孕期/哺乳期砷暴露对仔代中枢神经系统发育影响及毒作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的慢性砷中毒是一个影响数百万人健康的世界性公共卫生问题。我国饮水型砷中毒病区高砷暴露人群接近300万,已成为受砷中毒危害最为严重的国家之一。慢性砷中毒可致消化系统、神经系统和皮肤等组织器官的病理损害,甚至导致癌症和死亡。由于神经细胞不能再生及其对毒物的毒性作用较其他组织细胞更为敏感,砷对神经系统的毒性影响日益受到高度关注。发育期机体处于快速的细胞生长和分化阶段,同时对体内毒物的清除能力较差,因此对砷的毒作用更加敏感。已被证实,砷是数千种化学物中可以导致神经系统发育紊乱的五种毒物之一。人群调查和动物实验均表明,砷容易通过血脑和胎盘屏障。因此,孕期砷暴露会使胎儿从宫内发育阶段,就面临砷的神经发育毒性作用的风险。流行病学调查和动物实验均表明,脑发育期砷暴露可以导致中枢神经系统发育迟缓及出现学习、记忆等高级神经功能异常,但砷的毒作用机制尚不清楚。已知,孕期和生后早期是脑发育的关键时期。上述时期暴露于有害物质可能影响神经元的发育及正常神经网络的构建,其机制可能与有毒化学物作用于脑发育相关调控蛋白有关。越来越多的证据表明,Rho家族蛋白在神经元形态形成及构成精确的神经网络过程中发挥关键调节作用。酒精等孕期暴露,可导致仔鼠脑组织神经网络构建异常及学习记忆能力下降。而且已被证实,酒精的神经发育毒性与干扰Rho家族蛋白的调控作用有关。那么,砷的神经发育毒性机制是否也与Rho家族蛋白对脑发育调控的紊乱有关,引起我们极大兴趣。本研究通过构建孕期及哺乳期低浓度砷暴露动物模型,观察砷对仔鼠中枢神经系统发育的形态学及对学习记忆等高级神经功能的影响,检测分析神经发育相关蛋白Rho家族多个基因及蛋白的表达,探讨砷对仔鼠脑组织靶基因及相关通路调控的影响,为阐明砷的神经发育毒作用机制以及砷中毒的防治提供依据。
     方法
     (1)构建孕期/哺乳期砷暴露小鼠模型
     昆明孕小鼠随机分为四组,孕0天起全孕期和哺乳期对母鼠以自由饮水方式染毒,含砷饮水中As2O3浓度分别为1mg/L、4mg/L和16mg/L,对照组饮用蒸馏水。仔鼠生后3周断乳。
     (2)仔鼠脑组织病理学观察
     取新生仔鼠(出生3天)和断乳仔鼠(出生3周)脑组织,石蜡包埋,切片,HE染色,以倒置相差荧光显微镜观察仔鼠脑发育的形态学变化;采用生长相关蛋白(Gap-43)免疫组化法观察仔鼠大脑神经元突起发育。
     (3)仔鼠神经行为测试
     以Morris水迷宫定向航行实验测试仔鼠学习记忆能力。
     (4)仔鼠脑组织神经发育相关基因表达的基因芯片检测。
     (5)仔鼠脑组织Rho家族蛋白、基因表达测定
     Real-time RT-PCR和Western-blot技术对新生仔鼠和断乳仔鼠脑组织Rho家族多个基因及蛋白表达进行检测。
     结果
     (一)孕期/哺乳期砷暴露对仔鼠脑发育影响
     HE染色切片的镜下观察显示,与对照组比较,染砷新生仔鼠和断乳仔鼠发育中大小脑皮层变薄,小脑外颗粒细胞层和蒲肯野细胞层厚度均显著低于对照组(p<0.05);染砷新生仔鼠海马出现锥体细胞水肿、核浓缩、锥体细胞层变薄、锥体细胞层数减少等改变;染砷断乳仔鼠海马出现锥体细胞密集、层次减少、锥体细胞层变薄、神经毡空隙增大等改变。
     (二)孕期/哺乳期砷暴露对仔鼠脑神经元轴突发育的形态学影响
     Gap-43免疫组化法观察显示,与对照组比较,染砷新生仔鼠大脑皮层锥体细胞体积变小、轴突数目减少、形态细小,神经毡染色不均,出现空隙。随染毒剂量增加,染砷断乳仔鼠大脑皮层锥体细胞轴突数目和树突分枝逐渐减少,神经毡着色不均匀,尤其在高剂量组呈现空网状。提示,孕期及哺乳期砷暴露可导致仔鼠大脑神经元发育迟缓,神经网络构建不良。
     (三)孕期/哺乳期砷暴露对仔鼠学习记忆能力影响
     Morris水迷宫定向航行试验结果显示,4mg/L和16mg/L染砷组仔鼠的逃避潜伏期显著长于对照组(P <0.05)。将平台隐藏后各组小鼠逃避潜伏期之间均没有显著性差异,而平台露出水面后,16mg/L染砷组仔鼠逃避潜伏期显著长于对照组、1mg/L和4mg/L染砷组(p <0.05)。
     (四)孕期/哺乳期砷暴露对仔鼠脑发育调控相关基因、蛋白表达影响
     基因芯片结果显示,与对照组比较,4mg/L染砷组仔鼠脑组织Rho A、Rac1和Cdc42基因的表达显著上调,Rho A/Rac1比值和Rho A/Cdc42比值均1大于1。Rho下游效应因子Creb和Arp的编码基因表达显著下调。Cbln4、Chd5和Gjb1的表达显著上调,Ncam、Crim、Fgf14、Grik2、Rnf103、Rps6ka3和Sim1的表达显著下调。Real-time RT-PCR和Western-blot检测结果显示,染砷新生仔鼠脑组织Rho A和Rac1的mRNA和蛋白表达均显著下降,而染砷断乳仔鼠脑组织RhoA和Rac1的mRNA和蛋白表达显著升高。尤其,Rho A/Rac1mRNA和蛋白表达的比值,在染砷新生仔鼠和断乳仔鼠均随染砷剂量增加而升高。与对照组比较,染砷仔鼠生后这两个时段脑组织Cdc42的mRNA和蛋白表达均无显著差异。
     结论
     (1)孕期/哺乳期砷暴露可导致仔鼠大脑和小脑神经元及其突起的形态学异常改变;
     (2)孕期/哺乳期砷暴露可导致仔鼠学习记忆功能下降;
     (3)孕期/哺乳期砷暴露导致仔鼠脑神经元及其突起的形态学改变可能是砷导致仔鼠学习记忆功能下降的神经解剖学基础;
     (4)孕期/哺乳期砷暴露能显著下调新生仔鼠脑组织Rho A和Rac1基因和蛋白表达;
     (5)孕期/哺乳期砷暴露能显著上调断乳仔鼠脑组织Rho A和Rac1基因和蛋白表达;
     (6)砷诱导小鼠脑组织Rho A/Rac1表达失衡很可能是孕期及哺乳期砷暴露仔鼠脑发育迟缓及学习与记忆功能下降的重要机制。
Background and Objective
     Chronic arsenic intoxication is a global health problem affecting many millions ofpeople. China is one of most seriously affected countries with the exposed populationabout3million. The detrimental impact of chronic exposure to arsenic on healthincludes pathological damages on skin, digestive system, and peripheral and centralnervous systems, as well as some kinds of cancers. Because the nerve cell has notregeneration capacity and is more sensitive to arsenic toxicity than any other kinds ofcells, increasing concerns have been focused on arsenic toxic effects on the nervoussystem. Developing organisms are undergoing rapid cell growth and extensivedifferentiation and have poor ability to clear toxicant, so are especially sensitive to thetoxic effects of arsenic. Up to now, only five (eg, lead, methylmercury, polychlorinatedbiphenyls, arsenic, and toluene) of the thousands known chemicals has been proven tocause developmental neurotoxicity in humans. Arsenic is one of them. Arsenic easilypasses the blood-brain and placenta barriers in mammal. Thus, the fetus is faced withthe risk of neurodevelopmental toxicity of arsenic from the intrauterine growth stage. Afew epidemiological and animal studies have indicated that exposure to arsenic at earlystage of development led to dysplasia of the central nervous system and abnormalappearance of advanced neural function, such as learning and memory. However, theinfluencing degree and exact mechanism of arsenic neurodevelopmental toxicity isunclear. It is well known that gestation and postnatal early stage are the critical periodsfor brain development. Exposure to harmful substances during the periods mentionedabove may affect the development of neurons and normal construction of neuralnetworks. The mechanism may lie in the interaction of toxicant and key proteins relatedto brain development. More and more evidence showed that Rho proteins played a key role in neuronal morphology and neural networks constitute. It has been documentedthat during rapid brain developing period exposure to alcohol could induce abnormalneural network construction and result in decline of learning and memory. Themechanism describing the above changes has been shown to be associated with alcoholdisturbing the normal regulation effects of Rho proteins. Therefore, whether Rhoproteins are involved in the neurodevelopmental toxicity mechanism of arsenictriggered our great interest. In this study, Kunming mice were chose as experimentalmodel and these experimental animals were exposed to arsenic through drinking waterduring whole pregnancy and lactation. The morphological changes, as well as theimpacts on learning and memory, were observed in offspring of arsenic exposedmothers. The potential target molecules of arsenic neurodevelopment toxicity, Rhoproteins, were explored at gene and protein levels in our study so as to better understandeffect of arsenic on developing nervous system.
     Methods
     (1) Animal model of arsenic exposure during pregnant/lactating period: Pregnantmice were randomly divided into four groups. Group1received distilled water(control),the other three groups received1,4,16mg/L As2O3aqueous solution throughfree drinking water. Mother mice were exposed to arsenic from gestation day0untilweaning. The pops weaned at postnatal21day.
     (2) Pathological observation on brain tissue of offspring: The brain tissues ofneonatal and weaned pups were removed, paraffin-embedded, sliced, stained with HE,and observed under inverted fluorescence microscope. The developmental conditions ofneurite in arsenic exposed pups were observed by growth-associated protein (Gap-43)immunohistochemical method.
     (3) Neurobehavioral tests: The directional navigation experiment by Morris WaterMaze test was used to examine ability of learning and memory of exposed offspring.
     (4) Gene Chip was used to detect genes associated with brain development.
     (5) Determination of expression of Rho family in brain tissue of arsenic exposedoffspring: Real-time RT-PCR, and Western-blot detection were used to determineexpression of Rho family members at mRNA and protein levels.
     Results
     (1) Impact of arsenic exposure during pregnancy/lactation period on braindevelopment: Under microscope, exposed offspring showed thinner cerebral andcerebellar cortical. In hippocampus of exposed neonatal mice, pyramidal cells appeared edema, enrichment nuclear, and pyramidal cell layer became thinner compared withcontrol group.
     (2) Impact of arsenic exposure during pregnancy/lactation period on morphologyof neurite: Observing by growth-associated protein (Gap-43) immunohistochemicalmethod, there were some changes in pyramidal cells of cerebral cortex in exposedoffspring compared with the control group, such as decreased baby, reduction in thenumber of axon and dendritic, and uneven stained neuropil. These phenomenasuggested that arsenic exposure during pregnancy and lactation could causes retardedneural growth and poor-constructed neural network.
     (3) Impact of arsenic exposure during pregnancy/lactation period on ability oflearning and memory: During the observation period, the escape latency in exposedoffspring of4mg/L and16mg/L groups is significantly longer than the control group.After hiding platform, there is no significant difference in escape latency between allgroups. However, after the platform showing, the escape latency in offspring of16mg/L group is significantly longer than control group,1mg/L and4mg/L exposedgroup.
     (4) Impact of arsenic exposure during pregnancy/lactation period on genes andproteins related to brain development: In Gene Chip, expressions of Rho A、Rac1andCdc42gene were significantly increased in brain tissue in offspring of exposed groupcompared with those of the control group. The ratios of Rho A/Rac1and Rho A/Cdc42were both greater than1in exposed group. The genes of downstream effect factorsof Rho, Creb and Arp, were significantly decreased. Expressions of Cbln4, Chd andGjb1gene were significantly increased,and expressions of Ncam, Crim, Fgf14, Grik2,Rnf103, Rps6ka3and Sim1were significantly decreased in exposed group. Comparedwith the control group, expressions of Rho A and Rac1in mRNA and protein levelswere significantly decreased in neonatal offspring, while significantly increased inweaned offspring by Real-time RT-PCR and Western-blot detection. Particularly, Theratios of Rho A/Rac1and Rho A/Cdc42both increased with arsenic exposure doseeither in neonatal or in weaned offspring. Compared with the control group, expressionsof Cdc42in mRNA and protein levels had no significant changes in exposed offspring.
     Conclusions
     (1) Arsenic exposure during pregnancy/lactation period can cause abnormalmorphology of cerebral and cerebellar tissues in offspring;
     (2) Arsenic exposure during pregnancy/lactation period can cause decreased ability of learning and memory in offspring;
     (3) Morphological changes in neurons and processes in brain of arsenic exposedoffspring might be the anatomical basis of arsenic neurodevelopmental toxicity;
     (4) Arsenic exposure during pregnancy/lactation period can cause expressions ofRho A and Rac1in mRNA and protein levels down regulated in neonatal offspring;
     (5) Arsenic exposure during pregnancy/lactation period can cause expressions ofRho A and Rac1in mRNA and protein levels up regulated in weaned offspring;
     (6) Arsenic-induced expression imbalance of Rho A/Rac1may be an importantmechanism for slowed brain development and dysfunction of learning and memory.
引文
1. Nordstrom DK. Worldwide occurrences of arsenic in ground water. Science,2002,296(5576):2143-5.
    2. NRC (National Research Council). Arsenic in drinking water: update. National Academy Press,2001, Washington, DC.
    3. WHO (World Health Organization). Arsenic and arsenic compounds. International Programmeon Chemical Safety, Geneva,2001.
    4. IARC (International Agency for Research on Cancer). Some drinking-water disinfectants andconta minants, including arsenic. IARC Monogr Eval Carcinog Risks Hum,2004,84:1-477.
    5.王秀红,边建朝.微量元素砷与人体健康.国外医学医学地理分册,2005,26(3):101-5.
    6. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via thedrinking water: dose-response relationships in review. Toxicol Appl Pharmacol,2004,198(3):243-52.
    7. Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M. The effects ofsodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull,2001,55(2):301-8.
    8.严锐,陈宏,王定勇,邱志群,罗教华,舒为群.不同时程砷暴露对仔代大鼠神经行为和学习记忆能力的影响.实用医学杂志,2009,25(9):1378-80.
    9.马龙,张晨,姜平.砷对小鼠仔代神经行为发育的影响.卫生毒理学杂志,1993,7(4):239-40.
    10. Xi S, Sun W, Wang F, Jin Y, Sun G. Transplacental and early life exposure to inorganic arsenicaffected development and behavior in offspring rats. Arch Toxicol,2009,83(6):549-56.
    11. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children'shealth: cancer in human epidemiological studies and neoplasms in experimental animal models.Environ Health Perspect,2000,108(Suppl3):573-94.
    12. Anderson LM. Predictive values of traditional animal bioassay studies for human perinatalcarcinogenesis risk deter mination. Toxicol Appl Pharmacol,2004,199(2):162-74.
    13. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenicmetabolites during early human development. Toxicol Sci,1998,44(2):185-90.
    14. Lindgren A, Danielsson BR, Dencker L, Vahter M. Embryotoxicity of arsenite and arsenate:distribution in pregnant mice and monkeys and effects on embryonic cells in vitro. ActaPharmacol Toxicol,1984,54(4):311-20.
    15. Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol,2008;102(2):204-11.
    16. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet,2006,368(9553):2167-78.
    17. Ohira M, Aoyama H, Yoshioka S, Kato S, Ota T. Epidemiological studies on subacutemyelo-optico-neuropathy (SMON) at Yubara Town1. Nihon Eiseigaku Zasshi,1970,24(5):502-9.
    18. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, et al. Water arsenicexposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect,2004,112(13):1329-33.
    19. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ. The effects of chronic arsenic exposure fromdrinking water on the neurobehavioral development in adolescence. Neurotoxicology,2003,24(4-5):747–53.
    20. Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A,Rodriguez-Leyva I, et al. Exposure to arsenic and lead and neuropsychological development inMexican children. Environ Res,2001,85(2):69-76.
    21.马龙,张晨,刘文杰,王怀星,姜平.砷对小鼠仔代生长发育的影响.中华预防医学杂志,1994,28(1):20-3.
    22. Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. Thevascular system as a target of metal toxicity. Toxicol Sci,2008,102(2):207-18.
    23. Karagas MR, Stukel TA, Tosteson TD. Assessment of cancer risk and environmental levels ofarsenic in New Hampshire. Int J Hyg Environ Health,2002,205(1-2):85-94.
    24. Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, et al. Arseniccalamity in the Indian subcontinent What lessons have been learned? Talanta,2002,58(1):3-22.
    25. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, et al. Arsenic speciation transported through the placentafrom mother mice to their newborn pups. Environ Res,2006,101(3):349-55.
    26.宋圃菊.胎宝宝脑发育的三个关键期.中国优生优育,2011.
    27. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatalcatch-up growth and obesity in childhood: prospective cohort study. BMJ,2000,320(7240):967-71.
    28.谢瑶芸.氟砷联合染毒对大鼠子代脑组织影响的电镜观察.地方病通报,2000,15(2):7-8.
    29. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S.Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection withantioxidants. Toxicol Lett,2002,136(1):65-76.
    30. Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase3and p38mitogen-activated protein kinase. J Neurosci,2000,20(17):6442-51.
    31. Dhar P, Mohari N, Mehra RD. Preli minary morphological and morphometric study of ratcerebellum following sodium arsenite exposure during rapid brain growth (RBG) period.Toxicology,2007,234(1-2):10-20.
    32. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S.Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection withantioxidants. Toxicol Lett,2002,136(1):65-76.
    33.沈德立.关于大脑左右半球功能及其协调开发.天津师大学报,1994,4:18-31.
    34.林鸿,季迁,李敏.海马损伤对大鼠学习和记忆的影响.中国临床康复,2002,6(13):1912-1913.
    35.宋道辉,朱幼玲,唐南,席春华.小脑与认知关系的研究进展.山东医药,2011,51(44):108-109.
    36.张玲,黄有国. GAP-43对G0α的激活及其构象变化基础.中国科学,2002,32(6):527-534.
    37.王晓英,张均田.突触可塑性与相关蛋白研究进展.中国药理学通报,2001,17(4):369~7.
    38. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons inculture. J Neurosci,1988,8(4):1454-68.
    39. Carlisle HJ, Kennedy MB. Spine architecture and synaptic plasticity. Trends Neurosci,2005,28(4):182-7.
    40. Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB. Ultrastructuralanalysis of hippocampal neuropil from the connectomics perspective. Neuron,2010,67(6):1009-20.
    1. Sun G, Li X, Pi J, Sun Y, Li B, Jin Y, et al. Current research problems of chronic arsenicosis inChina. J Health Popul Nutr,2006,24(2):176-81.
    2. Xi S, Guo L, Qi R, Sun W, Jin Y, Sun G. Prenatal and early life arsenic exposure inducedoxidative damage and altered activities and mRNA expressions of neurotransmitter metabolicenzymes in offspring rat brain. J Biochem Mol Toxicol,2010,24(6):368-78
    3.杨烽,王大宁,刘亚华,李积胜.砷对学习记忆影响的机制.工业卫生与职业病,2004,30(2):125-7.
    4.宋圃菊.胎宝宝脑发育的三个关键期.中国优生优育,2011.
    5. Aspenstr m P. Integration of signalling pathways regulated by small GTPases and calcium.Biochim Biophys Acta,2004,1742(1-3):51-8.
    6. Rho A、Rock I在内异症组织中的表达.中华妇产科杂志,2012,47(2):147-9.
    7. Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development.Genes Dev,2005,19(1):1-49.
    8. Ramakers G J. Rho proteins, mental retardation and the cellular basis of cognition. TrendsNeurosci,2002,25(4):191-9.
    9.蔡文琴,李海标.发育神经生物学.北京:科学出版社,2001,57-200.
    10. Matus A, Brinkhaus H, Wagner U. Actin dynamics in dendritic spines: a form of regulatedplasticity at excitatory synapses. Hippocampus,2000,10(5):555-60.
    11. Matus A. Actin-based plasticity in dendritic spines. Science,2000,290(5492):754-8.
    12.陈玲,吕佩源.学习记忆的突触模型-长时程增强效应的研究进展.疑难病杂志,2006,5:313-4.
    13. Etienne-Manneville S, Hall A. Rho蛋白s in cell biology. Nature,2002,420:629–35.
    14. Gundersen GG, Gomes ER, Wen Y. Cortical control of microtubule stability and polarization.Curr Opin Cell Biol,2004,16:106–12.
    15. Zheng Y. G protein control of microtubule assembly. Annu Rev Cell Dev Biol,2004,20:867–94.
    16.张来军,张富昌.突触结构和功能与精神发育迟滞.医学研究杂志,2008,37(7):16-18.
    17. Ríos R, Zarazúa S, Santoyo ME, Sepúlveda-Saavedra J, Romero-Díaz V, Jiménez V,Pérez-Severiano F, Vidal-Cantú G, Delgado JM, Jiménez-Capdeville ME. Decreased nitricoxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology,2009,261(1-2):68-75.
    18. Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F. Protection effect of taurine on nitrosativestress in the mice brain with chronic exposure to arsenic. J Biomed Sci,2010,17Suppl1:S7.
    19. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S.Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection withantioxidants. Toxicol Lett,2002,136(1):65-76.
    20. Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase3and p38mitogen-activated protein kinase. J Neurosci,2000,20(17):6442-51.
    21.杨东焱,梁超轲,金银龙,王德文.砷对原代培养海马细胞形态学影响及酶活力研究.卫生研究,2003,32(4):272-5.
    22. Frankel S, Concannon J, Brusky K, Pietrowicz E, Giorgianni S, Thompson WD, Currie DA.Arsenic exposure disrupts neurite growth and complexity in vitro. NeuroToxicology,2009,30:529–37.
    23. Tara A, Lindsley, Samit N. Shah, Elizabeth A. Ruggiero. Ethanol Alters BDNF-Induced RhoGTPase Activation in Axonal Growth Cones. Alcohol Clin Exp Res,2011,35(7):1321-30.
    24.王玉珍,姜慧卿,扈彩霞. Rho信号转导通路与细胞迁移.医学综述,2006,12(11):651-3
    25. Penzes P, Johns on RC, K ambampati V, et al. Distinct roles for the two Rho GDP-GTPexchange factor domains of kalirin in regulation of neurite growth and neuronal morphology. JNeurosci,2001,21(21):8426-34.
    26. Kjoller L, Hall A. Signaling to Rho GTPases. Experimental Cell Research,1999,253(1):166-79.
    27.侯成千,梁卫红. Rho蛋白和细胞骨架的关系.生命的化学,2007,27(2):130-3.
    28. Bishop AL, Barchia IM, Spohr LJ. Models for the dispersal in Australia of the arbovirus vector,Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae). Prev Vet Med,2000,8;47(4):243-54.
    29. Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1and Rho kinase:evidence for two forms of spine motility. Mol Cell Neurosci,2004,26:429–40.
    30. Nikolic M. The role of Rho GTPases and associated kinases in regulating neurite outgrowth. IntJ Biochem Cell Biol,2002,34(7):731-45.
    31. Aoki K,Nakamura T,Matsuda M.Spatio-temporal regulation of Rac1and Cdc42activityduring nerve growth factor-induced neurite outgrowth in PC12cells.J Biol Chem,2004,279(1):713-9.
    32. Sarner S, Kozma R, Ahmed S, Lim L. Phosphatidylinositol3-kinase, Cdc42, and Rac1act downstream of Ras in integrin-dependentneurite outgrowth in N1E-115neuroblastoma cells.Mol Cell Biol,2000,20(1):158-72.
    33. Luo L, Liao YJ, Jan LY, Jan YN. Distinct morphogenetic functions of similar small GTPases:Drosophila Drac1is involved in axonal outgrowth and myoblast fusion. Genes Dev,1994,8(15):1787-802.
    34. Ruchhoeft ML, Ohnuma S, McNeill L, Holt CE, Harris WA. The neuronal architecture ofXenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci,1999,19(19):8454-63.
    35. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T,Narumiya S. A critical role for a Rho-associated kinase, p160ROCK, in deter mining axonoutgrowth in mammalian CNS neurons. Neuron,2000,26(2):431-41.
    36. Threadgill R, Bobb K, Ghosh A. Regulation of dendritic growth and remodeling by Rho, Rac,and Cdc42. Neuron.1997Sep;19(3):625-34.
    37. Nakayama AY, Harms MB,Luo L. Small GTPases Rac and Rho in the maintenance ofdendritic spinesand branches in hippocampal pyramidal neurons. J Neurosci,2000,20(14):5329-38.
    38. Li Z, Van Aelst L, Cline HT. Rho GTPases regulate distinct aspects of dendritic arbor growthin X-enopus central neurons in vivo. Nat Neurosci,2000,3(3):217-25.
    1. Nordstrom DK. Public health. Worldwide occurrences of arsenic in ground water. Science,2002;296(5576):2143-5.
    2. Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, et al. Incidence of transitionalcell carcinoma and arsenic in drinking water: a follow-up study of8,102residents in anarseniasis-endemic area in northeastern Taiwan. School of Public Health, Taipei MedicalUniversity, Taipei, Taiwan. Am J Epidemiol,2001;153(5):411-8.
    3. IARC: Some drinking-water disinfectants and conta minants, including arsenic. Volume84.Lyon: International Agency for Research on Cancer;2004.
    4. National Research Council. NRC. Arsenic in drinking water:2001update. Washington, DC:National Academy Press;2001.
    5. Valenzuela OL, Borja-Aburto VH, Garcia-Vargas GG, Cruz-Gonzalez MB, Garcia-MontalvoEA, Calderon-Aranda ES,et al. Urinary trivalent methylated arsenic species in a populationchronically exposed to inorganic arsenic. Environ Health Perspect,2005;113(3):250-4.
    6.孙殿军,王丽华,姜树林等.中国大陆地方性砷中毒病情与防治动态、现状的分析.中国地方病防治杂志,2002;17(2):107-8.
    7. Sun G. Arsenic conta mination and arsenicosis in China. Toxicol Appl Pharmacol,2004;198(3):268-71.
    8.沈雁峰,孙殿军,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172-175.
    9.王秀红,边建朝.微量元素砷与人体健康.国外医学医学地理分册,2005;26(3):101-5.
    10. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via thedrinking water: dose-response relationships in review. Toxicol Appl Pharmacol,2004;198(3):243-52.
    11. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenicmetabolites during early human development. Toxicol Sci,1998;44(2):185-90.
    12. Lindgren A, Danielsson BR, Dencker L, Vahter M. Embryotoxicity of arsenite and arsenate:distribution in pregnant mice and monkeys and effects on embryonic cells in vitro. ActaPharmacol Toxicol,1984;54(4):311-20.
    13. Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol,2008;102(2):204-11.
    14. von Ehrenstein OS, Guha Mazumder DN, Hira-Smith M, Ghosh N, Yuan Y, Windham G, et al.Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. AmJ Epidemiol,2006;163(7):662-9.
    15. Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, et al. Arsenic in drinkingwater and pregnancy outcomes. Environ Health Perspect,2001;109(6):629-31.
    16. Milton AH, Smith W, Rahman B, Hasan Z, Kulsum U, Dear K, et al. Chronic arsenic exposureand adverse pregnancy outcomes in bangladesh. Epidemiology,2005;16(1):82-6.
    17. Hopenhayn-Rich C, Browning SR, Hertz-Picciotto I, Ferreccio C, Peralta C, Gibb H. Chronicarsenic exposure and risk of infant mortality in two areas of Chile. Environ Health Perspect,2000;108(7):667-73.
    18. Yang CY, Chang CC, Tsai SS, Chuang HY, Ho CK, Wu TN. Arsenic in drinking water andadverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res,2003;91(1):29-34.
    19. Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S, et al. Arsenic exposureduring pregnancy and size at birth: A prospective cohort study in Bangladesh. AmericanJournal of Epidemiology,2009;169(3):304-12.
    20. Focazio M, Welch AH, Watkins SA, Helsel DR, Horn MA. A retrospective analysis on theoccurrence of arsenic in ground-water resources of the united states and limitations indrinking-water-supply characterizations; water-resources investigations report. US GeologicalSurvey: Reston, VA, USA,2000: pp99-4279.
    21. Gong G, O’Bryant SE. The arsenic exposure hypothesis for Alzheimer’s disease. Alz Dis AssocDisorder,2010;24:311-6.
    22. Kapaj S, Peterson H, Liber K, Bhattacharya P. Human health effects from chronic arsenicpoisoning-a review. J Environ Sci Health A Tox Hazard Subst Environ Eng,2006;41(10):2399-428.
    23. Liao C, Shen HH, Chen CL, Hsu LI, Lin TL, Chen SC, et al. Risk assessment ofarsenic-induced internal cancer at long-term low dose exposure. J Hazard Mater,2009;165(1-3):652-63.
    24. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Arsenic exposure and prevalenceof Type2diabetes in US adults. JAMA,2008;300(7):814-22.
    25. National Academies of Sciences. Arsenic in Drinking Water. Washington, DC, USA;1999.
    26. National Research Council. Arsenic in Drinking Water: Update2001. Washington, DC, USA;
    2001.
    27. Huang C, Ma WY, Li J, Goranson A, Dong Z. Requirement of Erk, but not JNK, forarsenite-induced cell transformation. J Biol Chem,1999;74(21):14595-601.
    28. Hopenhayn C, Ferreccio C, Browning SR, Huang B, Peralta C, Gibb H, et al. Arsenic exposurefrom drinking water and birth weight. Epidemiology,2003;14(5):593-602.
    29. Xu L, Yokoyama K, Tian Y, Piao FY, Kitamura F, Kida H, et al. Decrease in birth weight andgestational age by arsenic among the newborn in Shanghai, China. Nippon Koshu Eisei Zasshi,2011;58:89-95.
    30. Butler Walker J, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, et al. Maternaland umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements inArctic Canada. Environ Res,2006;100(3):295-318.
    31. Vahter M. Effects of arsenic on maternal and fetal health. Annu Rev Nutr,2009;29:381-99.
    32. O'Bryant SE, Edwards M, Menon CV, Gong G, Barber R. Long-term low-level arsenicexposure is associated with poorer neuropsychological functioning: a Project FRONTIER study.Int J Environ Res Public Health,2011;8(3):861-74.
    33. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenicmetabolites during early human development. Toxicol Sci,1998;44(2):185-90.
    34. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, et al. van Geen A, Yunus M,Rahman M, Pilsner JR, Graziano J. Deter minants of arsenic metabolism: blood arsenicmetabolites, plasma folate, cobala min, and homocysteine concentrations in maternal-newbornpairs. Environ Health Perspect,2007;115(10):1503-9.
    35. Rudge CV, R llin HB, Nogueira CM, Thomassen Y, Rudge MC, Odland J. The placenta as abarrier for toxic and essential elements in paired maternal and cord blood samples of SouthAfrican delivering women. J Environ Monit,2009;11(7):1322-30.
    36. Soong YK, Tseng R, Liu C, Lin PW. Lead, cadmium, arsenic, and mercury levels in maternaland fetal cord blood. J Formos Med Assoc,1991;90(1):59-65.
    37. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children'shealth: cancer in human epidemiological studies and neoplasms in experimental animal models.Environ Health Perspect,2000;108(Suppl3):573-94.
    38. Anderson LM. Predictive values of traditional animal bioassay studies for human perinatalcarcinogenesis risk deter mination. Toxicol Appl Pharmacol,2004;199(2):162-74.
    39. Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL. Reproductive and developmentaltoxicity of arsenic in rodents: a review. Int J Toxicol,2006;25(5):319-31.
    40. Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol,2008;102(2):204-11.
    41. Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH. Increased childhood livercancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol. BiomarkersPrev,2008;17(8):1982-7.
    42. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increasedmortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in uteroand in early childhood. Environ Health Perspect,2006;114(8):1293-6.
    43.杨慧霞.健康与疾病的发育起源学说引发的思考.中华围产医学杂志,2008;11(3):157-8.
    44. Cooney CA. Dietary selenium and arsenic affect DNA methylation. J Nutr,2001;131(6):1871-72.
    45. Coppin JF, Qu W, Waalkes MP. Interplay between cellular methyl metabolism and adaptiveefflux during oncogenic transformation from chronic arsenic exposure in human cells. J BiolChem,2008;283(28):19342-50
    46. Reichard JF, Schnekenburger M, Puga A. Long-term low-dose arsenic exposure induces loss ofDNA methylation. Biochem Biophys Res Commun,2007;352(1):188-92.
    47. Ramirez T, Brocher J, Stopper H, Hock R. Sodium arsenite modulates histone acetylation,histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma,2008;117(2):147-57.
    48. Chen H, Li S, Liu J, Diwan BA, Barrett JC,Waalkes MP. Chronic inorganic arsenic exposureinduces hepatic global and individual gene hypomethylation: implications for arsenichepatocarcinogenesis. Carcinogenesis,2004;25(9):1779-86.
    49. Xie Y, Liu J, Benbrahim-Tallaa L, Ward JM, Logsdon D, et al. Aberrant DNA methylation andgene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenicdose of inorganic arsenic. Toxicology,2007;236(1-2):7-15.
    50. Waalkes MP, Liu J, Diwan BA. Transplacental arsenic carcinogenesis in mice. Toxicol. ApplPharmacol,2007;222(3):271-80.
    51. Martinez EJ, Kolb BL, Bell A, Savage DD, Allan AM. Moderate perinatal arsenic exposurealters neuroendocrine markers associated with depression and increases depressive-likebehaviors in adult mouse offspring. Neurotoxicology,2008;29(4):647-55.
    52. Dang TM, Tran QT, Vu KV. Deter mination of arsenic in urine by atomic absorptionspectrophotometry for biological monitoring of occupational exposure to arsenic. Toxicol Lett,1999;108(2-3):179-83.
    53. Xi S, Zheng Q, Zhang Q, Sun G. Metabolic profile and assessment of occupational arsenicexposure in copper-and steel-smelting workers in China. Int Arch Occup Environ Health,2011;84(3):347-53.
    54. Wickre JB, Folt CL, Sturup S, Karagas MR. Environmental exposure and fingernail analysis ofarsenic and mercury in children and adults in a Nicaraguan gold mining community. ArchEnviron Health,2004;59(8):400-9.
    1. NRC (National Research Council)(2001) Arsenic in drinking water: update. National AcademyPress, Washington, DC.
    2. WHO (World Health Organization)(2001) Arsenic and arsenic compounds. InternationalProgramme on Chemical Safety, Geneva.
    3. Gebel T. Confounding variables in the environmental toxicology of arsenic. Toxicology,2000;144(1-3):155–62.
    4. Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M. The effects ofsodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull,2001;55(2):301-8.
    5. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children'shealth: cancer in human epidemiological studies and neoplasms in experimental animal models.Environ Health Perspect,2000;108(Suppl3):573-94.
    6. Anderson LM. Predictive values of traditional animal bioassay studies for human perinatalcarcinogenesis risk deter mination. Toxicol Appl Pharmacol,2004;199(2):162-74.
    7. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, et al. Arsenic speciation transported through the placentafrom mother mice to their newborn pups. Environ Res,2006;101(3):349-55.
    8. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet,2006;368(9553):2167-78.
    9.杨东焱,粱超柯.砷对大脑毒性的研究进展.卫生研究,2003;32(5):272-5.
    10. Rodríguez VM, Dufour L, Carrizales L, Díaz-Barriga F, Jiménez-Capdeville ME. Effects of oralexposure to mining waste on in vivo dopa mine release from rat striatum. Environ HealthPerspect,1998;106(8):487-91.
    11. Chattopadhyay. Chronic toxicology of arsenic in goats: clinicobiochemical changes,pathomorphology and tissue residues. Small Rum Res,2000,38():229-35.(PUBMED上检索不到)
    12.刘鹏,朴丰源,王艳艳,洪岩.孕鼠慢性砷暴露对胎鼠脑组织DNA的损伤和子代记忆功能的影响.中国冶金工业医学杂志,2007;24(4):391-3.
    13.马龙,张晨,刘文杰,王怀星,姜平.砷对小鼠子代生长发育的影响.中华预防医学杂志,1994;28(1):20-3.
    14.李寿棋(主编).卫生毒理学基本原理和方法.成都:四川科学技术出版社,1987,309-26.
    15.李勇,姚华,孙棉龄,等.氟砷联合对体外培养大鼠卵黄囊胎盘结构和功能的影响.癌变·畸变·突变,1997;9(l):46-50.
    16. Guan H, Piao F, Zhang X, Li X, Li Q, Xu L, Kitamura F, Yokoyama K. Prenatal Exposure toArsenic and Its Effects on Fetal Development in the General Population of Dalian. Biol TraceElem Res,2012; Mar28.[Epub ahead of print]
    17. Ohira M, Aoyama H, Yoshioka S, Kato S, Ota T. Epidemiological studies on subacutemyelo-optico-neuropathy (SMON) at Yubara Town1. Nihon Eiseigaku Zasshi,1970;24(5):502-9.
    18. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, et al. Water arsenicexposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Perspect,2004;112(13):1329-33.
    19. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, Kline J, et al. Water arsenicexposure and intellectual function in6-year-old children in Araihazar, Bangladesh. EnvironHealth Perspect,2007;115(2):285-9.
    20. Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A,Rodriguez-Leyva I, et al. Exposure to arsenic and lead and neuropsychological development inMexican children. Environ Res,2001;85(2):69-76.
    21. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ. The effects of chronic arsenic exposure fromdrinking water on the neurobehavioral development in adolescence. Neurotoxicology,2003;24(4-5):747–53.
    22.李军,王三祥,王正辉,等.砷中毒病区儿童智力水平调查.中国公共卫生,2006;22(7):856-7.
    23. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, et al. Arsenic exposure andcognitive performance in Mexican schoolchildren. Environ Health Perspect,2007;115(9):1371-5.
    24. Dakeishi M, Murata K, Grandjean P. Long-term consequences of arsenic poisoning duringinfancy due to conta minated milk powder. Environ Health,2006;5:31.
    25. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, et al. Arsenicexposure and motor function among children in Bangladesh. Environ Health Perspect,2011;119(11):1665-70.
    26. Cory-Slechta DA, Crofton KM, Foran JA, Ross JF, Sheets LP, Weiss B, et al. Methods toidentify and characterize developmental neurotoxicity for human health risk assessment. I:behavioral effects. Environ Health Perspect,2001;109(Suppl1):79-91.
    27. Garman RH, Fix AS, Jortner BS, Jensen KF, Hardisty JF, Claudio L, et al. Methods to identifyand characterize developmental neurotoxicity for human health risk assessment. II:neuropathology. Environ Health Perspect,2001;109(Suppl1):93-100.
    28. OECD. Test Guideline426.OECD Guideline for the Testing of Chemicals,DevelopmentalNeurotoxicity Study[EB/OL].[2007-10].http://www.oecd.org.
    29.任雁,董田甜,邹莉波,李增刚,王捷.神经发育毒性体内及体外评价方法.毒理学杂志,2011;25(1):61-4.
    30. Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessingchemical effects on neurite outgrowth. Neurotoxicology,2008;29(3):361-76.
    31.严锐,陈宏,王定勇,邱志群,罗教华,舒为群.不同时程砷暴露对子代大鼠神经行为和学习记忆能力的影响.实用医学杂志,2009;25(9):1378-80.
    32.马龙,张晨,姜平.砷对小鼠子代神经行为发育的影响.卫生毒理学杂志,1993;7(4):239-40.
    33. Xi S, Sun W, Wang F, Jin Y, Sun G. Transplacental and early life exposure to inorganic arsenicaffected development and behavior in offspring rats. Arch Toxicol,2009;83(6):549-56.
    34. Dhar P, Mohari N, Mehra RD. Preli minary morphological and morphometric study of ratcerebellum following sodium arsenite exposure during rapid brain growth (RBG) period.Toxicology,2007;234(1-2):10-20.
    35.谢瑶芸.氟砷联合染毒对大鼠子代脑组织影响的电镜观察.地方病通报,2000;15(2):7-8.
    36. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S.Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection withantioxidants. Toxicol Lett,2002;136(1):65-76.
    37. Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase3and p38mitogen-activated protein kinase. J Neurosci,2000;20(17):6442-51.
    38.杨东焱,梁超轲,金银龙,王德文.砷对原代培养海马细胞形态学影响及酶活力研究.卫生研究,2003;32(4):272-5.
    39. Chaudhuri AN, Basu S, Chattopadhyay S, Das Gupta S. Effect of high arsenic content indrinking water on rat brain. Indian J Biochem Biophys,1999;36(1):51-4.
    40. Rao MV, Avani G. Arsenic induced free radical toxicity in brain of mice. Indian J Exp Biol,2004;42(5):495-8.
    41. Bashir S, Sharma Y, Irshad M, Gupta SD, Dogra TD. Arsenic-induced cell death in liver andbrain of experimental rats. Basic Clin Pharmacol Toxicol,2006;98(1):38-43.
    42. Chattopadhyay S, Bhaumik S, Nag Chaudhury A, Das Gupta S. Arsenic induced changes ingrowth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture.Toxicol Lett,2002;128(1-3):73-84.
    43. Gupta R, Flora SJ. Effect of Centella asiatica on arsenic induced oxidative stress and metaldistribution in rats. J Appl Toxicol,2006;26(3):213-22.
    44.杨东焱,粱超柯.砷对大脑毒性的研究进展.卫生研究,2003;32(5):272-5.
    45. Tripathi N, Kannan GM, Pant BP, Jaiswal DK, Malhotra PR, Flora SJ. Arsenic-induced changesin certain neurotransmitter levels and their recoveries following chelation in rat whole brain.Toxicol Lett,1997;92(3):201-8.
    46. Itoh T, Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, et al. The effect of arsenic trioxideon brain monoa mine metabolism and locomotor activity of mice. Toxicol Lett,1990;54(2-3):345-53.
    47. Delgado JM, Dufour L, Grimaldo JI, Carrizales L, Rodríguez VM, Jiménez-Capdeville ME.Effects of arsenite on central monoa mines and plasmatic levels of adrenocorticotropic hormone(ACTH) in mice. Toxicol Lett.2000Sep30;117(1-2):61-7.
    48.孙文娟,王凤芝,孙贵范.孕期和哺乳期母鼠饮水砷暴露对子代大鼠脑组织神经递质代谢酶的影响.环境与健康杂志,2007;24(5):342-3.
    49. Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJ. Toxic effects of arsenic (III) on somehematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol ClinToxicol,2001;39(7):675-82.
    50.毕伟东,王成艳,杜海科.砷对脑发育的影响.国外医学卫生学分册,2002;29(4):193-6.
    51. Toshihide T. Am J Epidemiol,1996;6(3):333.
    52.李勇,俞在芳,朱惠刚.砷诱发细胞凋亡与大鼠畸胎形成的关系研究.卫生研究,1998;27(2):91-4.
    53. Namgung U, Xia Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3and p38MAP kinases. Toxicol Appl Pharmacol,2001;174(2):130-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700