    [67]Smith A, Brown E E. Myoelectric Control Techniques for a Rehabilitation Robot [J]. Applied Bionics and Biomechanics,2011,8(1):21-37.
    [68]Khushaba R N, Kodagoda S, Takruri M, et al. Toward Improved Control of Prosthetic Fingers Using Surface Electromyogram (EMG) Signals [J]. Expert Systems with Applications,2012,39(12):10731-10738.
    [69]Khushaba R N, Al-Jumaily A, Al-Ani A. Evolutionary Fuzzy Discriminant Analysis Feature Projection Technique in Myoelectric Control [J]. Pattern Recognition Letters,2009,30(7):699-707.
    [70]Khushaba R N, Al-Ani A, Al-Jumaily A. Orthogonal Fuzzy Neighborhood Discriminant Analysis for Multifunction Myoelectric Hand Control [J]. IEEE Transactions on Biomedical Engineering,2010,57(6):1410-1419.
    [71]Hu X, Wang Z Z, Ren X M. Classification of Surface EMG Signal Using Relative Wavelet Packet Energy [J]. Computer Methods and Programs in Biomedicine,2005,79(3):189-195.
    [72]胡晓,王志中,颜志国.基于小波包熵的与动作相关表面肌电信号的分类[J].中国医学物理学杂志,2005,22(4):597-598.
    [73]Hu X, Wang Z Z, Ren X M. Classification of Forearm Action Surface EMG Signals Based on Fractal Dimension [J]. Journal of Southeast University (English Edition),2005,21(3):324-329.
    [74]Hu X, Wang Z Z, Ren X M. Classification of Surface EMG Signal with Fractal Dimension [J]. Journal of Zhejiang University (Science B),2005,6(8):844-848.
    [75]Huang H, XieHB, Guo J Y, et al. Ant Colony Optimization-Based Feature Selection Method for Surface Electromyography Signals Classification [J]. Computers in Biology and Medicine,2012,42(1):30-38.
    [76]王刚,王志中,胡晓,等.基于最佳小波包的表面肌电信号分类方法[J].中国医学物理学杂志,2006,23(1):45-48.
    [77]Wang G, Wang Z Z, Chen W T, et al. Classification of Surface EMG Signals Using Optimal Wavelet Packet Method Based on Davies-Bouldin Criterion [J]. Medical and Biological Engineering and Computing,2006,44(10):865-872.
    [78]Wang G, Yan Z G, Hu X, et al. Classification of Surface EMG Signals Using Harmonic Wavelet Packet Transform [J]. Physiological Measurement,2006, 27(12):1255-1267.
    [79]Chen W T, Wang Z Z, Ren X M. Characterization of surface EMG signals using improved approximate entropy [J]. Journal of Zhejiang University (Science B), 2006,7(10):844-848.
    [80]Chen W T, Wang Z Z, Wang G. Measuring System Regularity Using Fuzzy Similarity-Based Approximate Entropy [J]. Journal of Shanghai Jiaotong University (Science),2007, E-12(5):623-627.
    [81]Chen W T, Wang Z Z, Xie H B, et al. Characterization of Surface EMG Signal Based on Fuzzy Entropy [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(2):266-272.
    [82]Chen W T, Zhuang J, Yu WX, et al. Measuring Complexity Using FuzzyEn, ApEn, and SampEn [J]. Medical Engineering and Physics,2009,31(1):61-68.
    [83]颜志国,王志中,任晓梅.SVM和小波包变换在动作模式识别中的应用[J].中国医学物理学杂志,2006,23(1):64-67.
    [84]Yan Z G, Wang Z Z, Ren X M. Joint Application of Feature Extraction Based on EMD-AR Strategy and Multi-Class Classifier Based on LS-SVM in EMG Motion Classification [J]. Journal of Zhejiang University (Science A),2007, 8(8):1246-1255.
    [85]YanZG, Wang Z Z, Xie H B. Joint Application of Rough Set-Based Feature Reduction and Fuzzy LS-SVM Classifier in Motion Classification [J]. Medical and Biological Engineering and Computing,2008,46(6):519-527.
    [86]Yan Z G, Wang Z Z, Xie H B. The Application of Mutual Information-Based Feature Selection and Fuzzy LS-SVM-Based Classifier in Motion Classification [J]. Computer Methods and Programs in Biomedicine,2008,90(3):275-284.
    [87]王东岩,李庆玲,杜志江,等.5DOF穿戴式上肢康复机器人控制方法研究[J].哈尔滨工业大学学报,2007,39(9):1383-1387.
    [88]孙立宁,李庆玲,孔民秀,等.5-DOF上肢康复机械臂交互式康复训练控制策略[J],机械工程学报,2008,44(9):169-176.
    [89]Li Q L, Kong M X, Du Z J, et al. A Novel 5-DOF Exoskeletal Rehabilitation Robot System for Upper Limbs [J]. High Technology Letters,2009,15(3): 245-249.
    [90]杨大鹏,赵京东,崔平远,等.基于支持向量机的人手姿态肌电模式识别与力检测[J].高技术通讯,2010,20(6):618-622.
    [91]杨大鹏,赵京东,姜力,等.嵌入式人手姿态肌电模式在线识别方法[J].哈尔滨工业大学学报,2010,42(7):1060-1065.
    [92]杨大鹏,赵京东,姜力,等.三自由度仿人型假手及其肌电控制策略[J].哈尔滨工程大学学报,2009,30(7):804-810.
    [93]杨大鹏,赵京东,姜力,等.基于肌电信号的人手姿态多模式识别方法[J].上海交通大学学报,2009,43(7):1071-1075.
    [94]杨大鹏,赵京东,姜力,等.一种3自由度仿人型假手的肌电控制[J].江苏大学学报(自然科学版),2009,30(1):5-9.
    [95]Yang D P, Zhao J D, Gu Y K, et al. An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals [J]. Journal of Bionic Engineering,2009,6(3):255-263.
    [96]Chen X P, Zhu X Y, Zhang D G. A Discriminant Bispectrum Feature for Surface Electromyogram Signal Classification [J]. Medical Engineering and Physics, 2010,32(2):126-135.
    [97]Chen X P, Zhu X Y, Zhang D G. Use of the Discriminant Fourier-Derived Cepstrum with Feature-Level Post-Processing for Surface Electromyographic Signal Classification [J]. Physiological Measurement,2009,30(12):1399-1413.
    [98]Liu H J, Young K Y. Upper-Limb EMG-Based Robot Motion Governing Using Empirical Mode Decomposition and Adaptive Neural Fuzzy Inference System [J]. Journal of Intelligent and Robotic Systems,2012,68(3-4):275-291.
    [99]王敬章,李芳,王人成,等.人工神经网络在表面肌电信号辨识中的研究进展[J].中国康复医学杂志,2006,21(1):81-83.
    [100]罗志增,王人成.基于表面肌电信号的前臂手部多运动模式识别[J].仪器仪表学报,2006,27(9):996-999.
    [101]崔建国,王旭,李忠海,等.基于AR参数模型与聚类分析的肌电信号模式识别方法[J].计量学报,2003,27(3):286-289.
    [102]贾雪琴,王旭,李景宏,等.基于小波变换和KL展开的单通道表面肌电信号识别[J].东北大学学报,2006,27(8):859-862.
    [103]罗志增,李文国.基于小波变换和盲信号分离的多通道肌电信号处理方法[J].电子学报,2009,37(4):823-827.
    [104]杨广映,罗志增.肌电信号的功率谱分析方法[J].传感技术学报,2004,(3):355-358.
    [105]杨新亮,罗志增.基于表面肌电信号的时频组合特征融合识别[J].华中科技大学学报(自然科学版),2011,39(s2):153-156.
    [106]罗志增,加玉涛.基于表面EMG功率谱和BP网络的多运动模式识别[J].华中科技大学学报(自然科学版),2006,34(7):63-66.
    [107]周炜,罗志增.基于直方图和功率谱比值的肌电信号识别方法[J].杭州电子科技大学学报,2009,29(4):63-66.
    [108]Farrell T R, Weir R F. A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control [J]. IEEE Transactions on Biomedical Engineering,2008,55(9):2198-2211.
    [109]Mesin L, Smith S, Hugo S, et al. Effect of Spatial Filtering on Crosstalk Reduction in Surface EMG Recordings [J]. Medical Engineering and Physics, 2009,31(3):374-383.
    [110]Naik G R, Arjunan S, Kumar D. Applications of ICA and Fractal Dimension in sEMG Signal Processing for Subtle Movement Analysis:a Review [J]. Australasian Physical and Engineering Sciences in Medicine,2011,34(2): 179-193.
    [111]Naik G R, Kumar D K, Palaniswami M. Classification of Low Level Surface Electromyogram Using Independent Component Analysis [J]. IET Signal Processing,2010,4(5):479-487.
    [112]Naik G R, Kumar D K. Estimation of Independent and Dependent Components of Non-Invasive EMG Using Fast ICA:Validation in Recognizing Complex Gestures [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011,14(12):1105-1111.
    [113]Englehart K, Hudgins B, Parker P A, et al. Classification of the Myoelectric Signal Using Time-Frequency Based Representations [J]. Medical Engineering and Physics,1999,21(6-7):431-438.
    [114]Gupta V, Suryanarayanan S, Reddy N P. Fractal Analysis of Surface EMG Signals from the Biceps [J]. International Journal of Medical Informatics,1997, 45(3):185-192.
    [115]Khezri M, Jahed M. An Inventive Quadratic Time-Frequency Scheme Based on Wigner-Ville Distribution for Classification of sEMG Signals [C]. Proceeding of the 6th IEEE International Special Topic Conference on Information Technology Applications in Biomedicine,2007,261-264.
    [116]Englehart K, Hudgin B, Parker P A. A Wavelet-Based Continuous Classification Scheme for Multifunction Myoelectric Control [J]. IEEE Transactions on Biomedical Engineering,2001,48(3):302-311.
    [117]Englehart K, Hudgin B, Chan ADC. Continuous Multifunction Myoelectric Control Using Pattern Recognition [J]. Thechnology and Disability,2003, 15(2):95-103.
    [118]Englehart K, Hudgin B. A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control [J]. IEEE Transactions on Biomedical Engineering,2003, 50(7):848-854.
    [119]Canal M R. Comparison of Wavelet and Short Time Fourier Transform Methods in the Analysis of EMG Signals [J]. Journal of Medical Systems,2010,34(1): 91-94.
    [120]鞠徐,宋晓峰.引入关联维的表面肌电信号的特征提取[J].生物医学工程研究,2008,27(3):184-187.
    [121]罗志增,沈寒霄.表面肌电信号的基本尺度熵分析方法[J].华中科技大学学报(自然科学版),2008,36(s1):102-104.
    [122]Almanji A, Chang J Y. Feature Extraction of Surface Electromyography Signals with Continuous Wavelet Entropy Transform [J]. Microsystem Technologies, 2011,17(5-7):1187-1196.
    [123]邹晓阳,雷敏.基于多尺度最大李雅普诺夫指数的表面肌电信号模式识别[J].中国生物医学工程学报,2012,31(1):7-12.
    [124]Jain A K, Duin R P W, Mao J. Statistical Pattern Recognition:A Review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(1):4-37.
    [125]Chan F H Y, Yang Y S, Lam F K, et al. Fuzzy EMG Classification for Prosthesis Control [J]. IEEE Transactions on Rehabilitation Engineering,2000,8(3): 305-311.
    [126]Ajiboye A B, Weir R F. A Heuristic Fuzzy Logic Approach to EMG Pattern Recognition for Multifunctional Prosthesis Control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):280-291.
    [127]Oskoei M A, Hu H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb [J]. IEEE Transactions on Biomedical Engineering,2008,55(8):1956-1965.
    [128]颜志国.基于粗糙集和支持向量机的表面肌电特征约简和分类研究[D].上海交通大学,博士学位论文.2008.
    [129]Lan N. Analysis of an Optimal Control Model of Multi-Joint Arm Movements [J]. Biological Cybernetics,1997,76(2):107-117.
    [130]Konrad P. The ABC of EMG — A Practical Introduction of Kinesiological Electromyography [M].1st,2005.
    [131]De Luca C J. Physiology and Mathematics of Myoelectric Signals [J]. IEEE Transactions on Biomedical Engineering,1979, BME-26(6):313-325.
    [132]张旭.基于表面肌电信号的人体动作识别与交互[D].中国科学技术大学,博士学位论文.2010.
    [133]http://www.megaemg.com/index.jsp?pid=111.
    [134]万相奎,季忠,梁小容,等.独立分量分析及其在诱发电位提取中的应用[J].重庆大学学报,2004,27(8):7-10.
    [135]宋华珠.基于独立分量分析的结构损伤识别研究[D].武汉理工大学,博士学位论文.2006.
    [136]金岩.基于小波变换与独立分量分析的内燃机振声特性研究[D].浙江大学,博士学位论文.2007.
    [137]蒋瑜,陈循,陶俊勇,等.指定功率谱密度、偏斜度和峭度值下的非高斯随机过程数字模拟[J].系统仿真学报,2006,18(5):1127-1130.
    [138]姚志湘,刘焕彬,粟晖.盲信号分离输出与源信号的一致性判断[J].华南理工大学学报(自然科学版),2007,35(5):50-53.
    [139]陈伟婷.基于熵的表面肌电信号特征提取研究[D].上海交通大学,博士学位论文.2008.
    [140]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [141]Pincus S M. Approximate Entropy as a Measure of System Complexity [C]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2297-2301.
    [142]Richman J S, Moorman J R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy [J]. American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6):2039-2049.
    [143]Lake D E, Richman J S, Griffin M P, et al. Sample Entropy Analysis of Neonatal Heart Rate Variability [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2002,283(3): 789-797.
    [144]刘慧,和卫星,陈晓平.生物时间序列的近似熵和样本熵方法比较[J].仪器仪表学报,2004,25(s4):806-807,812.
    [145]Ke Huang, Selin Aviyente. Information-Theoretic Wavelet Packet Subband Selection for Texture Classification [J]. Signal Processing,2006,86(7): 1410-1420.
    [146]Phinyomark A, Phukpattaranont P, Limsakul C. Feature Reduction and Selection for EMG Signal Classification [J]. Expert Systems with Applications,2012, 39(8):7420-7431.
    [147]杨帮华.自发脑电脑机接口技术及脑电信号识别方法研究[D].上海交通大学,博士学位论文.2006.
    [148]鲁娟娟,陈红.BP神经网络的研究进展[J].控制工程,2006,13(5):449-451,456.
    [149]王波雷,马孝义,郝晶晶.基于L-M优化算法的喷头射程神经网络预测模型[J].农业机械学报,2008,39(5):35-40.
    [150]李伟.基于人工神经网络的数字调制信号的快速识别方法[J].洛阳理工学院学报(自然科学版),2009,19(4):60-63.
    [151]黄庆斌.BP算法的改进及其应用研究[D].西南交通大学,硕士学位论文.2010.
    [152]王晓芳,杨荣荣.VC++编程实现遗传算法对神经网络权重的优化[J].计算机应用,2004,24(s2):137-138,148.
    [153]尹淑玲,舒宁,刘新华.基于自适应遗传算法和改进BP算法的遥感影像分类[J].武汉大学学报(信息科学版),2007,32(3):201-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700