锌与锌转运体在脊髓和DGR的分布以及锌在NPP中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     锌是哺乳动物体内重要的微量元素之一,在机体的生长发育、生殖遗传、免疫、内分泌、神经活动等重要生理过程中发挥重要的作用。在中枢神经系统中,大约15%的锌离子处于游离状态,这些锌离子主要位于含锌神经元(zinc-enrichedneuron,ZEN)轴突末端的突触小泡内。当神经活动时,游离锌离子往往随着一些神经递质的释放而进入突触间隙并与突触后膜的某些受体结合或者穿越突触后膜进入到突触后神经元,从而发挥其神经调节作用。近年来人们对锌转运体(zinctransporters,ZNTs)的研究进一步揭示了锌的生物学功能,ZNT7就是其中一个重要组成成员,它的功能是将锌转运到高尔基体内,从而维持细胞内的锌稳态。
     神经病理性疼痛(neuropathic pain,NPP)是一种由神经系统损伤而引起的慢性疾病,临床上以痛觉过敏、触诱发痛(或称痛觉超敏)、局部感觉缺失以及自发性疼痛等为特点。近年来,随着人口的老龄化,NPP的发病率呈逐年上升趋势,但是由于缺乏有效的治疗手段,已经成为危害人类健康的主要疾病之一。
     基础研究表明,锌能影响NMDA和非NMDA受体的表达与功能,后者在伤害性刺激传导中起重要作用;金属硫蛋白-Ⅲ和游离锌离子以及含锌初级传入神经元在脊髓和背根神经节(dorsal root ganglion,DRG)的大量分布也提示锌可能参与痛觉的传导。动物实验显示,脊神经背根切断术后,小鼠痛阈明显降低,脊髓背侧角浅层灰质的锌离子明显减少,进一步证实锌可能参与痛觉的产生和传导。
     因此,本研究利用金属自显影技术(autometallography,AMG)、免疫组织化学、免疫荧光双标记与共聚焦激光扫描显微镜技术、Westein blot技术研究锌及ZNTs在小鼠脊髓和DRG的分布。在此基础上,利用坐骨神经分支选择损伤模型(spared nerve injury,SNI)观察低锌和高锌预处理对SNI模型动物行为学变化以及脊髓和DRG中锌离子、神经肽、神经元凋亡和星形胶质细胞的影响,从而为探讨脊髓和DRG中的锌代谢以及锌在NPP产生与传导中的作用和机制研究提供重要的实验依据。
     实验方法
     应用AMG技术、免疫组织化学技术、Western Blot技术检测锌和ZNT7在CD-1小鼠脊髓和DRG的分布,应用免疫荧光双标记和共聚焦激光扫描显微镜技术检测ZNT7与TGN38在小鼠脊髓和DRG的定位分布及其位置关系。建立SNI动物模型,利用观察动物自主行为变化与行为学检测技术对模型进行鉴定。在此基础上,分别给予低锌或高锌预处理,观察锌预处理对SNI模型动物行为学的影响。同时,利用AMG技术、N-(6-甲基-8-喹啉)-甲苯磺酰胺荧光染色技术(N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide,TSQ)检测锌在各组模型动物脊髓和DRG的分布变化;利用免疫组织化学技术、Western Blot技术和免疫荧光技术检测锌预处理对SNI模型动物脊髓和DRG中的降钙素基因相关肽(calcitoningene related protein,CGRP)、神经肽Y(neuropeptide Y,NPY)、细胞凋亡因子和星形胶质细胞表达的影响。
     实验结果
     1、锌离子在CD-1小鼠脊髓和DRG的分布
     AMG阳性反应产物为棕黑色颗粒,主要分布在小鼠脊髓的神经元轴突终末和DRG神经元细胞核的周围,呈斑块状或颗粒状围绕细胞核。
     2、ZNT7在CD-1小鼠脊髓和DRG的分布
     免疫组织化学结果显示:ZNT7免疫阳性反应产物呈棕黄色,在脊髓灰质的神经元以及DRG神经元的细胞核周围均可见ZNT7阳性产物分布,呈斑块状或颗粒状围绕在细胞核周围高尔基体的分布区域。
     免疫荧光双标记和共聚焦激光扫描结果显示:在小鼠脊髓灰质和DRG的神经元细胞核周围均有ZNT7阳性产物的表达,其与TGN38的分布相同,均呈斑块状或颗粒状共分布于神经元细胞核周围。
     3、ZNT7在CD-1小鼠脊髓内表达的Western Blot分析
     应用Western Blot技术对小鼠脊髓内ZNT7在蛋白水平的表达进行检测。结果显示,小鼠的脊髓内有ZNT7的丰富表达。
     4、SNI模型的鉴定
     观察动物自主行为发现:假手术组(SHAM)术后第2天步态基本恢复正常,无甩足和舔足等自发痛行为;而SNI模型动物在术后第1天就开始跛行,术侧后足不敢承重,出现甩足和舔足等自发痛行为,一直持续到观察期末。
     机械性痛阈检测表明:与术前基础痛阈值相比,SHAM组术后痛阈无明显下降,差异无显著性意义(P>0.05);SNI组术后痛阈明显下降,差异有显著性意义(P<0.05)。与SHAM组相比,SNI组术后机械痛阈显著降低,差异有显著性意义(P<0.05),表明模型制备成功。
     5、低锌或高锌预处理对SNI模型动物脊髓背侧角和DRG中锌离子的影响
     AMG和TSQ检测结果显示:与SHAM组相比,正常动物模型组(N-SNI)与低锌预处理组(L-SNI)的术侧脊髓背侧角浅层和DRG中的锌离子均显著减少(P<0.05),其中L-SNI组比N-SNI组减少更为显著(P<0.05);而高锌预处理组(H-SNI)术侧脊髓背侧角浅层和DRG中的锌离子均显著增多(P<0.05)。
     6、锌对SNI模型动物行为学的影响
     观察动物自主行为发现:SHAM组术后第2天步态基本恢复正常,无舔足和甩足等自发痛行为;而N-SNI、L-SNI和H-SNI组在术后第1天就开始跛行,术侧后足不敢承重,出现甩足、舔足等自发痛行为,一直持续到观察期末。此外,L-SNI组小鼠的自主行为最为显著,而H-SNI组的自主行为相对较轻。
     机械性痛阈检测表明:与术前基础痛阈值相比,N-SNI、L-SNI和H-SNI组术后痛阈均明显下降,差异有显著性意义(P<0.05);与SHAM组相比,N-SNI、L-SNI和H-SNI组术后机械性痛阈均降低,差异有显著性意义(P<0.05)。其中,L-SNI组痛阈低于N-SNI组(P<0.05),而H-SNI组痛阈高于N-SNI组(P<0.05)。
     7、锌对SNI模型脊髓背侧角和DRG中CGRP和NPY的影响
     免疫组织化学结果显示:CGRP和NPY阳性产物为棕褐色细颗粒状。主要分布在术侧的脊髓背侧角浅层和DRG神经元细胞质中。与SHAM组相比,N-SNI、L-SNI和H-SNI组的阳性表达均显著增高(P<0.05)。其中,L-SNI组的阳性表达高于N-SNI组(P<0.05),而H-SNI组的阳性表达低于N-SNI组(P<0.05)。
     8、锌对SNI模型脊髓背侧角神经元凋亡的影响
     免疫组织化学检测结果表明:Caspases-3、Fas和FasL阳性产物为棕黄色颗粒状,主要分布在脊髓背侧角浅层的神经元中。与SHAM组相比,N-SNI、L-SNI和H-SNI组术侧脊髓背侧角Caspases-3、Fas和FasL阳性表达均增高(P<0.01)。L-SNI组的表达高于N-SNI组(P<0.01);H-SNI组的表达低于N-SNI组(P<0.01)。
     Westein blot检测结果表明:与SHAM组相比,N-SNI、L-SNI和H-SNI组术侧脊髓背侧角Caspases-3、Fas、FasL的阳性表达均显著增高(P<0.01)。与N-SNI组相比,L-SNI组的阳性表达增多(P<0.01);H-SNI组的阳性表达减少(P<0.01)。
     9、锌对SNI模型脊髓背侧角GFAP表达的影响
     免疫荧光染色结果显示,星形胶质酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞呈绿色荧光,细胞多突起,胞体较小。SHAM组术侧脊髓背侧角只有少量GFAP阳性细胞。与SHAM组相比较,N-SNI、L-SNI和H-SNI组术侧脊髓背侧角的GFAP阳性细胞均增多(P<0.05)。与N-SNI组相比,L-SNI组的阳性细胞增多(P<0.05),H-SNI组阳性细胞减少(P<0.05)。
     结论
     1、正常小鼠脊髓和DRG中富含游离锌离子和ZNT7。其中,ZNT7与高尔基复合体标记物TGN38的表达存在共区域性。
     2、低锌预处理能使SNI模型脊髓背侧角浅层锌离子更加减少,加重自发性痛等行为学变化,机械性痛阈值降低更加显著;而高锌预处理能使脊髓背侧角锌离子增多,改善自发性痛等行为学变化,提高机械性痛阈值。
     4、低锌预处理能使SNI模型脊髓背侧角CGRP、NPY、凋亡因子和星形胶质细胞的表达增加,使DRG中的CGRP和NPY表达增加;而高锌预处理能使表达降低。
Zinc,an essential trace element for mammals,can take important roles in the course of development,reproduction,immune,endocrine and nervous activities.In the nervous system,about 15%of zinc ions are free,and accumulate in the presynaptic vesicles.Free zinc ions can be released together with neurotransmitters into the synaptic cleft,and then react with postsynaptic neurons to implement their neuroregulation.In the recent years,the studies on the zinc transporters help people to reveal the biological functions of zinc.Zinc transporter 7(ZNT7) is an important part and its function is to transporting zinc ions into Golgi apparatus from cytoplasm to maintain the zinc homeostasis in cells.
     Neuropathic pain(NPP) is a chronic disease,induced by nervous system injury and clinically characterized by hyperpathia,allodynia,partly sensory loss and spontaneous pain.During the past few years,following the ageing of population,the attack rate of NPP increased year by year.However,for the defect of effective therapeutic tools,it has become one of the diseases which harm mankind body health.
     Foundational studies indicate that zinc ions can effect the expression of NMDA and un-NMDA receptor and their functions with an important role in the conduction of nociceptive stimulus.Additionally,the great quantity of metallothionein-Ⅲ,zinc ions and zinc containing primary afferent neurons in the spinal cord and dorsal root ganglion (DRG) reveals that zinc ions may take part in the conduction of pain.Animal experiments show that the thresholds of pain in NPP model mice decreased after accepting dorsal rhizotomy,accompanying with the decrease of zinc ions in spinal and then reveal the role of zinc in the neuropathic pain.
     In this study,we examined the distribution of zinc and zinc transporters in the normal spinal cord and DRG,using the autometallography technology(AMG), immunohistochemistry and immunofluorescence methods.Additionally,the effect of zinc pretreatment on the pain praxiology changes,the distribution of zinc, neuropeptides,apoptosis and horizontal cell in spinal cord and DRG were observed using spared nerve injury(SNI) modle.Then the metabolism of zinc in spinal cord and DRG and the role and mechanism of zinc in the development and conduction of NPP were studied.
     Methods
     Normal CD-1 mice and SNI model were used for the present study.The distribution of free zinc ions and ZNT7 in normal spinal cord and DRG were detected by AMG,immunohistochemistry and Western Blot.The distribution patterns of ZNT7 in these organs and the positional relation between ZNT7 and TGN38,a maker of Golgi apparatus,were detected by double immunofluorescence and confocal laser scanning microscopy.The SNI models were used and evaluated by observing the changes of independent behaviour of mice and praxiology detecting technique.Then the effect of high or low-zinc pretreatment on the distribution of zinc in spinal cord and DRG of SNI mice was detected by AMG and TSQ(N-(6-methoxy-8-quinolyl)-para -toluenesulfonamide) staining technique and the effect on the praxiology changes were observed too.Additionally,The effect of high or low-zinc pretreatment on the expression of neuropeptides,calcitonin gene related protein(CGRP),neuropeptide Y (NPY),apoptosis factors and horizontal cell in spinal cord and DRG of SNI mice were analyzed by immunohistochemistry,westein blot and immunofluorescence.
     Results
     1.Distribution of zinc ions in CD-1 mice spinal cord and DRG
     AMG staining results showed that AMG-positive granules were widely distributed in the axon terminals of neurons and the areas nearing nuclear of DRG neurons.
     2.Abundant expression of ZnT7 in the spinal cord and DRG
     Immunohistochemimistry results revealed that ZNT7 immunopositive products were brown.ZNT7-positive structures were round or irregular and distributed in the perinuclear regions of neurons throughout the spinal cord and DRG.
     Double-immunofluorescence staining for ZNT7 and TGN38 showed that the ZNT7-positive structures were widely distributed in the spinal cord and DRG neurons, being co-expressed with TGN38 in the perinuclear areas.
     3.Expression of ZnT7 in the spinal cord of Western blot detection
     Western blot results showed that there were abundant expressions of ZNT7 in spinal cord in normal CD-1 mice.
     4.Evaluation of SNI model
     Praxiological observation revealed that the sham operated mice(SHAM group) were recovered soon.Whereas the SNI model mice begun to limp,daring of weight bearing,discarding foot and licking foot.
     Mechanical pain threshold detection revealed that,comparing with preoperative pain threshold,the postoperative pain threshold of operated side in SHAM mice were unchanged(P>0.05),while that of SNI mice were decreased significantly(P<0.05). Additionally,the postoperative pain threshold of SNI were decreased significantly than that of SHAM mice(P<0.05),revealing the success of model establishment.
     5.Effect of low or high-zinc pretreatment on the distribution of zinc in spinal cord and DGR.
     AMG and TSQ staining revealed that,comparing with SHAM group,the distribution of zinc in operated spinal dorsal horn superficial layer and DRG of normal SNI group(N-SNI) and low-zinc pretreatment SNI group(L-SNI) were decreased significantly(P<0.05).The distribution of zinc in L-SNI group were decreased than that in N-SNI group(P<0.05).Additionally,the distribution in high-zinc pretreatment SNI group(H-SNI) was significantly increased than that of SHAM group(P<0.05).
     6.Effect of zinc on the praxiology changes of SNI mice.
     Independent behaviour observation revealed that the SHAM group were recovered soon,whereas the SNI group,including N-SNI,L-SNI and H-SNI group,begun to limp, daring of weight bearing,discarding foot and licking foot.Additionally,the independent behaviour changes in L-SNI were the most significant and the H-SNI group mice are relieved than N-SNI and L-SNI groups.
     Mechanical pain threshold detection revealed that,comparing with preoperative pain threshold,the postoperative pain threshold of operated side in three SNI groups were all decreased(P<0.05).Comparing with SHAM group,the mechanical pain threshold in three SNI groups were all decreased(P<0.05).Among the total,the L-SNI group was lower than N-SNI(P<0.05) and the H-SNI group was higher than N-SNI(P<0.05).
     7.Effect of zinc ions on the expression of CGRP and NPY in spinal dorsal horn and DRG of SNI model
     Immunohistochemistry revealed that CGRP and NPY positive granules were located in the spinal dorsal horn superficial layer and the DRG neuron of operated side. Comparing with SHAM group,the expression of three SNI groups were all increased (P<0.05).Among the total,the L-SNI group was higher than N-SNI(P<0.05) and the H-SNI group was lower than N-SNI(P<0.05).
     8.Effect of zinc ions on the apoptotisis of spinal dorsal horn of SNI model
     Immunofluorescence detection revealed that caspases-3,Fas and FasL positive cells were mainly localized in the superficial layer of spinal dorsal horn of operated side.Both immunofluorescence and westein blot detection revealed that,comparing with SHAM group,the expression of caspases 3,Fas and FasL in three SNI groups were all increased(P<0.01).Among the total,the L-SNI group was higher than N-SNI (P<0.01) and the H-SNI group was lower than N-SNI(P<0.01).
     9.Effect of zinc ions on the expression of GFAP in spinal dorsal horn of SNI model mice
     Immunofluorescence detection revealed that GFAP positive cells were located in the spinal dorsal horn of operated side.Comparing with SHAM mice,the number of GFAP positive cells in three SNI groups were all increased(P<0.05).Among the total, the L-SNI group was higher than N-SNI(P<0.05) and the H-SNI group was lower than N-SNI(P<0.05).
     Conclusion
     1.Zinc ions and ZNT7 were enriched in the spinal cord and DRG neurons,with the co-localization of perineclear area with TGN38.
     2.Low-zinc pretreatment can reduce the distribution of zinc in the superficial layer of spinal dorsal horn and DGR neurons in SNI group and then mechanical pain threshold decreased,while the high-zinc pretreatment functions oppositely.
     3.Low-zinc pretreatment can increase the expression of CGRP,N-PY,apoptosis factors and horizontal cells in spinal dorsal horn,as well as that of CGRP and NPY in DRG of SNI mice,while high-zinc pretreatment functions oppositively.
引文
1 Vallee BL,Auld DS.New perspective on zinc biochemistry:cocatalytic sites in multi-zinc enzymes.Biochemistry 1993;32:6493~6500.
    2 Perez-Clausell J.Distribution of terminal fields stained for zinc in the neocortex of the rat.J Chem Neuroanat 1996;11:99~111.
    3 Takeda A.Movement of zinc and its functional significance in the brain.Brain Res Rev 2000;34:137~148.
    4 Takeda A.Zinc homeostasis and functions of zinc in the brain.Biometals 2001;14:343~351.
    5 Valente T,Auladell C,Perez-Clausell J.Postnatal development of zinc-rich terminal fields in the brain of the rat.Exp Neurol 2002;174:215~229.
    6 Wang ZY,Stoltenberg M,Jo SM,et al.Dynamic zinc pools in mouse choroid plexus.Neuroreport 2004;15:1801~1804.
    7 Christianson DW.Structural biology of zinc.Adv Protein Chem 1991;42:281~355.
    8 Coleman JE.Zinc proteins:enzymes,storage proteins,transcription factors and replication proteins.Annu Rev Biochem 1992;61:897~946.
    9 Frederickson CJ,Kasarskis EJ,Ringo D,et al.A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc)in the brain.J Neurosci Methods 1987;20:91~103.
    10 Wang Z,Li JY,Dahlstrom A,Danscher G.Zinc-enriched GABAergic terminals in mouse spinal cord.Brain Res 2001;921:165-172.
    11 Takeda A,Suzuki M,Okada S,et al.65Zn localization in rat brain after intracerebroventricular injection of 65Zn-histidine.Brain Res 2000;863:241~244.
    12 Miro-Bernie N,Sancho-Bielsa FJ,Lopez-Garcia C,et al.Retrograde transport of sodium selenite and intracellular injection of micro-ruby:a combined method to describe the morphology of zinc-rich neurons.J Neurosci Methods 2003;127:199~209.
    13 Danscher G,Stoltenberg M,Bruhn M,et al.Immersion autometallography:histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.J Histochem Cytochem 2004;52:1619-1625.
    14 Palmiter RD,Huang L.Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers.Pflugers Arch 2004;447:744~751.
    15 Eide DJ.The SLC39 family of metal ion transporters.Pflugers Arch 2004;447:796~800.
    16 Palmiter RD,Cole TB,Quaife CJ,et al.ZnT-3,a putative transporter of zinc into synaptic vesicles.Proc Natl Acad Sci USA 1996;93:14934~14939.
    17 Colvin RA,Fontaine CP,Laskowski M,et al.Zn2+ transporters and Zn2+ homeostasis in neurons.Eur J Pharmacol 2003;479:171~185.
    18 Kambe T,Yamaguchi-Iwai Y,Sasaki R,et al.Overview of mammalian zinc transporters.Cell Mol Life Sci 2004;61:49-68.
    19 Palmiter RD,Cole TB,Findley SD.ZnT-2,a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration.EMBO J 1996;15:1784~1791.
    20 Huang X,Atwood CS,Moir RD,et al.Zinc-induced Alzheimer's Abetal-40 aggregation is mediated by conformational factors.J Biol Chem 1997;272:26464~26470.
    21 Huang L,Kirschke CP,Gitschier J.Functional characterization of a novel mammalian zinc transporter,ZnT6.J Biol Chem 2002;277:26389~26395.
    22 Yu YY,Kirschke CP,Huang L.Immunohistochemical analysis of ZnT1,4,5,6,and 7 in the mouse gastrointestinal tract.J Histochem Cytochem.2007;55:223-34.
    23 Chi ZH,Wang X,Wang ZY,et al.Zinc transporter 7 is locatated in the cis-Golgi apparatus of mouse choroid epithelial cells.Neuroreport 2006;17:1807~1811.
    24 Chi ZH,Feng WY,Gao HL,et al.ZNT7 and Zn2+ are present in different cell populations in the mouse testis.Histol Histopathol.2009;24:25-30.
    25 Gao HL,Xu H,Wang X,et al.Expression of zinc transporter ZnT7 in mouse superior cervical ganglion.Auton Neurosci.2008;140:59-65.
    26 Kirschke CP,Huang L.ZnT7,a novel mammalian zinc transporter,accumulates zinc in the Golgi apparatus.J Biol Chem.2003;278:4096-4102.
    27 Danscher G,Jo SM,Varea E,e,al.Inhibitory zinc-enriched terminals in mouse spinal cord.Neuroscience2001;105:941~947.
    28 Wenzel HJ,Cole TB,Born DE,et al.Ultrastructural localization of zinc transporter-3 (ZnT-3)to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey.Proc Natl Acad Sci USA 1997;94:12676~12681.
    29 Wang ZY,Danscher G,Dahlstrom A,et al.Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons.J Neurosci 2003;120:605~616.
    30 Wang X,Wang ZY,Gao HL,et al.Localization of ZnT7 and zinc ions in mouse retina-immunohistochemistry and selenium autometallography.Brain Res Bull 2006;71:91~96.
    31 Gao HL,Feng WY,Li XL,et al.Golgi apparatus localization of ZNT7 in the mouse cerebellum.Histol Histopathol 2009;24:567~572.
    32 Merskey H,Bogduk N.Classification of chronic pain:Descriptions of chronic pain syndromes and definitions of pain terms.IASP Press 1994;25:394~401.
    33 Hokfelt T,Broberger C,Xu ZQ,et al.Neuropeptidea-an overview.Neuropharmacology 2000;39:1337~1356.
    34 Devor M.Neuropathic pain and injured nerve:peripheral mechanisms.Br Med Bull 1991;47:619~630.
    35 Campbell JN,Meyer RA,Raja SN.Is nociceptor activation by alpha 1 adrenoreceptors the culprit in sympathetically mattined pain.APSJ 1992;13:344~350.
    36 Graneely RH,SA,Bennett GJ.Painful neuropathy:altered central processing maintained dynamically by perpial input.Pain 1992;51:175~194.
    37 Torebjork HE,Thmdberg LE,IaMotte RH.Central changes in processing of active input in capsaicin-incuced secondary hyperalgesiain humans.J Physiol (Lond)1992;448:765~780.
    38 Cold MS,Weinreich D,Kim CS,et al.Redistribution of Na(V)I.8 in uninjured axons enables neuropathic pain.J Neurosci 2003;23:158~166.
    39 Rashid MH,Inoue M.Switching of bradykinin mediated nociception following partial sciatic nerve injury in mice.J Pharmacol Exp Ther 2004;308:1158~1164.
    40 Hains BC,Saab CY,Klein JP,et al.Altered sodium channel expressionin second-order spinal sensory neuron contributes to pain after peripheral nerve injury.J Neurusci 2004;24:4832~4839.
    41 Ma QP,Woolf CJ.Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch:implications for the treatment of mechanical allodynia.Pain 1995;61:383~390.
    42 Deumens R,Jaken RJ,Knaepen L,et al.Inverse relation between intensity of GFAP expression in the substantia gelatinosa and degree of chronic mechanical allodynia.Neurosci Lett.2009;452:101-105.
    43 Watkins LR,Maier SF.The pain of being sick:implications of immune-to-brain communication for understanding pain.Annu Rev Psychol 2000;51:29~57.
    44 Inoue A,Ikoma K,Morioka N,et al.Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system.J Neurochem 1999;735:2206~2213.
    45 Decosterd I,Woolf CJ.Spared nerve injury:an animal model of persistent peripheral neuropathic pain.Pain 2000;87:149~158.
    46 Chaplan SR,Baeh FW,Pogrel JW,et al.Quantitative assessment of tactile allodynia in the rat paw.J Neurosei Methods 1994;53:55~63.
    47 Hagreaves K,Dubner R,Brown F,et al.A new and sensitive method for measuring thermal nociception in eutaneous hyperalgesia.Pain 1988;32:77~82.
    48 Berg JM,Shi Y.The galvanization of biology:a growing appreciation for the roles of zinc.Science 1996;271:1081~1085.
    49 Vallee BL,Auld D S.Zinc coordination,function and structure of zinc enzymes and other proteins.Biochemistry 1990;29:5647~5659.
    50 Peters S,Koh J,Choi DW.Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.Science 1987;236:589~592.
    51 Velazpuez RA,Cai Y,Shi Q,et al.The distribution of zinc selenite and expression of metallothionein-Ⅲ mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission.J Neurosci 1999;19:2288~2300.
    52 Jo SM,Danscher G,Schroder H D,et al.Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice.Biometals 2008;21:151~158.
    53 Christine CW,Choi DW.Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.J Neurosci 1990;10:108~116.
    54 Benett AD,Chastain KM,Hulsebosch CE.Alleviation of mechanical and thermal allodynia by CGRP8-37 in a rodent model of chronic central pain.Pain 2000;86:163~175.
    55 Leem JW,Gwak YS,Lee EH,etal.Effects of iontophoretically applied substance P,calcitonin gene-related peptide on excitability of dorsal horn neurons in rats.Yonsei Med J 2001;42:74~83.
    56 Gibbs JL,Flores CM,Hargreaves KM.Attenuation of capsaicin-evoked mechanical allodynia by peripheral neumpeptide Y Yl receptors.Pain 2006;124:167~174.
    57 Levy MJ,Classey JD,Maneesri S,etal.The relationship beween neuropeptide Y expression and headache in pituitary tumours.Eur J Neurol 2006;13:125~129.
    58 Whiteside GT,Mungiani R.Cell death in the superficial dorsal horn in a model of neuropathic pain.J Neurosci Res 2001;64:168~173.
    59 Christoph T,Schiene K,Engiberger W,etal.The antiallodynic effect of NMDA antagonists in neuropathic pain outlasts the duration of the in vivo NMDA anagonism.Neuropharmacology 2006;51:12~17.
    60 Herdegen T,Leah JD.Inducible and constitutive transcription factors in the mammalian nervous system:control of gene expression by Jun,Fos and Krox,andCREB/ATP protein.Brain Res Rev 1998;28:370~490.
    61 NovellisV,Sinisealco D,Galderisi U,etal.Blockade of gintamate mGlu5 receptors in a rat model of neuropathic pain prevents early over-expression of pro-apoptotic genes and morphological changes in dorsal horn lamina Ⅱ.Neuropharmacology 2004;46:468~479.
    62 Maione S,Sinisealco D,Galderisi U,etal.Apoptofic genes expressionin the lumbar dorsal horn in a model neuropathic pain in rat.Neuroreport 2002;13:101~106.
    63 Mao J,Sung B,Ji RR,et al.Neuronal apoptosis associated with morphine tolerance;Evidence for an opioid-induced neurotoxic mechanism.J Neurosci 2002;22:7650~7661.
    64 Whiteside GT.Munglani R.Cell death in the superficial dorsal horn in a model of neuropathic pain.J Neurosei Res 2001;64:168~173.
    65 Azkue J J,Zimmermann M,Hsieh TF,et al.Peripheral nerve insult induces NMDA receptor mediated,delayed degeneration in spinal neurons.Eur J Neurosci 1998;10:2204~2206.
    66 Whiteside GT,Munglani R.Cell death in the superficial dorsal horn in a model of neuropathic pain.J Neurosci Res 2001;64:168~173.
    67 Maione S,Siniscalco D,Galderisi U,et al.Apoptotic genes expression in the lumbar dorsal horn in a model neuropathic pain in rat.Neuroreport 2002;13:101~106.
    68 Moore KA,Kohno T,Karchewski LA,et al.Partial peripheral nerve injury promotes a selective loss of GABA ergic inhibition in the superficial dorsal horn of the spinal cord.J Neurosci 2002;22:6724~6731.
    69 Mao J,Sung B,JiR R,et al.Neuronal apoptosis associated with morphinetolerance:evidence for anopioid induced neurotoxic mechanism.J Neurosci 2002;22:7650~7661.
    70 Tao YX,Johns RA.Activation and up-regulation of spinal cord nitric oxide receptor,soluble guanylate cyclase,after formalin injection into the rat hind paw.Neuroscience 2002;112:439~446.
    71 Christine CW,Choi DW.Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.J Neurosci 1990;10:108~116.
    72 Velazpuez RA,Cai Y,Shi Q,Larson AA.The distribution of zinc selenite and expression of metallothionein-Ⅲ mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission.J Neurosci 1999;19:2288~300.
    73 Fu K Y,Light AR,Matsushima GK,et al.Mieroglial reactions after subcutanes formalin injection into the rat hind Paw.Brain Res 1999;825:59~67.
    74 SweitZer SM,Colburn RW,Rultkowski M,et al.Acute-periph-Eral inflammation Induces moderate glial activation and spinal IL-1 beta expression that correlates withPain behavior in the rat.Brain Res 1999;829:209~221.
    75 Watkins LR,Maier SF.The pain of being sick:implications of immune-to-brain communication for understanding Pain.Annu Rev Psyehol 2000;51:29~57
    76 Sehwei MJ,Honore P,Rogers SD,et al.Neurochemical and Cellularre organization of the spinal cordina murine model of bone cancer Pain.J Neurosci 1999;19:10886~10897.
    77 Hashizume H,DeLeo JA,Colbum RW,et al.Spinal glialacti Vation and cytokine expression after lumbar root injury in the rat.Spine 2000;25:1206~1217.
    78 PoPoviehPG,Wei P,Stokes BT Cellular inflamatoryre-sponse after spinal cord injury in Sprague-dawley and lewis rats.JComp Neurol 1997;377:443~464.
    79 Power C,Henry S,Delbigio MR.et al.Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases.Ann Neurol 2003;53:731~742.
    80 Wieseler-Frank J,Maier SF,Wat kins LR.Glial activation and pat hological pain.Neurochem Int 2004;45:389~395.
    81 Wat kins LR,Maier SF.The pain of being sick,implications of immune-to-brain communication for understanding pain.Annu Rev Psychol 2000;51:292~257.
    82 Bridges D,Thompson SW,Rice AS.Mechanisms of neuropathie pain.Br J Anaesth2001;87:12~26.
    83 Watkins LR,Milligan ED,Maier SF.Glinl activation:a driving force for pathological pain..Trends Neurosci 2001;24:450~455.
    84 WoolfCJ,Salter MW.Neuronal plasticity:increasing the gain in pain.Science 2000;288:1765~1769.
    85 MinagarA,ShapshakP,FujimuraR,et al.The role ofmacrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders:HIV-associated dementia,Alzheimer disease,and multiple sclerosis.JNeurol Sei 2002;202:13~23.
    86 Winkelsein BA,DeLeo JA.Nerve root injury severity differentially modulates spinal gliai activation in a rat lumbar radiculopathy model:considerations for persistent pain.Brain Res 2002;956:294~301.
    87 Taylor BK,Abhyankar SS,Kriedt CL,et al.Neuropeptide Y acts at Y 1 receptors in the rostral ventral medulla to inhibit neuropathic pain.Pain 2007;131:83~95.
    88 Brumovasky PR,Hofstetter C,Olson L,et al.The neuropeptide tyrosine Y 1 R is expressed in interneurons and projection neurons in the dorsal horn and area X of the rat spinal cord.Neuroscience 2006;138:1361~1376.
    89 Brumovsky PR,Stanic D.Neuropeptide Y2 receptor protein is present in peptidergic and nonpeptidergic primary sensory neurons of the mouse.J Comp Neurophysiol 2005;489:328~348.
    90 Shit JS,Li J,Dahlstr6m A,etal.Deletion of the neuropeptide Y Y 1 receptor affects pain sensitivity,neuropeptdie transport and expression,and dorsal root ganglion neuron numbers.Neuroscience 2006;140:293~304.
    91 Brumovsky PR,Bergman E.Effect of a graded single constriction of the rat sciatic nerve on Pain behavior and expression of immunoreactive NPY and NPYY1 receptor in DRG neurons and spinal cord.Brain Res 2004;1006:87~99.
    92 Zhang L,Chi ZH,Ren H,et al.Immunoreactivity of zinc transporter 7 (ZNT7)in mouse dorsal root ganglia.Brain Res bull 2007;74:278-283.
    1 Przewlocki R,Przewlockal B.Opioids in neuropathic pain.Curr Pharm 2005;11:3013~3025.
    2 Merskey H,Bogduk N.Classification of chronic pain:Descriptions of chronic pain syndromes and definitions of pain terms.IASP Press 1994;25:394~401.
    3 Devor M.Neuropathic pain and injured nerve:peripheral mechanisms.Br Med Bull 1991;47:619~630.
    4 Cao H,Zhang YQ.Spinal glial activation contributes to pathological pain states.Neurosci Biobehav Rev 2008;32:972~983.
    5 Bee LA,Dickenson AH.Rostral ventromedial medulla control of sp inal sensory processing in normal and pathophysiological states.Neuroscience 2007;147:786~793.
    6 Campbell JN,Meyer RA,Raja SN.Is nociceptor activation by alpha 1 adrenoreceptors the culprit in sympathetically mattined pain.APSJ 1992;13:344~350.
    7 Graneely RH,SA,Bennett GJ.Painful neuropathy:altered central processing maintained dynamically by perpial input.Pain 1992;51:175~194.
    8 Torebjork HE,hmdbergLE,IamotteRH.Central changes in processing of input in capsaicin-incuced secondary hyperalgesiain humans.J Physiol 1992;448:765~780.
    9 Cold MS,Weinreich D,Kim CS,et al.Redistribution of Na(V)I.8 in uninjured axons enables neuropathic pain.J Neurosci 2003;23:158~166.
    10 RashidMH,InoueM,MA,etal.Switching ofbradykinin-mediated nociception following partial sciatic nerve injury in mice.J Pharmacol Exp Ther 2004;308:1158~1164.
    11 Hains BC,Saab CY,Klein JP,et al.Altered sodium channel expressionin second-order spinal sensory neurocontributes to pain after peripheral nerve injury.J Neurusci 2004;24:4832~4839.
    12 Hi J,Gold MS,Kim CS,et al.Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel,Nal.8.Pain 2002;95:143~152.
    13 Valder CR,Song YH.Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development.J Neurochem 2003;87:560~573.
    14 Li CY,Song YH,Higuem ES,et al.Spinal dorsal hemcalcium channel alpha-deltal subunitupreguhfion contributes to peripheral nerve injury-induced tactile alledynia.J NeIllDBci 2004;24:8494~8499.
    15 Altier C,Zamponi GW.Targeting cachannels to treat pain:T-type versus N-type.Trends Pharmacol Sci 2004;25:465~470.
    16 Hokfelt T,Broberger C,Xu ZQ,et al.Neuropeptidea-an overview.Neuropharmacology 2000;39:1337~1356.
    17 Deumens R,Jaken RJ,Knaepen L,et al.Inverse relation between intensity of GFAP expression in the substantia gelatinosa and degree of chronic mechanical allodynia.Neurosci Lett.2009;452:101-105.
    18 Watkins LR,Maier SF.The pain of being sick:implications of immune-to-brain communication for understanding pain.Annu Rev Psychol 2000;51:29~57.
    19 Benett AD,Chastain KM,Hulsebosch CE.Alleviation of mechanical and thermal allodynia by CGRP8-37 in a rodent model of chronic central pain.Pain 2000;86:163~175.
    20 Leem JW,Gwak YS,Lee EH,etal.Effects of iontophoretically applied substance P,calcitonin gene-related peptide on excitability of dorsal horn neurons in rats.Yonsei Med J 2001;42:74~83.
    21 Taylor BK,Abhyankar SS,Kriedt CL,et al.Neuropeptide Y acts at Y 1 receptors in the rostral ventral medulla to inhibit neuropathic pain.Pain 2007;131:83~95.
    22 Brumovasky PR,Hofstetter C,Olson L,etal.The neuropeptide tyrosine Y 1 R is expressed in interneurons and projection neurons in the dorsal horn and area X of the rat spinal cord.Neuroscience 2006;138:1361~1376.
    23 Brumovsky PR,Bergman E.Effect of a graded single constriction of the rat sciatic nerve on Pain behavior and expression of immunoreactive NPY and NPYY 1 receptor in DRG neurons and spinal cord.Brain Res 2004;1006:87~99.
    24 Ma QP,Woolf CJ.Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch:implications for the treatment of mechanical allodynia.Pain 1995;61:383~390.
    25 Whiteside GT,Mungiani R.Cell death in the superficial dorsal horn in a model of neuropathic pain.J Neurosci Res 2001;64:168~173.
    26 Christoph T,Schiene K,Engiberger W,etal.The antiallodynic effect of NMD A antagonists in neuropathic pain outlasts the duration of the in vivo NMDA anagonism.Neuropharmacology 2006;51:12~17.
    27 Hide I,TanakaM,Inoue A,et al.Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia.J Neurochem 2000;753:965~972.
    28 DeLeo JA,Tanga FY,Tawfik VL.Neuroimmune activation and neuroinflammation in chronic pain and op ioid tolerance /hyperalgesia.Neuroscientist 2004;10:402~411.
    29 InoueA,Ikoma K,Morioka N,et al.Interleukin-1beta induces substance P release from primary afferent neurons through the cyclooxygenase-2 system.J Neurochem 1999;735:2206-2213.
    30 Vallee BL,Falchuk KH.The biochemical basis of zinc physiology.Physiol 1993;73:79~118.
    31 Berg JM,Shi Y.The galvanization of biology:a growing appreciation for the roles of zinc.Science 1996;271:1081~1085.
    32 Vallee BL,Auld DS.Zinc coordination,function and structure of zinc enzymes and other proteins.Biochemistry 1990;29:5647~5659.
    33 Rogers EE,Eide DJ,Guerinot ML.Altered selectivity in an rabidopsis metal transporter.Proc Sci2000;97:12356~12360.
    34 Jia Y,Jeng JM,Sensi SL,et,al.Zn~(2+)currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones.J Physiol 2002;543:35~48.
    35 Palmiter RD,Findley SD.Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc.Embo J 1995;14:639~649.
    36 Kim A.H,Sheline CT,Tian M,et al.L-type Ca(2+)channel-mediatedZn(2+)toxicity and modulation by ZnT-1 in PC12 cells.Brain Res 2000;886:99~107.
    37 Palmiter RD,Cole TB,et al.ZnT-2,a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration.EMBO J 1996;15:1784~1791.
    38 Danscher G,Zimmer J.An improved Timm sulphide silver method for light and electron microscopic localization of heavy metals in biological tissues.Histochemistry 1978;55:27~40.
    39 Frederickson RE,Frederickson CJ,Danscher G.In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task.Behav Brain Res 1990;38:25~33.
    40 Wenzel HJ,Cole TB,Born DE,et al.Ultrastructural localization of zinc transporter-3 (ZnT-3)to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey.Proc Natl Acad Sci USA 1997;94:12676~12681.
    41 Li Y,Hough CJ,Frederickson,CJ,et al.Induction of mossy fiber Ca3 long-term potentiation requires translocation of synaptically released Zn2+.J Neurosci 2001;21:8015~8025.
    42 Cole TB,Wenzel H J,Kafer KE,et al.Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene.Proc Natl Acad Sci USA 1999;96:1716~1721.
    43 Lee JY,Cole TB,Palmiter RD,et al.Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice.Proc Natl Acad Sci USA 2002;99:7705~7710.
    44 Gaither LA,Eide DJ.Eukaryotic zinc transporters and their regulation.Bio Metals 2001;14:251~270.
    45 Huang L,Gitscnier J.A novel gene involved in zinc transport is deficient in the lethal milk mouse.Nat Genet 1997;17:292~297.
    46 Kambe T,Narita H,et al.Cloning and characterization of a novel mammalian zinc transporter,zinc transporter 5,abundantly expressed in pancreatic β cells.J Biol Chem 2002;277:19049~19055.
    47 Huang L,Catherine P,et al.Functional characterization of a novel mammalian zinc transporter,ZnT6.J Biol Chem 2003;277:26389~26395.
    48 Catherine P,Kirschke,et al.ZnT7,a novel mammalian zinc transporter,accumulates zinc in the Golgi apparatus.J Biol Chem 2003;278:4096~4102.
    49 Wenzel HJ,Cole TB,Born DE,et al.Ultrastructural localization of zinc transporter-3 to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey.Proc Natl Acad Sci 1997;94:12676~12681.
    50 Palumaa P,Njunkova O,Pokras L.Evidence for non-isostructural replacement of Zn~(2+)with Cd~(2 +)inthe beta-domain of brain-specific metallothionein-3.FEBS Lett 2002;527:76~81.
    51 Peters S,Koh J,Choi DW.Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.Science 1987;236:589~592.
    52 Christine CW,Choi DW.Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.J Neurosci 1990;10:108~116.
    53 Velazpuez RA,Cai Y,Shi Q,Larson AA.The distribution of zinc selenite and expression of metallothionein-Ⅲ mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission.J Neurosci 1999;19:2288~2300.
    54 Jo SM,Danscher G,Schroder H D,et al.Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice.Biometals 2008;21:151~158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700