糖尿病患者血浆nesfatin-1水平、人胃NUCB2测定及MSG损毁弓状核对小鼠胃粘膜ghrelin、nesfatin-1的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景资料:
     Ghrelin是1999年由Kojima和他的同事发现,是生长激素促分泌受体la内源性配体(GHS-R1a)。在摄食调节肽中,ghrelin有其独一无二的性能,它的酰基化是在第三位丝氨酸残基,从而增加其亲油性以便能够结合GHS-R1a体。分布在胃泌酸粘膜上的ghrelin阳性X/A样细胞是循环血ghrelin的主要来源,胃切除术后血浆ghrelin有明显的降低。ghrelin也可由位在于下丘脑的弓状核和第三脑室周围的神经元产生。弓状核与摄食调节有很强的关连。弓状核含ghrelin的神经元神经纤维投向神经肽Y(NPY)和刺鼠色蛋白相关蛋白(AgRP)阳性神经元,NPY和AgRP是促进食欲的神经肽,且受ghrelin的调节。外周注射ghrelin选择性激活小鼠弓状核含NPY的神经元。同样,脑室内注射ghrelin激活表达NPY/AgRP的神经元,刺激弓状核NPY和AgRP mRNA的表达。总ghrelin水平与体重指数成反比,在厌食和恶病质病人增加,在肥胖时降低,在实验动物和人血循环中的ghrelin在餐前在餐前有一分泌峰,在餐后降低,呈现餐后抑制。相对而言,进食对血浆ghrelin的餐后抑制研究比较详尽,然而其餐前分泌峰的中枢机制还未明确。
     nesfatin-1是由Oh IS等在大鼠下丘脑发现的,在第三脑室注射能抑制摄食,命名为nesfatin-1:NUCB2编码的饱感和影响肥胖的肽,翻译后的处理不同生成nesfatin-1、nesfatin、nesfatin-3,只有nesfatin-1具有抑制摄食的效应。nesfatin-1的前体NUCB2无论是mRNA还是蛋白质水平,在胃泌酸粘膜都比其他脏器如心脏、脑表达多。而且,NUCB2 mRNA在胃泌酸的小分泌细胞上有显著的丰富的表达。迄今为止,nesfatin-1的受体尚未得到鉴定。关于nesfatin-1抑制摄食的作用机制,Oh IS等2006年在Nature的首篇报导指出,在leptin受体突变的Zucker大鼠,nesfatin-1仍然可抑制摄食,而促黑激素(a-MSH)受体(MC4-R)阻断剂可阻断nesfatin-1的摄食抑制效应,i.c.v.给予a-MSH引起室旁核NUCB2 mRNA表达增加,由此认为nesfatin-1的摄食抑制效应是通过促黑激素系统(melanocortin signalling)介导的。最近报道大鼠禁食24小时胃内内分泌细胞NUCB2 mRNA表达减少,血浆nesfatin-1水平明显减少。在啮齿类动物,新发现的肽nesfatin-1侧脑室注射能够减少摄食和体重;Stengel等最近研究表明,禁食24h后胃粘膜内分泌细胞NUCB2的mRNA表达减少,他们认为nesfatin/NUCB2基因可能受营养状态的调节,表明外周nesfatin-1在能量稳态中可能有调节作用。然而.关于nesfatin-1与肥胖者、Ⅱ型糖尿病患者的病理生理相关性未见报道。
     能量摄入和消耗的不平衡成为肥胖发展和逆转的基础,但是对这些过程的控制及白色脂肪组织的脂质沉淀和动员的转换结果的中枢机制还不清楚。对能量摄入和消耗研究的优势主要集中在下丘脑前脑部位及环路,有更多的理由使研究局限的在下丘脑弓状核(arcuate nucleus, Arc),不仅仅是因为大量的脂肪细胞衍生因子瘦素(leptin)的鉴定,且在下丘脑弓状核存在大量的瘦素受体。在弓状核内有两类细胞是瘦素的作用靶点,一类细胞产生神经肽Y(neuropeptide Y,NPY)和刺鼠色蛋白相关蛋白(agouti-related protein,AgRP),这两种肽是促进食欲的肽;另一类是产生阿黑皮素原(proopiomelanocortin,POMC)和可卡因-安非它明调节转录肽(cocaine-associated related transcripts,CART),这两种肽是厌食肽。经典的理解大脑某个部位的生理性反应,如能量平衡,就是损毁它。一种替换传统弓状核损毁的方法是出生后用谷氨酸单钠处理(monosodium glutamate,MSG)来破坏弓状核。主要是因为弓状核血脑屏障不完善,MSG能够渗透到大脑。
     目的:
     观察糖尿病患者血浆nesfatin-1的水平及营养素对血浆nesfatin-1水平波动的影响;鉴定人类胃粘膜是否含有NUCB2/nesfatin.
     检测小鼠弓状核和其它血脑屏障不完善的区域(如最后区)是否被MSG损毁,食物剥夺后动员身体脂肪的贮存的能力是否受到干扰;弓状核损毁后是否影响到胃及血浆的ghrelin、nesfatin-1水平。
     方法:
     20例正常人、10例Ⅰ-型糖尿病和47例Ⅱ-型糖尿病患者,空腹采血3ml;16例健康志愿者,禁食12h后,男女各半分为两组,先空腹采血3ml,一组口服300ml生理盐水,另一组口服含75g葡萄糖的300ml液体后30、60、90、150、210min采血。ELISA法检测血浆nesfatin-1和血糖水平的变化。十例胃癌手术后切除的正常胃组织,通过RT-PCR、Western blot、免疫荧光双标实验鉴定人类胃粘膜是否含有NUCB2/nesfatin.
     新生健康昆明小白鼠,雌雄不限。随机分为正常对照组和MSG处理组,每组16只。MSG处理组小鼠出生后隔日(第1,3,5,7和9天,共5次)于颈部皮下注射MSG(4mg/g体重),而正常对照组只给予同体积的生理盐水。第四周断乳后,放入摄食分析仪测摄食;第十二周后,每组在正常饮食、禁食48h、再进食后,分别内眦取血,测血浆ghrelin水平;此后每组再分为正常饮食组、禁食48h组,分别断头取脑,冰冻切片观察弓状核损毁情况,取胃组织行RT-PCR、Western blot实验,以检测ghrelin、nesfatin-1 mRNA及蛋白质水平;取各部位脂肪称重。
     结果:
     血浆nesfatin-1水平无性别变化;Ⅰ型糖尿患者组比正常对照组血浆nesfatin-1水平稍升高,但差别无统计学意义;Ⅱ-型糖尿病患者组血浆nesfatin-1水平明显低于Ⅰ型糖尿患者组和正常对照组。口服葡萄糖30min后,血浆nesfatin-1水平稍高于基础水平(从基础水平0.99±0.23 ng/ml升高1.08±0.24 ng/ml),但观察到各个时间点血浆nesfatin-1水平无明显差别。
     人类胃粘膜含有NUCB2/nesfatin基因和蛋白质,免疫荧光双标实验显示nesfatin-1阳性细胞,nesfatin-1与ghrelin共表达率为67.8%;ghrelin阳性的细胞,ghrelin与nesfatin-1共表达率为88.6%。
     与生理盐水组小鼠相比,MSG组小鼠弓状核甲酚紫染色神经元明显减少(P<0.01),TH、NPY免疫阳性神经元也明显减少(P<0.01),最后区TH免疫阳性神经元明显减少(P<0.01)。
     从第四周断乳后,MSG组小鼠与生理盐水组小鼠比较,每周的摄食量没有明显改变。第十二周后,MSG处理的小鼠比生理盐水处理的小鼠体重明显增加(P<0.01);MSG组小鼠和生理盐水组小鼠食物剥夺后,与各自自由饮食的小鼠相比体重也明显降低(P<0.05)。与生理盐水处理的小鼠相比,MSG处理的小鼠在所分析的部位(腹膜后、双侧腹股沟、性腺)白色脂肪组织量及肩胛间棕色脂肪组织都明显增加(P<0.01),白色脂肪组织的总量也明显增加(P<0.01)。与生理盐水处理的小鼠相比,新生小鼠MSG处理后不能阻断或减少食物剥夺后引起的白色脂肪组织脂质动员的减少。因此,MSG组小鼠和生理盐水组小鼠食物剥夺后,与各自自由饮食的小鼠相比,腹膜后和双侧腹股沟的白色脂肪量明显降低(P<0.05),而性腺白色脂肪量却没有明显降低。
     MSG处理的小鼠,在禁食48h后血浆ghrelin水平明显高于禁食前,进食后血浆ghrelin水平又明显降低;生理盐水组小鼠在禁食48h后血浆ghrelin水平明显高于禁食前,进食后血浆ghrelin水平又明显降低(P<0.01)。MSG组小鼠与生理盐水组小鼠比较,无论是在禁食前、禁食48h,还是进食后,血浆ghrelin水平无明显改变。
     MSG处理的小鼠,在禁食48h后胃粘膜组织ghrelin mRNA表达明显高于禁食前(P<0.01);生理盐水组小鼠在禁食48h后胃粘膜组织ghrelin mRNA表达也明显高于禁食前(P<0.05)。MSG组小鼠与生理盐水组小鼠比较,无论是在禁食前,还是在禁食48h,胃粘膜组织ghrelin mRNA表达水平无明显改变。
     MSG处理的小鼠,在禁食48h后胃粘膜组织nesfatin-1前体蛋白NUCB2 mRNA表达明显低于禁食前(P<0.05);生理盐水组小鼠在禁食48h后胃粘膜组织nesfatin-1前体蛋白NUCB2 mRNA表达明显低于禁食前(P<0.01)。MSG组小鼠与生理盐水组小鼠比较,无论是在禁食前,还是在禁食48h,胃粘膜组织nesfatin-1前体蛋白NUCB2 mRNA表达表达水平无明显改变。
     MSG处理的小鼠,在禁食48h后胃粘膜组织proghrelin蛋白表达明显高于禁食前(P<0.01);生理盐水组小鼠在禁食48h后胃粘膜组织proghrelin蛋白表达也明显高于禁食前(P<0.01)。MSG组小鼠与生理盐水组小鼠比较,无论是在禁食前,还是在禁食48h,胃粘膜组织proghrelin蛋白表达水平无明显改变。
     MSG处理的小鼠,在禁食48h后胃粘膜组织nesfatin-1前体蛋白NUCB2蛋白表达明显低于禁食前(P<0.01);生理盐水组小鼠在禁食48h后胃粘膜组织nesfatin-1前体蛋白NUCB2蛋白表达明显低于禁食前(P<0.01)。MSG组小鼠与生理盐水组小鼠比较,无论是在禁食前,还是在禁食48h,胃粘膜组织nesfatin-1前体蛋白NUCB2蛋白表达表达水平无明显改变。
     结论:
     Ⅱ-型糖尿病患者组血浆nesfatin-1水平明显低于Ⅰ型糖尿患者组和正常对照组,这种结果的意义还不清楚,但血浆nesfatin-1水平降低,可能与糖尿病的多食和胰岛素抵抗有关;另外,不论生理盐水,还是葡萄糖摄入都不能影响血浆nesfatin-1水平,说明目前条件下胃化学状态不足以引起nesfatin-1的反应。
     人胃粘膜存在NUCB2/nesfatin基因和蛋白质,大多数表达ghrelin的P/D1样细胞也表达NUCB2/nesfatin-1。
     MSG能够损毁弓状核、最后区。这些部位的正常功能有可能被代偿,食物剥夺后白色脂肪组织的动员也就表现为正常。完整的弓状核、最后区对于食物剥夺引起的白色脂肪组织的脂质动员并不是必需的,但可能在其他能量要求的条件下(如锻炼或寒冷暴露)的脂质动员的发动上起作用。
     MSG处理的小鼠,尽管损毁了弓状核NPY/AgRP神经元,但禁食48h后血浆ghrelin仍然明显升高,因此弓状核NPY/AgRP神经元损毁并没有影响ghrelin的餐前分泌峰,说明弓状核NPY/AgRP神经元对于ghrelin餐前分泌峰并不是必须的,关于ghrelin餐前分泌峰的中枢机制还需要进一步研究。
     禁食能引起小鼠胃粘膜NUCB2/nesfatin-1表达减少,MSG损毁小鼠弓状核后,与对照组相比在禁食前后胃粘膜NUCB2/nesfatin-1表达并没有明显变化,说明弓状核损毁并没有影响到胃粘膜NUCB2/nesfatin-1的合成和分泌。
Background:
     Ghrelin was discovered in 1999 by Kojima and colleagues as the endogenous ligand of the long known growth hormone secretagogue receptor 1a (GHS-R1a) isoform.Ghrelin positive X/A-like cells distributed throughout the gastric oxyntic mucosa are the main source of circulating ghrelin as demonstrated by the sharp decline of ghrelin levels following gastrectomy. ghrelin has been detected in the central nervous system in the arcuate nucleus of the hypothalamus as well as in neurons adjacent to the third ventricle. The arcuate nucleus is strongly implicated in the regulation of food intake. Ghrelin containing neurons in the arcuate nucleus send projections to neuropeptide Y (NPY) and agouti-related peptide (AgRP) positive neurons. NPY and AgRP are orexigenic neuropeptides and regulated by ghrelin. Peripheral injection of ghrelin selectively activates NPY-containing neurons in the arcuate nucleus in mice.Likewise, intracerebroventricular (i.c.v) administration of ghrelin activates NPY/AgRP-expressing neurons and stimulates the expression of NPY and AgRP mRNA in the arcuate nucleus. Total ghrelin levels inversely correlate with body mass index with increased levels in anorexic and cachectic patients and decreased levels under conditions of obesity. Circulating ghrelin levels increase before and decline after a meal in experimental animals and humans. Relatively speaking, the postprandial suppression of plasma ghrelin has been considerably better studied than the preprandial peak. Although the physiological importance of this effect is not ye clear,an appealing possibility is that the suppression of this orexigenic hormone plays a role in the satiating effect of ingested nutrients. We don't know the brain mechanism of the preprandial peak of plasma ghrelin.
     Nesfatin-1 was identified by Oh IS et al.in the rat hypothalamus and reported to decrease food intake upon 3rd ventricle injection and named nesfatin for NUCB2 encoded satiety and fat-influencing protein.Post-translational processing results in nesfatin-1,nesfatin-2 and nesfatin-3,however, only nesfatin-1 exhibits a food intake-reducing effect. The nesfatin-1 precursor NUCB2 is more prominently expressed at the mRNA and protein level in the rat gastric oxyntic mucosa than in other viscera such as the heart and even the brain.Moreover, NUCB2 mRNA expression is significantly enriched in a population of gastric oxyntic small endocrine cells. So far, we can't identify the nesfatin-1 receptor. Oh IS et al reported that nesfatin-1 induced anorexia occurs in Zucker rats with a leptin receptor mutation, and an anti-nesfatin-1 antibody does not block leptin-induced anorexia. Central injection of a-melanocyte stimulating hormone elevates NUCB2 gene expression in the paraventricular nucleus. So nesfatin-1 as a satiety molecule that is associated with melanocortin signaling in the hypothalamus.Stengel A et al recently reported that fasting for 24 h decreases NUCB2 mRNA expression in a pool of enriched small gastric endocrine cells and significantly reduces nesfatin-1 plasma levels in rats.the novel satiety factor nesfatin-1 has been shown to decrease food intake and body weight in rodents after i.c.v. injection, they raised the possibility that nesfatin/NUCB2 gene expression may be regulated by nutritional status, suggesting that nesfatin-1 in the stomach might play a role in satiety. However, no further developments regarding the true patho-physiological relevance of nesfatin-1 in obesity and type 1 diabetes mellitus (T1 DM) and type 2 diabetes mellitus (T2 DM) have been reported.
     Imbalance in energy intake and expenditure underlies the development and reversal of obesity, but the brain mechanisms underlying the control of these processes and the resulting alterations in WAT lipid deposition or mobilization are not precisely known. The preponderance of research on energy intake/energy expenditure has focused on hypothalamic forebrain sites/circuits. An even narrower focus has been placed on the hypothalamic arcuate nucleus (Arc) for numerous reasons, not the least of which is the identification of the largely adipocyte-derived cytokine leptin and the localization of substantial numbers of leptin receptors on Arc neurons. Within the ARC, there are two major cell types that are targets for leptin.One cell type produces neuropeptide Y (NPY) and agouti-related protein (AgRP), two orexigenic peptides, whereas the other cell type produces proopiomelanocortin (POMC) and cocaine-associated related transcripts (CART), two anorexigenic peptides. A classic approach to understanding the role of any brain site for a given physiological response, such as energy balance, is to destroy it. An alternative approach to Arc destruction is offered by neonatal administration of monosodium glutamate (MSG). MSG is able to penetrate the brain via the underdeveloped neonatal blood brain barrier (BBB) in several brain areas, including the area postrema.
     Object:
     To investigate the fasting levels of plasma nesfatin-1 in diabetes mellitus patients and the nutrient-related fluctuation of nesfatin-1 level in normal humans,and whether NUCB2/nesfatin is peripherally produced in the human gastric mucosa.
     To test whether destruction of the Arc by MSG,interferes with the ability of food deprivation to mobilize body fat stores in mice. Whether Arc lesion affect the ghrelin and nesfatin-1 level of plasma and stomach.
     Methods:
     In the present study, fasting levels in plasma nesfatin-1,insulin and glucose were measured and analyzed by ELISA in healthy subjects and in patients with T1 DM and T2 DM. Plasma nesfatin-1 levels were measured 6 times before and after oral glucose ingestion in healthy subjects. NUCB2 mRNA and protein expression were analyzed by RT-PCR and Western blot analysis in the human gastric mucosa, NUCB2/nesfatin-1 immunoreactive cells were characterized using immunofluorescent double labeling of mucosal sections.
     Neonatal mice from our breeding colony, were injected subcutaneously into the dorsal dermis area just below the interscapular region on d 1,3,5,7, and 9 after birth. With 10μl of MSG (Sigma-Aldrich, St. Louis, MO) to deliver 4 mg/g body mass,Control rats were treated with saline. At 4 wk of age, the pups were weaned, sexed, and housed in groups according to treatment. Food intake was assessed by measuring the weight of the food containers (±0.1g) by electronic precision scales (Feeding and Activity Analyser 47552-002, UGO BASILE, ITALY).Food intake was measured weekly after weaning. Body mass and stomach tissues were measured before and after food deprivation. At fasting 48h, before and after fasting, animals were lightly anesthetized with isoflurane and orbital blood was taken for serum measurement of ghrelin. Animals were then anesthetized (pentobarbital sodium, 50 mg/kg ip), stomach tissues were removed, and the right inguinal WAT (1WAT), bilateral retroperitoneal WAT (RWAT), bilateral parametrial WAT (PWAT), and interscapular brown adipose tissue (IBAT) depots were removed and weighed. Ghrelin and nesfatin-1 mRNA of stomach was measured by RT-PCR, ghrelin and nesfatin-1/NUCB2 protein of stomach were measured by western blot. Brains were removed and stored in a 4% paraformaldehyde solution for Arc lesion verification by histological examination.
     Results:
     No sex differences in plasma nesfatin-1 were found. The mean fasting plasma nesfatin-1 levels were slightly but not significantly higher in T1 DM patients compared to healthy subjects. However, fasting plasma nesfatin-1 levels were significantly lower in T2 DM patients compared to healthy subjects and T1 DM patients. Plasma nesfatin-1 did not change acutely, although a small rise in circulating nesfatin-1 occurred within 30 min after the beginning of an oral glucose ingestion (from a mean basal value of 0.99±0.23 ng/ml to a maximum of 1.08±0.24 ng/ml). No significant difference in plasma nesfatin-1 before and after an oral glucose was observed.
     NUCB2 mRNA was detected in the human gastric mucosa. Furthermore, Western blot analysis confirmed nesfatin-1 protein in this tissue. Fluorescent immunoreactivity of nesfatin-1 was detected in endocrine cells of the oxyntic mucosa. Most nesfatin-1 immunoreactivity (67.8%) of the oxyntic mucosa co-localized with ghrelin immunoreactive endocrine cells. The majority of ghrelin positive cells (88.6%) were also positive for nesfatin-1.
     Compared with saline controls, MSG treatment significantly decreased Nissl staining, NPY-ir fibers, and TH-ir cells of the Arc (P<0.01);MSG treatment significantly reduced TH-ir(P<0.01)of the AP.
     MSG treatment increased body mass in 3-mo-old mice (P<0.01)compared with the saline controls, but there were no significant different of food intake from 1-mo-old to 3-mo-old in two groups. MSG significantly increased WAT pad mass for all depots assayed (IWAT, RWAT, and gonadal WAT; P<0.01)as well as IBAT. Total dissected WAT also was significantly increased by MSG treatment compared with saline-treated controls (P<0.05). Neonatal MSG injections did not block or diminish the food deprivation-induced lipid mobilization from any of the WAT pads assayed as evidenced by their decreased masses compared with the saline-treated controls. Thus both MSG and saline treated animals had significant food deprivation-induced decreases in IWAT and RWAT mass (P<0.05) compared with their respective ad libitum-fed counterparts, but GWAT mass did not decrease with food deprivation for either group compared to their respective ad libitum-fed controls.
     Plasma ghrelin levels were significantly increased in MSG treated mice and saline treated mice fasted for 48h compared with their respective before fasting and refeeding counterparts (P<0.01),but there were no significant different of plasma ghrelin level between MSG treated mice and saline treated mice at before, after fasting 48h and refeeding time.
     Ghrelin mRNA of stomach were significantly increased in MSG treated mice and saline treated mice fasted for 48h compared with their respective before fasting counterparts (P<0.05), but there were no significant different of ghrelin mRNA of stomach between MSG treated mice and saline treated mice before and after fasting.
     NUCB2 mRNA of stomach were significantly decreased in MSG treated mice and saline treated mice fasted for 48h compared with their respective before fasting counterparts (P<0.05), but there were no significant different of NUCB2 mRNA of stomach between MSG treated mice and saline treated mice before and after fasting.
     Proghrelin protein of stomach were significantly increased in MSG treated mice and saline treated mice fasted for 48h compared with their respective before fasting counterparts (P<0.01), but there were no significant different of proghrelin protein of stomach between MSG treated mice and saline treated mice before and after fasting.
     NUCB2/nesfatin-1 protein of stomach were significantly decreased in MSG treated mice and saline treated mice fasted for 48h compared with their respective before fasting counterparts (P<0.01), but there were no significant different of NUCB2/nesfatin-1 protein of stomach between MSG treated mice and saline treated mice before and after fasting.
     Conclusions:
     Fasting nesfatin-1 were significantly lower in T2 DM patients compared to healthy subjects and T1 DM patients. The significance of this result is unclear, but the reduction in fasting nesfatin-1 may be one of the appetite-related hormones involved in diabetic hyperphagia. In addition, neither glucose nor saline ingestions affected plasma nesfatin-1, suggesting that gastric chemosensation is not sufficient for the nesfatin-1 response under the present conditions.
     NUCB2 mRNA and protein were detected in the human gastric mucosa, the majority of gastric oxyntic ghrelin-producing P/Dl cells co-express NUCB2/nesfatin-1
     The MSG-produced Arc lesions and AP lesions were substantial, and the normal function of these areas likely was compromised, yet food deprivation-induced WAT Hpid mobilization appeared normal. An intact Arc and/or AP are not necessary for food deprivation-induced lipid mobilization from WAT but could play a role in lipid mobilization triggered by other energy-demanding conditions such as exercise or cold exposure.
     Although Arc lesion, plasma ghrelin levels were significantly increased in MSG treated mice fasted for 48h compared with it's before fasting and refeeding counterparts. Ghrelin positive X/A-like cells distributed throughout the gastric oxyntic mucosa are the main source of circulating ghrelin. Arc lesion did not affect the preprandial peak of plasma ghrelin, so Arc are not necessary for the preprandial peak of plasma ghrelin, Further studies are warranted to elucidate the brain mechanism of preprandial peak of plasma ghrelin.
     Fasting for 48 h decreases NUCB2 mRNA expression of stomach, there were no significant different of NUCB2/nesfatin-1 of stomach between MSG treated mice and saline treated mice before and after fasting. So Arc lesion didn't affect the synthesis and releasing
引文
1 Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006,443:709-12.
    2 Shimizu H, Oh IS, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M. Peripheral administration of nesfatin-1 reduces food intake in mice:the leptin-independent mechanism. Endocrinology 2009,150:662-71.
    3 Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ. Nesfatin-1:distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007,148:5088-94.
    4 Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 2008, 149:1295-301.
    5 Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides 2007,28:2223-8.
    6 Price TO, Samson WK, Niehoff ML, Banks WA.Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1.Peptides 2007,28:2372-81.
    7 Wiedmer P, Nogueiras R, Broglio F, D'Alessio D, Tschop MH. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab 2007,3:705-12.
    8 Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Tache Y, Sachs G, Lambrecht NW. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 2009,150:232-8.
    9 Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997,20:1183-97.
    10 Aydin S, Dag E, Ozkan Y, Erman F, Dagli AF, Kilic N, Sahin I, Karatas F, Yoldas T, Barim AO, Kendir Y. Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients:hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem 2009,328:49-56.
    11 Gonzalez R, Tiwari A, Unniappan S.Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 2009,381:643-8.
    12 Dong J, Peeters TL, De Smet B, Moechars D, Delporte C, Vanden Berghe P, Coulie B, Tang M, Depoortere I.Role of endogenous ghrelin in the hyperphagia of mice with streptozotocin-induced diabetes. Endocrinology 2006,147:2634-42.
    13 Murdolo G, Lucidi P, Di Loreto C, Parlanti N, De Cicco A, Fatone C, Fanelli CG, Bolli GB, Santeusanio F, De Feo P. Insulin is required for prandial ghrelin suppression in humans. Diabetes 2003,52:2923-7.
    14 Reimer MK, Pacini G, Ahren B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 2003,144:916-21.
    15 Yoshimoto A, Mori K, Sugawara A, Mukoyama M, Yahata K, Suganami T, Takaya K, Hosoda H, Kojima M, Kangawa K, Nakao K. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol 2002,13:2748-52.
    16 Chen YD, Jeng CY, Reaven GM. HDL metabolism in diabetes. Diabetes Metab Rev 1987;3:653-68.
    17 Macro JA, Dimaline R, Dockray GJ. Identification and expression of prohormone-converting enzymes in the rat stomach. Am J Physiol 1996,270:G87-93.
    18 Xu L, Bloem B, Gaszner B, Roubos EW, Kozicz T.Sex-specific effects of fasting on urocortin 1, cocaine-and amphetamine-regulated transcript peptide and nesfatin-1 expression in the rat Edinger-Westphal nucleus. Neuroscience 2009,162:1141-9.
    19 Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, Lambrecht NW, Tache Y. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats:differential role of corticotropin-releasing factor2 receptor. Endocrinology 2009,150:4911-9.
    20 Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature 2001,409:194-8.
    21 Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000,407:908-13.
    22 Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001,50:1714-9.
    23 Tschop M, Wawarta R, Riepl RL, Friedrich S, Bidlingmaier M, Landgraf R, Folwaczny C. Post-prandial decrease of circulating human ghrelin levels.J Endocrinol Invest 2001,24:RC19-21.
    24 Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S.Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 2002,87:240-4.
    25 Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001,50:707-9.
    26 Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002,346:1623-30.
    27 Overduin J,Frayo RS, Grill HJ, Kaplan JM, Cummings DE. Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology 2005,146:845-50.
    28 Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr 2005,135:1320-5.
    29 Williams DL, Grill HJ, Cummings DE, Kaplan JM. Vagotomy dissociates short-and long-term controls of circulating ghrelin. Endocrinology 2003,144:5184-7.
    30 Hosoda H, Kangawa K. The autonomic nervous system regulates gastric ghrelin secretion in rats. Regul Pept 2008,146:12-8.
    31 Sugino T, Yamaura J, Yamagishi M, Kurose Y, Kojima M, Kangawa K, Hasegawa Y, Terashima Y. Involvement of cholinergic neurons in the regulation of the ghrelin secretory response to feeding in sheep. Biochem Biophys Res Commun 2003,304:308-12.
    32 Maier C, Schaller G, Buranyi B, Nowotny P, Geyer G, Wolzt M, Luger A. The cholinergic system controls ghrelin release and ghrelin-induced growth hormone release in humans. J Clin Endocrinol Metab 2004,89:4729-33.
    33 Broglio F, Gottero C, Van Koetsveld P, Prodam F, Destefanis S, Benso A, Gauna C, Hofland L, Arvat E, van der Lely AJ, Ghigo E. Acetylcholine regulates ghrelin secretion in humans. J Clin Endocrinol Metab 2004,89:2429-33.
    34 Tschop M, Flora DB, Mayer JP, Heiman ML. Hypophysectomy prevents ghrelin-induced adiposity and increases gastric ghrelin secretion in rats. Obes Res 2002,10:991-9.
    35 Hahn TM,Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998,1:271-2.
    36 Takahashi KA, Cone RD.Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology 2005,146:1043-7.
    37 Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience 2008,156:563-79.
    38 Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 2008,155:174-81.
    39 Flegai KM.Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav 2005,86:599-602.
    40 Satcher D.Overweight, obesity threaten U.S. health gains. FDA Consum 2002,36:8.
    41 Koplan JP, Liverman CT, Kraak VI. Preventing childhood obesity:health in the balance:executive summary. J Am Diet Assoc 2005,105:131-138.
    42 Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM.Prevalence of overweight and obesity in the United States,1999-2004.JAMA 2006,295:1549-1555.
    43 Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis.Int J Obes Relat Metab Disord 25,2001,Suppl 5: S63-S67.
    44 Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes Relat Metab Disord 25,2001,Suppl 5:S78-S82.
    45 Woods SC, Seeley RJ. Adiposity signals and the control of energy homeostasis. Nutrition 2000,16: 894-902.
    46 Hakansson ML, Hulting AL, Meister B. Expression of leptin receptor mRNA in the hypothalamic arcuate nucleus-relationship with NPY neurones. Neuroreport 1996,7:3087-3092.
    47 Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ, Trayhurn P. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol 1996,8:733-735.
    48 Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK. Leptin activates hypothalamic CART neurons projections to the spinal cord. Neuron 1998,21: 1375-1385.
    49 Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S.Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998,393:72-76.
    50 Baskin DG, Hahn TM, Schwartz MW. Leptin sensitive neurons in the hypothalamus. Horm Metab Res 1999,31:345-350.
    51 Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25,2001,Suppl 5: S63-S67.
    52 Bartness TJ, Bittman EL, Wade GN.Paraventricular nucleus lesions exaggerate dietary obesity but block photoperiod-induced weight gains and suspension of estrous cyclicity in Syrian hamsters. Brain Res Bull 1985,14:427-430.
    53 Choi S, Sparks R, Clay M, Dallman MF.Rats with hypothalamic obesity are insensitive to central leptin injections. Endocrinology 1999,140:4426-4433.
    54 Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969,164:719-721.
    55 Karcsu S, Jancso G, Kreutzberg GW, Toth L, Kiraly E, Bacsy E, Laszlo FA. A glutamate-sensitive neuronal system originating from the area postrema terminates in and transports acetylcholinesterase to the nucleus of the solitary tract. J Neurocytol 1985,14:563-578.
    56 Djazayery A, Miller DS.The use of gold-thioglucose and monosodium glutamate to induce obesity in mice. Proc Nutr Soc 1973,32:30A-31A.
    57 Bunyan J, Murrell EA, Shah PP. The induction of obesity in rodents by means of monosodium glutamate. Br J Nutr 1976,35:25-39.
    58 Nikoletseas MM. Obesity in exercising, hypophagic rats treated with monosodium glutamate. Physiol Behav 1977,19:767-773.
    59 Small CJ, Liu YL, Stanley SA, Connoley IP, Kennedy A, Stock MJ, Bloom SR. Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. Int J Obes Relat Metab Disord 2003,27:530-533.
    60 Yasuda T, Masaki T, Kakuma T, Yoshimatsu H. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett 2003,349:75-78.
    61 Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD.Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus:evidence of a cellular basis for the adipostat. Neuron 1999,24:155-163.
    62 Mercer JG, Moar KM, Ross AW, Hoggard N, Morgan PJ. Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. Am J Physiol Regul Integr Comp Physiol 2000,278:R271-R281.
    63 Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998,393:72-76.
    64 Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 1998,275:R291-R299.
    65 Bell ME, Bhatnagar S, Akana SF, Choi S, Dallman MF. Disruption of arcuate/paraventricular nucleus connections changes body energy balance and response to acute stress. J Neurosci 2000,20: 6707-6713.
    66 Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD.Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus:evidence of a cellular basis for the adipostat. Neuron 1999,24:155-163.
    67 Shi H, Bartness TJ. Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res Bull 2001,54:375-385.
    68 Song CK, Bartness TJ. CNS sympathetic outflow neurons to white fat that express melatonin receptors may mediate seasonal adiposity. Am J Physiol Regul Integr Comp Physiol 2001,281: R666-R672.
    69 Song CK, Jackson RX, Harris RBS, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2005,289:R1467-R1476.
    70 Bunyan J, Murrell EA, Shah PP. The induction of obesity in rodents by means of monosodium glutamate. Br J Nutr 1976,35:25-39.
    71 Tamura H, Kamegai J, Shimizu T, Ishii S, Sugihara H, Oikawa S. Ghrelin stimulates GH but not food intake in arcuate nucleus ablated rats. Endocrinology 2002,143:3268-3275.
    72 Moss D, Ma A, Cameron DP. Defective thermoregulatory thermogenesis in monosodium glutamate-induced obesity in mice. Metabolism 1985,34:626-630.
    73 Yoshida T, Nishioka H, Nakamura Y, Kondo M. Reduced norepinephrine turnover in mice with monosodium glutamate-induced obesity. Metabolism 1984,33:1060-1063.
    74 Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M. Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci 1985,36: 931-938.
    75 Morris MJ, Tortelli CF, Filippis A, Proietto J. Reduced BAT function as a mechanism for obesity in the hypophagic, neuropeptide Y deficient monosodium glutamate-treated rat. Regul Pept 1998, 75-76:441-447.
    76 Tsukahara F, Uchida Y, Ohba K, Nomoto T, Muraki T. Defective stimulation of thyroxine 5-deiodinase activity by cold exposure and norepinephrine in brown adipose tissue of monosodium glutamate-obese mice. Horm Metab Res 1997,29:496-500.
    77 Tsukahara F, Uchida Y, Ohba K, Ogawa A, Yoshioka T, Muraki T. The effect of acute cold exposure and norepinephrine on uncoupling protein gene expression in brown adipose tissue of monosodium glutamate-obese mice. Jpn J Pharmacol 1998,77:247-249.
    78 Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M. Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci 1985,36: 931-938.
    79 Yoshida T, Nishioka H, Nakamura Y, Kondo M. Reduced norepinephrine turnover in mice with monosodium glutamate-induced obesity. Metabolism 1984,33:1060-1063.
    80 Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002,23:2-40.
    81 Harris RB, Kelso EW, Flatt WP, Bartness TJ, Grill HJ. Energy expenditure and body composition of chronically maintained decerebrate rats in the fed and fasted condition. Endocrinology 2006,147: 1365-1376.
    82 Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E, The "normal" endocrine cell of the gut:changing concepts and new evidences. Ann N Y Acad Sci 2004,1014:1-12.
    83 Hameed S, Dhillo WS, Bloom SR. Gut hormones and appetite control. Oral Dis 2009,15:18-26.
    84 Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol 2009.
    85 Moran TH, Dailey MJ. Minireview:gut peptides:targets for antiobesity drug development? Endocrinology 2009,150:2526-30.
    86 Cui G, Waldum HL. Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion. World J Gastroenterol 2007,13:493-6.
    87 Prinz C, Kajimura M, Scott DR, Mercier F, Helander HF, Sachs G.Histamine secretion from rat enterochromaffinlike cells. Gastroenterology 1993,105:449-61.
    88 Bordi C, D'Adda T, Azzoni C, Ferraro G. Classification of gastric endocrine cells at the light and electron microscopical levels. Microsc Res Technol 2000,48:258-71.
    89 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999,402:656-60.
    90 Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, et al. Characterisation of gastric ghrelin cells in man and other mammals:studies in adult and fetal tissues. Histochem Cell Biol 2002, 117:511-9.
    91 Moran TH, Dailey MJ. Minireview:gut peptides:targets for antiobesity drug development? Endocrinology 2009,150:2526-30.
    92 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999,402:656-60.
    93 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000,141:4255-61.
    94 Mizutani M, Atsuchi K, Asakawa A, Matsuda N, Fujimura M, Inui A, et al. Localization of acyl ghrelin-and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH. Am J Physiol Gastrointest Liver Physiol 2009.
    95 Jeon TY, Lee S, Kim HH, Kim YJ, Son HC, Kim DH, et al. Changes in plasma ghrelin concentration immediately after gastrectomy in patients with early gastric cancer. J Clin Endocrinol Metab 2004, 89:5392-6.
    96 Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion.Diabetes 2002,51:124-9.
    97 Barreiro ML, Gaytan F, Caminos JE, Pinilla L, Casanueva FF, Aguilar E, et al. Cellular location and hormonal regulation of ghrelin expression in rat testis. Biol Reprod 2002,67:1768-76.
    98 Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHSR, in humans. J Clin Endocrinol Metab 2002,87:2988.
    99 Lu S, Guan JL, Wang QP, Uehara K, Yamada S, Goto N, et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett 2002,321:157-60.
    100 Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003,37:649-61.
    101 Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 2002,8:643-4.
    102 Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects,Int J Obes (Lond) 2005,29:1130-6.
    103 Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000, 141:4325-8.
    104 Wang L, Basa NR, Shaikh A, Luckey A, Heber D, St-Pierre DH, et al. LPS inhibits fasted plasma ghrelin levels in rats:role of IL-1 and PGs and functional implications. Am J Physiol Gastrointest Liver Physiol 2006,291:G611-20.
    105 Alvarez-Garcia O, Garcia-Lopez E, Rodriguez J, Gil-Pena H, Molinos I, Carbajo-Perez E, et al. Administration of ghrelin to young uraemic rats increases food intake transiently, stimulates growth hormone secretion and does not improve longitudinal growth. Nephrol Dial Transplant 2007, 22:1309-13.
    106 Hiejima H, Nishi Y, Hosoda H, Yoh J, Mifune H, Satou M, et al. Regional distribution and the dynamics of n-decanoyl ghrelin, another acyl-form of ghrelin, upon fasting in rodents. Regul Pept 2009,156:47-56.
    107 Salome N, Haage D, Perrissoud D, Moulin A, Demange L, Egecioglu E, et al. Anorexigenic and electrophysiological actions of novel ghrelin receptor (GHS-R1A) antagonists in rats. Eur J Pharmacol 2009,612:167-73.
    108 Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 2005,115:3564-72.
    109 Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides:obestatin, ghrelin, and adiponectin. Peptides 2006,27:911-6.
    110 Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002,123:1120-8.
    111 LeRoux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy.J Clin Endocrinol Metab 2005,90:4521-4.
    112 Arnold M, Mura A, Langhans W, Geary N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 2006, 26:11052-60.
    113 Davies JS, Kotokorpi P, Eccles SR, Barnes SK, Tokarczuk PF, Allen SK, et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol Endocrinol 2009,23:914-24.
    114 Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006,116:1983-93.
    115 Pfluger PT, Kirchner H, Gunnel S, Schrott B, Perez-Tilve D, Fu S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure.Am J Physiol Gastrointest Liver Physiol 2008,294:G610-8.
    116 Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 2004,101:8227-32.
    117 Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000,404:661-71.
    118 Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Regul Pept 2008;149:3-10.
    119 Wang L, Saint-Pierre DH, Tache'Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 2002, 325:47-51.
    120 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 2001,50:2438-43.
    121 Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004, 145:2607-12.
    122 Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008,132:387-96.
    123 Shimizu H, Oh IS, Okada S, Mori M. Nesfatin-1:an overview and future clinical application. Endocr J 2009,56:537-43.
    124 Pfluger PT, Kirchner H, Gunnel S, Schrott B, Perez-Tilve D, Fu S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure.Am J Physiol Gastrointest Liver Physiol 2008,294:G610-8.
    125 Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, et al. Central nesfatin-1 reduces dark phase food intake and gastric emptying in rats:differential role of corticotropin-releasing factor2 receptor. Endocrinology 2009,150:4911-9.
    126. Shimizu H, Oh -IS, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, et al. Peripheral administration of nesfatin-1 reduces food intake in mice:the leptin-independent mechanism. Endocrinology 2009,150:662-71.
    127 Shimizu H, Ohsaki A, Oh IS, Okada S, Mori M. A new anorexigenic protein, nesfatin-1.Peptides 2009,30:995-8.
    128 Price CJ,Hoyda TD, Samson WK, Ferguson AV. Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J Neuroendocrinol 2008,20:245-50.
    129 Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 2008,1230:99-106.
    130 Li QC, Wang HY, Chen X, Guan HZ, Jiang ZY. Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrient-related fluctuation of nesfatin-1 level in normal humans. Regul Pept 2010,159:72-77.
    131 Inhoff T, Monnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, Klapp BF, Tache Y, Kobelt P. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 2008,29:2159-68.
    1 Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Regul Pept 2008,149:3-10.
    2 Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006,116:3229-39.
    3 Alvarez-Garcia O, Garcia-Lopez E, Rodriguez J, Gil-Pena H, Molinos I, Carbajo-Perez E, et al. Administration of ghrelin to young uraemic rats increases food intake transiently, stimulates growth hormone secretion and does not improve longitudinal growth. Nephrol Dial Transplant 2007, 22:1309-13.
    4 Annemie VD, Debby VD, Valentijn V, Bart de S, Walter L, Liliane S, et al. Central administration of obestatin fails to show inhibitory effects on food and water intake in mice. Regul Pept 2009, 156:77-82.
    5 Ao Y, Go VL, Toy N, Li T, Wang Y, Song MK, et al.Brainstem thyrotropinreleasing hormone
    regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion. Endocrinology 2006,147:6004-10.
    6 Ariyasu H, Takaya K, Iwakura H, Hosoda H, Akamizu T, Arai Y, et al. Transgenic mice overexpressing
    des-acyl ghrelin show small phenotype. Endocrinology 2005,146:355-64.
    7 Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, et al.Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 2001,86:4753-8.
    8 Arnold M, Mura A, Langhans W, Geary N.Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 2006,26:11052-60.
    9 Asakawa A, Inui A, Fujimiya M, Sakamaki R, Shinfuku N, Ueta Y, et al. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin.Gut 2005,54:18-24.
    10 Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003,52:947-52.
    11 Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin.Gastroenterology 2001,120:337-45.
    12 Ashby DR, Ford HE, Wynne KJ, Wren AM,Murphy KG, Busbridge M, et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int 2009, 76:199-206.
    13 Ashitani J, Matsumoto N, Nakazato M.Effect of octanoic acid-rich formula on plasma ghrelin levels in cachectic patients with chronic respiratory disease. Nutr J 2009,8:25.
    14 Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN,et al. The stomach is a source of leptin. Nature 1998,394:790-3.
    15 Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin Chem Lab Med 2007,45:565-76.
    16 Bang AS, Soule SG, Yandle TG, Richards AM, Pemberton CJ. Characterisation of proghrelin peptides in mammalian tissue and plasma. J Endocrinol 2007,192:313-23.
    17 Banks WA, Tscho'p M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 2002, 302:822-7.
    18 Barreiro ML, Gaytan F, Caminos JE, Pinilla L, Casanueva FF, Aguilar E, et al. Cellular location and hormonal regulation of ghrelin expression in rat testis. Biol Reprod 2002,67:1768-76.
    19 Bednarek MA, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Silva MV, et al. Structure-function studies on the new growth hormone-releasing peptide, ghrelin:minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor la. J Med Chem 2000,43:4370-6.
    20 Biotechnology C.Phase Ⅰ/Ⅱa clinical trial with obese individuals shows no effect of CYT009-GhrQb on weight loss. Cytos Biotechnology:Press Release November 7,2006.
    21 Bordi C, D'Adda T, Azzoni C, Ferraro G.Classification of gastric endocrine cells at the light and electron microscopical levels. Microsc Res Technol 2000,48:258-71.
    22 Brennan IM, Otto B, Feltrin KL, Meyer JH, Horowitz M, Feinle-Bisset C. Intravenous CCK-8, but not GLP-1,suppresses ghrelin and stimulates PYY release in healthy men. Peptides 2007,28:607-11.
    23 Bresciani E, Rapetti D, Dona F, Bulgarelli I, Tamiazzo L, Locatelli V, et al. Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J Endocrinol Invest 2006, 29:RC16-8.
    24 Brunetti L, Leone S, Orlando G, Recinella L, Ferrante C, Chiavaroli A, et al. Effects of obestatin on feeding and body weight after standard or cafeteria diet in the rat. Peptides 2009,30:1323-7.
    25 Cani PD, Montoya ML, Neyrinck AM, Delzenne NM, Lambert DM. Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br J Nutr 2004,92:757-61.
    26 Carlini VP, Schioth HB, Debarioglio SR. Obestatin improves memory performance and causes anxiolytic effects in rats. Biochem Biophys Res Commun 2007,352:907-12.
    27 Cassoni P, Ghe C, Marrocco T, Tarabra E, Allia E, Catapano F, et al. Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin in human prostate neoplasms and related cell lines. Eur J Endocrinol 2004,150:173-84.
    28 Cassoni P, Papotti M, Ghe C, Catapano F, Sapino A, Graziani A, et al.Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. J Clin Endocrinol Metab 2001, 86:1738-45.
    29 Chartrel N, Alvear-Perez R, Leprince J, Iturrioz X, Reaux-Le Goazigo A, Audinot V, et al. Comment on "Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake". Science 2007,315:766 [author reply].
    30 Chelikani PK, Haver AC, Reidelberger RD. Ghrelin attenuates the inhibitory effects of glucagon-like peptide-1 and peptide YY(3-36) on food intake and gastric emptying in rats. Diabetes 2006, 55:3038-46.
    31 Chen CY, Inui A, Asakawa A, Fujino K, Kato I, Chen CC, et al. Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats. Gastroenterology 2005,129:8-25.
    32 Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004, 145:2607-12.
    33 Cowley MA, Smith RG, Diano S, Tscho'p M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003,37:649-61.
    34 Cui G, Waldum HL. Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion. World J Gastroenterol 2007,13:493-6.
    35 Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 2002,8:643-4.
    36 Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001,50:1714-9.
    37 Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.N Engl J Med 2002,346:1623-30.
    38 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000,141:4255-61.
    39 Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002,123:1120-8.
    40 Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002,51:124-9.
    41 Davies JS, Kotokorpi P, Eccles SR, Barnes SK, Tokarczuk PF, Allen SK, et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention.Mol Endocrinol 2009,23:914-24.
    42 de la Cour CD, Norlen P, Hakanson R. Secretion of ghrelin from rat stomach ghrelin cells in response to local microinfusion of candidate messenger compounds:a microdialysis study. Regul Pept 2007, 143:118-26.
    43 Depoortere I, Thijs T, Moechars D, De Smet B, Ver Donck L, Peeters TL. Effect of peripheral obestatin on food intake and gastric emptying in ghrelin-knockout mice. Br J Pharmacol 2008, 153:1550-7.
    44 Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond) 2005,29:1130-6.
    45 Frezza EE, Chiriva-Internati M, Wachtel MS. Analysis of the results of sleeve gastrectomy for morbid obesity and the role of ghrelin. Surg Today 2008,38:481-3.
    46 Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998, 395:763-70.
    47 Gauna C, Delhanty PJ, van Aken MO, Janssen JA, Themmen AP, Hofland LJ, et al. Unacylated ghrelin is active on the INS-IE rat insulinoma cell line independently of the growth hormone secretagogue receptor type la and the corticotropin releasing factor 2 receptor. Mol Cell Endocrinol 2006,251:103-11.
    48 Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHSR, in humans. J Clin Endocrinol Metab 2002, 87:2988.
    49 Goebel M, Stengel A, Tache'Y. Continued controversy on obestatin as a gut hormone influencing food intake and gastrointestinal motility. Obes Metab 2008,4:143-8.
    50 Gourcerol G, Million M, Adelson DW, Wang Y, Wang L, Rivier J, et al. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Peptides 2006,27:2811-9.
    51 Gourcerol G,St-Pierre DH,Tache'Y. Lack of obestatin effects on food intake:should obestatin be renamed ghrelin-associated peptide (GAP)? Regul Pept 2007,141:1-7.
    52 Gronberg M, Tsolakis AV, Magnusson L, Janson ET, Saras J. Distribution of obestatin and ghrelin in human tissues:immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. J Histochem Cytochem 2008,56:793-801.
    53 Guan JL, Wang QP, Kageyama H, Takenoya F, Kita T, Matsuoka T, et al. Synaptic interactions between ghrelin-and neuropeptide Y-containing neurons in the rat arcuate nucleus. Peptides 2003, 24:1921-8.
    54 Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, et al.Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 1997,48:23-9.
    55 Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 2008,105:6320-5.
    56 Hagemann D, Hoist JJ, Gethmann A, Banasch M, Schmidt WE, Meier JJ. Glucagon-like peptide 1 (GLP-1)suppresses ghrelin levels in humans via increased insulin secretion. Regul Pept 2007, 143:64-8.
    57 Hameed S, Dhillo WS, Bloom SR. Gut hormones and appetite control. Oral Dis 2009,15:18-26.
    58 Hattori N, Saito T, Yagyu T, Jiang BH, Kitagawa K, Inagaki C. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab 2001,86:4284-91.
    59 Hiejima H, Nishi Y, Hosoda H, Yoh J, Mifune H, Satou M, et al. Regional distribution and the dynamics of n-decanoyl ghrelin, another acyl-form of ghrelin, upon fasting in rodents. Regul Pept 2009,156:47-56.
    60 Hoist B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, et al. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 2007,148:13-20.
    61 Hoist B, Holiiday ND, Bach A, Elling CE, Cox HM, Schwartz TW. Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 2004,279:53806-17.
    62 Hoist B, Schwartz TW. Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation. Trends Pharmacol Sci 2004,25:113-7.
    63 Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin:two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000,279:909-13.
    64 Hosoda H, Kojima M, Mizushima T, Shimizu S, Kangawa K. Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem 2003,278:64-70.
    65 Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996,273:974-7.
    66 Inhoff T, Mo'nnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, et al. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 2008,29:2159-68.
    67 Inhoff T, Wiedenmann B, Klapp BF, Mo'nnikes H, Kobelt P. Is desacyl ghrelin a modulator of food intake? Peptides 2009,30:991-4.
    68 Iwakura H, Ariyasu H, Li Y, Kanamoto N, Bando M, Yamada G, et al. A mouse model of ghrelinoma exhibited activated growth hormone-insulin-like growth factor I axis and glucose intolerance. Am J Physiol Endocrinol Metab 2009,297:E802-11.
    69 Jeon TY, Lee S, Kim HH,Kim YJ,Son HC, Kim DH, et al. Changes in plasma ghrelin concentration immediately after gastrectomy in patients with early gastric cancer. J Clin Endocrinol Metab 2004, 89:5392-6.
    70 Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 2008,13:358-63.
    71 Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 2006,11:45-54.
    72 Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA.Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 2007,12:6-16.
    73 Jerlhag E, Egecioglu E, Landgren S, Salome N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA 2009,106:11318-23.
    74 Jiang H, Betancourt L, Smith RG. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 2006,20:1772-85.
    75 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 2001,50:2438-43.
    76 Karamanakos SN, Vagenas K,Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy:a prospective, double blind study. Ann Surg 2008,247:401-7.
    77 Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol 2009.
    78 Kellokoski E, Kummu O, Serpi R, Lehenkari P, Ukkola O, Kesaniemi YA, et al. Ghrelin vaccination decreases plasma MCP-1 level in LDLR(-/-)-mice. Peptides 2009,30:2292-300.
    79 Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, et al. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med 2009,15:741-5.
    80 Kobelt P, Goebel M, Stengel A, Schmidtmann M, van der Voort IR, Tebbe JJ, et al. Bombesin, but not amylin, blocks the orexigenic effect of peripheral ghrelin. Am J Physiol Regul Integr Comp Physiol 2006,291:R903-13.
    81 Kobelt P, Helmling S,Stengel A, Wlotzka B, Andresen V, Klapp BF, et al. Antighrelin Spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats.Gut 2006, 55:788-92.
    82 Kobelt P, Tebbe JJ,Tjandra I,Stengel A, Bae HG, Andresen V, et al.CCK inhibits the orexigenic effect of peripheral ghrelin. Am J Physiol Regul Integr Comp Physiol 2005,288:R751-8.
    83 Kobelt P, Wisser AS, Stengel A, Goebel M, Bannert N, Gourcerol G, et al. Peripheral obestatin has no effect on feeding behavior and brain Fos expression in rodents. Peptides 2008,29:1018-27.
    84 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth hormone-releasing acylated peptide from stomach. Nature 1999,402:656-60.
    85 Kojima M, Kangawa K. Ghrelin:structure and function. Physiol Rev 2005,85:495-522.
    86 Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE 2008, 3:e1797.
    87 Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST. Serum ghrelin, leptin and adiponectin levels before and after weight loss:comparison of three methods of treatment-a prospective study. Obes Surg 2006,16:1425-32.
    88 Lagaud GJ, Young A, Acena A, Morton MF, Barrett TD, Shankley NP. Obestatin reduces food intake and suppresses body weight gain in rodents. Biochem Biophys Res Commun 2007,357:264-9.
    89 Lagaud GJ, Young A, Acena A, Morton MF, Barrett TD, Shankley NP. Retracted notice to: "Obestatin reduces food intake and suppresses body 4 weight gain in rodents" [Biochem. Biophys. Res. Commun.357(1)(2007) 5 264-269].Biochem Biophys Res Commun 2009,388:619.
    90 Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, et al.Sleeve gastrectomy and gastric banding:effects on plasma ghrelin levels. Obes Surg 2005,15:1024-9.
    91 Lauwers E, Landuyt B, Arckens L, Schoofs L, Luyten W. Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun 2006,351:21-5.
    92 le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 2005,90:4521-4.
    93 Li F, Zhang G, Liang J, Ding X, Cheng Z, Hu S. Sleeve gastrectomy provides a better control of diabetes by decreasing ghrelin in the diabetic Goto-Kakizaki rats. J Gastrointest Surg 2009.
    94 Lippl F, Kircher F, Erdmann J, Allescher HD, Schusdziarra V. Effect of GIP, GLP-1,insulin and gastrin on ghrelin release in the isolated rat stomach. Regul Pept 2004,119:93-8.
    95 Lu S, Guan JL,"Wang QP, Uehara K, Yamada S, Goto N, et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett 2002,321:157-60.
    96 Lu SC, Xu J, Chinookoswong N, Liu S, Steavenson S, Gegg C, et al. An acylghrelin-specific neutralizing antibody inhibits the acute ghrelin-mediated orexigenic effects in mice. Mol Pharmacol 2009,75:901-7.
    97 Madison LD, Scarlett JM,Levasseur P, Zhu X, Newcomb K, Batra A, et al. Prostacyclin signaling regulates circulating ghrelin during acute inflammation. J Endocrinol 2008,196:263-73.
    98 Mizutani M, Atsuchi K, Asakawa A, Matsuda N, Fujimura M, Inui A, et al. Localization of acyl ghrelin-and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH. Am J Physiol Gastrointest Liver Physiol 2009.
    99 Moechars D, Depoortere I, Moreaux B, de Smet B, Goris I, Hoskens L, et al. Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology 2006, 131:1131-41.
    100 Mondal M, Toshinai K, Ueno H, Koshinaka K, Nakazato M. Characterization of obestatin in rat and human stomach and plasma, and its lack of acute effect on feeding behavior in rodents. J Endocrinol 2008,198:339-46.
    101 Moran TH, Dailey MJ. Minireview:gut peptides:targets for antiobesity drug development? Endocrinology 2009,150:2526-30.
    102 Nagaraj S, Peddha MS, Manjappara UV. Fragments of obestatin as modulators of feed intake, circulating lipids, and stored fat. Biochem Biophys Res Commun 2008,366:731-7.
    103 Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature 2001,409:194-8.
    104 Neary NM, Druce MR, Small CJ, Bloom SR. Acyfated ghrelin stimulates food intake in the fed and fasted states but desacylated ghrelin has no effect. Gut 2006,55:135.
    105 Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, et al. Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 2005,146:2255-64.
    106 Nogueiras R, Pfluger P, Tovar S, Arnold M, Mitchell S, Morris A, et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 2007,148:21-6.
    107 Oh-I S,Shimizu H,Satoh T, Okada S,Adachi S,Inoue K, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006,443:709-12.
    108 Ohgusu H, Shirouzu K, Nakamura Y, Nakashima Y, Ida T, Sato T, et al. Ghrelin O-acyltransferase (GOAT) has a preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor. Biochem Biophys Res Commun 2009,386:153-8.
    109 Pan W, Tu H, Kastin AJ.Differential BBB interactions of three ingestive peptides:obestatin, ghrelin, and adiponectin. Peptides 2006,27:911-6.
    110 Perez-Tilve D, Gonzalez-Matias L, Alvarez-Crespo M, Leiras R, Tovar S, Dieguez C, et al. Exendin-4 potently decreases ghrelin levels in fasting rats. Diabetes 2007,56:143-51.
    111 Perreault M, Istrate N, Wang L, Nichols AJ, Tozzo E, Stricker-Krongrad A. Resistance to the orexigenic effect of ghrelin in dietary-induced obesity in mice:reversal upon weight loss. Int J Obes Relat Metab Disord 2004,28:879-85.
    112 Pfluger PT, Kirchner H, Gunnel S, Schrott B, Perez-Tilve D, Fu S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure.Am J Physiol Gastrointest Liver Physiol 2008,294:G610-8.
    113 Prinz C, Kajimura M, Scott DR, Mercier F, Helander HF, Sachs G. Histamine secretion from rat enterochromaffinlike cells. Gastroenterology 1993,105:449-61.
    114 Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E, The "normal" endocrine cell of the gut:changing concepts and new evidences. Ann N Y Acad Sci 2004,1014:1-12.
    115 Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, et al. Characterisation of gastric ghrelin cells in man and other mammals:studies in adult and fetal tissues. Histochem Cell Biol 2002, 117:511-9.
    116 Rodriguez A, Gomez-Ambrosi 3,Catalan V, Gil MJ, Becerril S, Sainz N, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond) 2009, 33:541-52.
    117 Saad MF, Bernaba B, Hwu CM, Jinagouda S, Fahmi S, Kogosov E, et al. Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 2002,87:3997-4000.
    118 Sakata I,Nakano Y,Osborne-Lawrence S,Rovinsky SA,Lee CE,Perello M,et al. Characterization of a novel ghrelin cell reporter mouse. Regul Pept 2009,155:91-8.
    119 Sakata I, Yamazaki M, Inoue K, Hayashi Y, Kangawa K, Sakai T. Growth hormone secretagogue receptor expression in the cells of the stomachprojected afferent nerve in the rat nodose ganglion. Neurosci Lett 2003,342:183-6.
    120 Sakata I, Yang J, Lee CE, Osborne-Lawrence S, Rovinsky SA, Elmquist JK, et al. Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. Am J Physiol Endocrinol Metab 2009, 297:E134-41.
    121 Salome N, Haage D, Perrissoud D, Moulin A, Demange L, Egecioglu E, et al. Anorexigenic and electrophysiological actions of novel ghrelin receptor (GHS-R1A) antagonists in rats. Eur J Pharmacol 2009,612:167-73.
    122 Samson WK, White MM, Price C, Ferguson AV. Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol 2007,292:R637-43.
    123 Sangiao-Alvarellos S, Vazquez MJ, Varela L, Nogueiras R, Saha AK, Cordido F, et al. Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology 2009,150:4562-74.
    124 Saper CB, Chou TC, Elmquist JK.The need to feed:homeostatic and hedonic control of eating. Neuron 2002,36:199-211.
    125 Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing "Ghrelin" machine:hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 2010,58:2-16.
    126 Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000,404:661-71.
    127 Seoane LM, Al-Massadi O, Pazos Y, Pagotto U, Casanueva FF. Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J Endocrinol Invest 2006, 29:RC13-5.
    128 Shearman LP, Wang SP, Helmling S, Stribling DS, Mazur P, Ge L, et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology 2006, 147:1517-26.
    129 Shimada M, Date Y, Mondal MS, Toshinai K, Shimbara T, Fukunaga K, et al. Somatostatin suppresses ghrelin secretion from the rat stomach.Biochem Biophys Res Commun 2003,302:520-5.
    130 Shimizu H, Oh -IS, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, et al. Peripheral administration of nesfatin-1 reduces food intake in mice:the leptin-independent mechanism. Endocrinology 2009,150:662-71.
    131 Shimizu H, Oh IS, Okada S, Mori M. Nesfatin-1:an overview and future clinical application. Endocr J 2009,56:537-43.
    132 Shimizu H, Ohsaki A, Oh IS, Okada S, Mori M. A new anorexigenic protein, nesfatin-1.Peptides 2009,30:995-8.
    133 Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 2001, 50:227-32.
    134 Simonian HP, Kresge KM,Boden GH, Parkman HP. Differential effects of sham feeding and meal ingestion on ghrelin and pancreatic polypeptide levels:evidence for vagal efferent stimulation mediating ghrelin release. Neurogastroenterol Motil 2005,17:348-54.
    135 Smith RG. From GH to Billy ghrelin. Cell Metab 2009,10:82-3.
    136 Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin:three pieces of the same puzzle. Peptides 2008,29:1255-70.
    137 Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, et al. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 2009,150:232-8.
    138 Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mo'nnikes H, et al. Central nesfatin-1 reduces dark phase food intake and gastric emptying in rats:differential role of corticotropin-releasing factor2 receptor. Endocrinology 2009,150:4911-9.
    139 Stengel A, Keire D, GoebelM, Evilevitch L, Wiggins B, Tache'Y, et al. The RAPID method for blood processing yields new insight in plasma concentrations and molecular forms of circulating gut peptides. Endocrinology 2009,150:5113-8.
    140 Sun Y, Butte NF, Garcia JM, Smith RG.Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology 2008,149:843-50.
    141 Sun Y, Wang P, Zheng H, Smith RG.Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA 2004, 101:4679-84.
    142 Takahashi T, Ida T, Sato T, Nakashima Y, Nakamura Y, Tsuji A, et al. Production of n-octanoyl-modified ghrelin in cultured cells requires prohormone processing protease and ghrelin O-acyltransferase, as well as n-octanoic acid. J Biochem 2009,146:675-82.
    143 Tanner BD, Allen JW. Complications of bariatric surgery:implications for the covering physician. Am Surg 2009,75:103-12.
    144 Thanthan S, Mekaru C, Seki N, Hidaka K, Ueno A, Thidarmyint H, et al. Endogenous ghrelin released in response to endothelin stimulates growth hormone secretion in cattle. Domest Anim Endocrinol 2010,38:1-12.
    145 Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006,116:1983-93.
    146 Toshinai K, Yamaguchi H, Sun Y, Smith RG, Yamanaka A, Sakurai T, et al. Desacyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology 2006,147:2306-14.
    147 Tremblay F, Perreault M, Klaman LD, Tobin JF, Smith E, Gimeno RE.Normal food intake and body weight in mice lacking the G protein-coupled receptor GPR39. Endocrinology 2007,148:501-6.
    148 Tscho'p M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908-13.
    149 Tsolakis AV, Grimelius L, Stridsberg M, Falkmer SE, Waldum HL, Saras J, et al. Obestatin/ghrelin cells in normal mucosa and endocrine tumours of the stomach. Eur J Endocrinol 2009,160:941-9.
    150 Unniappan S, Speck M, Kieffer TJ. Metabolic effects of chronic obestatin infusion in rats. Peptides 2008,29:1354-61.
    151 Vizcarra JA, Kirby JD, Kim SK, Galyean ML. Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs. Domest Anim Endocrinol 2007,33:176-89.
    152 Wang L, Basa NR, Shaikh A, Luckey A, Heber D, St-Pierre DH, et al. LPS inhibits fasted plasma ghrelin levels in rats:role of IL-1 and PGs and functional implications. Am J Physiol Gastrointest Liver Physiol 2006,291:G611-20.
    153 Wang L, Saint-Pierre DH, Tache'Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 2002, 325:47-51.
    154 Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg 2009,19:357-62.
    155 Wells T. Ghrelin-defender of fat. Prog Lipid Res 2009,48:257-74.
    156 Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 2004,101:8227-32.
    157 Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000,141:4325-8.
    158 Wynne K, Giannitsopoulou K, Small CJ, et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis:a randomized, placebo-controlled trial. J Am Soc Nephrol 2005,16:2111-8.
    159 Yamamoto D, Ikeshita N, Daito R, et al. Neither intravenous nor intracerebroventricular administration of obestatin affects the secretion of GH, PRL, TSH and ACTH in rats. Regul Pept 2007,138:141-4.
    160 Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008,132:387-96.
    161 Yang J, Zhao TJ, Goldstein JL, Brown MS. Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci USA 2008,105:10750-5.
    162 Zbucki RL, Sawicki B, Hryniewicz A, Winnicka MM. Cannabinoids enhance gastric X/A-like cells activity. Folia Histochem Cytobiol 2008,46:219-24.
    163 Zhang JV, Klein C, Ren P-G, et al. Response to comment on "Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake". Science 2007,315:766d.
    164 Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 2005,310:996-9.
    165 Zhang W, Chai B, Li JY, Wang H, Mulholland MW. Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology 2008,149:4710-6.
    166 Zhao CM, Furnes MW, Stenstrom B, Kulseng B, Chen D. Characterization of obestatin-and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats:an immunohistochemical and electron-microscopic study.Cell Tissue Res 2008,331:575-87.
    167 Zhu X, Cao Y, Voogd K, Steiner DF. On the processing of proghrelin to ghrelin. J Biol Chem 2006, 281:38867-70.
    168 Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006,494:528-48.
    169 Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 2005,115:3564-72.
    170 Zizzari P, Longchamps R, Epelbaum J, Bluet-Pajot MT. Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents. Endocrinology 2007,148:1648-53.
    171 Zorrilla EP, Iwasaki S, Moss JA, Chang J, Otsuji J, Inoue K, et al. Vaccination against weight gain. Proc Natl Acad Sci USA 2006,103:13226-31.
    172 Brailoiu GC, Dun SL, Braoiu E, Inan S, Yang J, Chang JK, Dun NJ. Nesfatin-1:Distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007,148:5088-5094.
    173 Merali Z, Cayer C, Kent P, Anisman H.Nesfatin-1 increases anxiety-and fear-related behaviors in the rat. Psychopharmacology (Berl) 2008,201:115-123.
    174 Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides 2007,28:2223-2228.
    175 Price TO, Samson WK, Niehoff ML, Banks WA.Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1.Peptides 2007,28:2372-2381.
    176 Oh-I S,Shimizu H,Satoh T, Uehara Y,OkadaS,Mori M. Molecular mechanisms associated with leptin resistance:n-3 polyunsaturated fatty acids induce alterations in the tight junction of the brain. Cell Metab.2005,1:331-341.
    177 Kohno D, Nakata. M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 2008,149:1295-1301.
    178 Price CJ, Hoyda TD, Samson WK, Ferguson AV. Nesfatin-1 influences the excitability of paraventricular nucleus neurons. J Neuroendocrinol 2008,20:245-250.
    179 Douglas AJ, Johnstone LE, Leng G. Neuroendocrine mechanism of change in food intake during pregnancy:a potential role for brain oxytocin. Physiol Behav 2007,91:352-365.
    180. Price CJ, Samson WK, Ferguson AV. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 2008,1230:99-106.
    181 Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 2008,155:174-178.
    182 Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience 2008,156:563-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700