激活态雪旺细胞与几丁糖—胶原膜修复周围神经缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引言:周围神经缺损的修复仍是外科领域的一大难题,临床上主要采用自体神经移植的方法修复,但有明显的缺陷。组织工程为修复周围神经缺损提供了新的方法,本研究的目的就是利用激活态雪旺细胞和生物可吸收材料几丁糖—胶原膜构建人工神经,探索一种修复周围神经缺损的有效方法。本研究共分五部分:
     第一部分
     改良植块法培养成年大鼠雪旺细胞
     目的:通过改良植块培养,探索快速获得高纯度成年大鼠雪旺细胞的培养方法。
     方法:成年SD大鼠20只,分二组,每组10只大鼠,A组改良植块法,B组传统植块法。取大鼠坐骨双侧坐骨神经剥除外膜后,剪成0.5mm~3小块。A组:植块用0.03%胶原酶消化20分钟后培养;B组:植块直接培养。植块隔5天反复培养,传代纯化,共3次。通过细胞计数比较每次植块所得细胞量,雪旺细胞S—100染色测定纯度。
     结果:改良植块法在细胞数量和纯度上均高于传统植块法,改良植块法第一次植块培养所得主要为成纤维细胞,起到分离成纤维细胞的目的,第二次雪旺细胞纯度较高85%,经纯化后可以达到95%,第三次植块雪旺细胞纯度95%。经3次反复植块就可以完全利用神经植块。
     结论:改良植块法可以快速获得高纯度的雪旺细胞,方法简单,廉价。
     第二部分
     激活态雪旺细胞培养及其增殖规律研究
     目的:1.利用预变性神经和激活液培养激活态雪旺细胞 2.比较激活态雪旺细胞和正常雪旺细胞的增殖能力
     方法:SD大鼠10只,200g~250g。右侧坐骨神经切断一周后取材,剥除神经外膜,称重,用0.03%胶原酶加激活液(0.1ml/ml消化液),按照改良植块法培养激活态雪旺细胞。左侧坐骨神经取材剥除外膜后称重,称重,用0.03%胶原酶消化,按照改良植块法培养正常雪旺细胞。比较单位神经所得的细胞量。取1×10~5的第二代细胞分别接种35个培养皿,通过各时间点(2d、4d、6d、8d、10d、12d、14d)计数,绘制生
    长曲线,计算倍增时间,比较激活态雪旺细胞和正常雪旺细胞增殖能力。培养第8天细胞计数后提取蛋白,western blot法比较两者CDK1的含量。取接种前及培养第14天的雪旺细胞作S—100染色。
     结果:改良植块第二次培养7天后,每毫克预变性神经可得到7.5×10~4个激活态雪旺细胞正常神经为1.5×10~4个正常雪旺细胞。传代培养后,激活态雪旺细胞在培养2天后计数均高于正常雪旺细胞,具有统计学差异(p<0.01),激活态雪旺细胞倍增时间5天,正常雪旺细胞为7天,激活态雪旺细胞增殖快于正常雪旺细胞。而且western blot测定激活态雪旺细胞CDK1含量高于正常雪旺细胞。
     结论:神经预变性刺激雪旺细胞增殖,利用预变性7天的神经培养可以获得大量激活态SC,而且激活态SC增殖能力均高于正常SC,可能与激活了CDK1有关。
     第三部分:
     激活态雪旺细胞GAP43、BDNF、C-JUN、P21 mRNA表达研究
     目的:比较激活态雪旺细胞和正常雪旺细胞GAP43、BDNF、C-JUN、P21基因表达区别,寻找激活态雪旺的marker,分析激活态雪旺细胞增殖及促进神经再生的机制。
     方法:选取10只SD大鼠,将大鼠右侧坐骨神经切断,1周后取右预变性坐骨神经改良植块法培养激活态雪旺细胞;取左侧正常坐骨神经培养正常雪旺细胞作为对照。自细胞提取mRNA,应用rt-PCR的方法扩增GAP43、BDNF、C-JUN、P21基因,取PCR产物行1%琼脂糖凝胶电泳,拍照,图像分析计算目标基因和内标基因(GAPDH)PCR产物的吸光度比值,以配对t检验比较。
     结果 激活态雪旺细胞GAP43、c-Jun、P21PCR产物积分吸光度比值较正常雪旺细胞明显增高,差异有统计学意义(P<0.001)。表明激活态雪旺细胞较对照组正常雪旺细胞GAP43 mRNA表达明显增多。正常雪旺细胞培养未检测到BDNFmRNA,而激活态雪旺细胞BDNFmRNA表达明显,两者有质的区别。
     结论 1.BDNF可以作为激活态雪旺细胞的marker区别于正常雪旺细胞 2.激活态雪旺细胞GAP43、BDNF、c-Jun、P21基因表达增强,可能是其促进神经再生和加速细胞增殖的原因之一。
    第四部分
     激活态雪旺细胞在几丁糖—胶原膜上生长规律的研究
     目的:研究激活态雪旺细胞在几丁糖—胶原膜上的生长规律和亲和力,探索两者构建人工神经的可能性。
     方法:成年SD大鼠的坐骨神经切断预变性7d,改良植块法培养激活态雪旺细胞。以1×10~5数量接种于几丁糖—胶原膜上和培养皿。通过相差显微镜观察细胞生长情况,培养2d、4d、6d、8d、10d、12d、14d各取5皿细胞计数,绘制生长曲线,计算倍增时间。培养3、7、10天几丁糖—胶原膜行扫描电镜观测细胞情况。
     结果:相差显微镜和扫描电镜下观察显示激活态雪旺细胞在几丁糖—胶原膜上贴壁生长情况良好。2周后细胞量在几丁糖—胶原膜和培养皿上分别达到10.26×10~5和7.22×10~5个,体外倍增时间分别为4天和5天。激活态雪旺细胞在几丁糖胶原膜上的增殖速度快于培养皿。
     结论:几丁糖—胶原膜具有促进激活态雪旺细胞增殖的作用,两者具有良好的亲和性。以几丁糖—胶原膜为载体可以进行激活态雪旺细胞移植是可行的。
     第五部分
     激活态雪旺细胞和几丁糖—胶原膜修复周围神经缺损的实验研究
     目的 1.研究几丁糖—胶原膜和激活态雪旺细胞促进周围神经再生的作用,探索修复神经缺损的方法
     2.比较激活态雪旺细胞和正常雪旺细胞修复神经缺损的能力,为激活态雪旺细胞应用提供实验依据
     方法 自体激活态雪旺细胞和自体正常雪旺细胞培养于几丁糖—胶原膜,将膜缝制成导管修复大鼠坐骨神经10mm缺损,以单纯几丁糖胶原复合膜管及自体神经移植做对照,术后4、8、12周,行大体观察,测量肌电图动作电位波幅和传导速度。术后12周取材,通过小腿肌肉测量、组织学切片观测与计算机图像分析测量有髓神经密度和髓鞘厚度进行效果评价。
     结果 几丁糖—胶原膜加自体激活态雪旺细胞在肌电图、肌肉湿重和神经再生质量和数量方面与自体神经移植无明显差异,激活态雪旺细胞组比正常雪旺细胞组效果好,而单纯的几丁糖胶原膜修复效果较差。
     结论 1.几丁糖胶原复合膜加激活态雪旺细胞能有效促进周围神经再生 2.激活态雪旺细胞比正常雪旺细胞促进神经再生的能力强
Introduction:
    The effective repair of the peripheral nerve gap following injury continues to be a considerable clinical challenge. Peripheral nerve autograft is nearly clinically sole selection of repairing the gap. That has inevitable disadvantages, such as limited supply of available nerve graft material and permanent loss of the donor nerve function. An attractive to autografts seems to be artificial nerve with tissue engineering. The aim to this study was to develop a novel effective substitute composed of activated Schwann cells and chitosan-collagen film to repair peripheral nerve gap. This study includes five major parts.
    Part one Modified Schwann cell culture from adult rats
    Objective: To introduce a modified technique of explants culture to obtain highly purified Schwann cells.
    Methods: 20 adult SD rats were randomly divided into 2 groups, group A for modified explants culture and group B for tranditional explants culture. The sciatic nerve was dissected bilaterally through a dorsal incision and collected in DMEM. The epineurium was gently stripped and nerve fascicles were subsequently cut in 0.5mm~3 segments. Group A: nerve segments were digested in 0.03% collagenase for 20min before translation to Petri dish. Grou B: nerve segments were transplanted to Petri dish directly. The individual nerve explants were transplanted to a new dish every 5 days, totally 3times. The cell number were counted separately and compared. Schwann cell purity was determined by immunostainning the cells for S-100.
    Results Cell population in group A was several folds to that in group B. Accordingly Schwann cell purity in group A was also higher than group B. In modified culture, the cell obtained from the first time explants culture were mainly fibrocytes. It contributed to remove fibrocytes from explants. Schwann
    cell purity reached 85% in the second time explants culture by modified methods. And Schwann cell purity was 95% after third replantation with modified method, while explants were disappeared and fully used.
    Conclusion: Modified explants culture is a quick way to obtain highly purified Schwann cells.
    
    
    
    
    Part two Activated Schwann cell culture and growth rule
    Objective: To culture activated SC from predegenerated nerve by addition of activated liquid and explore the growing rule of the activated SC in culture.
    Methods: 10 male SD rats, weight 200g~250g. Activated SC culture:The right sciatic nerve of SD rats were transected for predegeneration. 1 week later, the distal segment of the transected right sciatic nerve was harvest. The epineurium was gently stripped and each nerve was weighted. Nerve segments were digested in 0.03% collagenase and active liquid (0.1ml/ml) for 20 min according to modified explant culture. Normal SC culture: The untreated left sciatic served as control. The epineurium was gently stripped and each nerve was weighted. Nerve segments were digested in 0.03% collagenase without of active liquid for 20 min according to modified explant culture. Cell number per mg was compared. 1×10~5 cells of second generation were planted on 35 petri dish. The numbers of activated SCs and normal SCs were counted at various growing point (2d、4d、6d、8d、10d、12d、14d), then the growing curve was drawn. Doubling time was also calculated. At the 8 day, protein was extracted after cell number counting. CDK1 was measured by western blot. Schwann cell purity was determined by immunostainning the cells for S-100 at 1 and 14 days.
    Results: Acivated SC was 7. 5×10~4/mg from pregenerated nerve after modified explant culture. Normal SC was 1.5×10~4/mg from normal nerve. After subcultivation, activated SC amounts were more than normal SC in various point except first 2 days. The doubling period of activated SC was 5 days, while normal SC was 7days. Activated SC proliferates faster than normal SC. The CDK1 expression was also higher in activated SC than in normal SC. At 14 days on
    culture, purity of activated SC was 95% and normal SC was 92%.
    Conclusion: A large mount of activated SC can be obtained from predegenerated nerve. Activated SC proliferate faster than normal SC. it may be partly explained by CDK1 over-expression in activated SC.
    
    
    
    
    
    Part three Gene expression of BDNF, GAP43, c-Jun and p21 in activated Schwann cell
    Objective: To compare activated Schwann cell and normal Schwann cell in BDNF, GAP43, c-Jun and p21 gene expression.
    Methods: 10 male SD rats, weight 200g~250g. The right sciatic nerves of SD rats were transected for predegeneration. 1 week later, the distal segment of the transected right sciatic nerve was harvest. The untreated left sciatic nerve was harvested as control. Activated schwann cell were cultured from predegenerated nerve and normal Schwann cells were harvest from contralateral norm sciatci nerve. rt-PCR was employed for gene enlargement. mRNA was distilled from activated Schwann cells and Schwann cells respectively. Then the mRNA was reverse transcript to cDNA with SuperScriptTM, and cDNA worked as template for PCR enlargement. The product of PCR was separated with 1% agarose gel electrophoresis for 40min~50min. PCR products of GAP43、BDNF、 C-JUN、P21 was measured and then compared between the experiment group and control group.
    Results:GAP43、 C-JUN、P21 mRNA of activate Schwann cells are much more than that of the normal Schwann cells. BDNF mRNA was manifest in activated Schwann cells, however it was not showed in normal schwann cells.Conclusion
    1. BDNF may act as a marker for activated schwann cell.
    2. GAP43、BDNF、C-JUN、P21 gene expression is up regulated in Activated Schwann in contrast to normal Schwann cell. It may partly elucidate why activated Schwann cells proliferate quickly and promote nerve regeneration.
    Part four Growth rule of activated Schwann cells on Chitosan-collagen film
    Objective: To explore the growth rule of activated SC cultured on the surface of Chitosan-collagen film.
    Methods: Adult SD rat sciatic nerves were transected and predegenerated for 7 days. Activated SCs were harvested by modified piece replant way. 1×10~5 cells were planted on the surface of Chitosan-collagen film. 1×10~5 cells were planted on petri dish severed as control. Activated SCs were observed through the phase contrast microscope. The numbers of activated Schwann cells were counted at various growing point (2d、4d、6d、8d、10d、12d、14d) , then the growing curve of activated Schwann cells was drawn. Doubling time was also calculated. Scanning electron microscope was employed to observe cell growth on chitosan-collagen film at 3d,7d,10d.
    Results: Activated SCs grow well on the surface of the Chitosan-collagen film under observation of phase contrast microscope and scanning electron microscope. Cell amount reached were up to 10×10~5 on Chitosan- collagen film and 7×10~5 petri dish separately after 2 weeks compared to the primary 1× 10~5. The doubling period of activated SCs was 4 days on chitosan-collagen film and 5 days on Petri dish. Activated proliferated faster on chitosan-collagen film than on Petri dish.
    Conclusions: Chitosan-collagen film posses an ability to promote activated SCs proliferation. The fine affinity made it possible to transplant activated SCs by chitosan-collagen film.
    
    
    
    
    
    Part five An experimental study on repair of peripheral nerve defects with Chitosan-collagen film and activated Schwann cell
    Objective: To study the efficiency of artificial nerve made of Chitosan-collagen and activated Schwann cells on promoting nerve
    regeneration.
    Methods: Activiated Schwann cells and normal Schwann cells from left sciatic
    nerve were cultured on Chitosan-collagen film. Then the films were sutured into
    conduits to bridge 10mm defect of right sciatic nerve. Autograft and complain
    Chitosan-collagen film were served as control. General observation, amplitude
    of active potential (AMP) and nerve conduction velocity (NCV) were measured
    at the end of 4, 8, 12 weeks. Evaluation included triceps surae measurement
    and histological examination was made at the end of 12 weeks. The myelinated
    nerve fibers density, axon area percentage and thickness of mylin sheath were
    measured by computerized image analysis.
    Results: There was no differenc between the group of (Chitosan-collagen with
    activated Schwann cells) and the group of autograft in electromyogrphic
    examination, triceps surae measurement and axon regeneration. Whereas the
    group of activated Schwann cells got better results than the normal Schwann
    cells. The group of Chitosan-collagen film without Schwann cell showed a poor
    result of axon regeneration.
    Conclusion: Chitosan-collagen and activated Schwann cells can effectively
    promote nerve regeneration. It provides a novel method for repairing the
    peripheral nerve defects. Additionally, activated Schwann cell is better than
    normal Schwann cells in encouraging nerve regeneration.
引文
1. Terzis JK,Sun DD, Thanos PK. History and basic science review: past, present, and future of nerve repair[J]. J Reconstr Microsurg, 1997,13:215 -25.
    
    2. Langer R, Vacanti J P. Tissue engneering. Science, 1993, 250:920-926
    
    3. Choi BH, Zhu SJ, Kim SH, et al. Nerve repair using a vein graft filled with collagen gel[J]. J Reconstr Microsurg, 2005, 21(4):267-72
    
    4. Mohammad J, Shenaq J, Rabinovsky E , et al . Modulation of peripheral nerve regeneration : a tissue-engineering approach. The role of amnion tube nerve conduit across a 12centimeter nerve gap [J] . Plast Reconstr Surg, 2000, 105 (2): 660-666.
    
    5. Geuna S, Tos P, Battiston B, et al. Bridging peripheral nerve defects with muscle-vein combined guides[J]. Neurol Res, 2004, 26(2):139-44.
    
    6. Varon S, W illiam s IR. Peripheral nerve regeneration in a silicone model chamber:cellular and molecular aspects[J]. Peripheral Nerve Repair and Regeneration, 1986, 1: 9-15
    
    7. A. Chenite, C. Chaput, D. Wang, C. Combes, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J]. Biomaterials, 2000 (21) 2155-2161.
    
    8. Yoshii S, Shima M, Oka M, et al. Nerve regeneration along collagen filament and the presence of distal nerve stump [J]. Neurol Res, 2004,26(2): 145-50.
    
    9. Wei X, Lao J, Gu YD. Bridging peripheral nerve defect with chitosan-collagen film[J].Chin J Traumatol. 2003,6(3):131-4.
    
    10. Sinis N, Schaller HE, Schulte-Eversum C, Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. J Neurosurg,2005,103(6):1067-76.
    
    11. Fansa H, Keilhoff G. Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects[J]. Neurol Res. 2004,26(2): 167-73.
    
    12. Nishiura Y, Brandt J, Nilsson A, et al. Addition of cultured Schwann cells to tendon autografts and freeze-thawed muscle grafts improves peripheral nerve regeneration[J]. Tissue Eng, 2004,10(1-2):157-64
    
    13. Fox IK, Schwetye KE, Keune JD, Schwann-cell injection of cold-preserved nerve allografts[J]. Microsurgery, 2005, 25(6):502-7.
    14. Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits[J]. J Neurosci Methods, 1999, 89: 17-24.
    15.劳杰,熊良俭,顾玉东,等.应用激活态的雪旺细胞填充导管修复周围神经缺损的初步研究[J].中华手外科杂志,2000,16(4):236—240
    1. Chen YS, Hsieh CL, Tsai CC, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin[J]. Biomaterials, 2000, 21(15):1541-7.
    
    2. Sinis N, Schaller HE, Schulte-Eversum C, Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. J Neurosurg, 2005,103(6):1067-76.
    
    3. Fansa H, KeilhoffG. Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects[J]. Neurol Res. 2004,26(2): 167-73.
    
    4. Bachelin C, Lachapelle F, Girard C, et al. Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells[J]. Brain. 2005,128(3): 540-9.
    
    5. Thowask M, Naomi K, Richard P B. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve[J]. J Neurosci, 1991, 11 (8) : 2433-24421
    
    6. Askanas V, Engel WK, Dalakas MC, Lawrence JV, Carter LS. Human schwann cells in tissue culture: histochemical and ultrastructural studies[J]. Arch Neurol. 1980,37(6):329-37.
    
    7. SCKreider BQ, Messing A, Doan H, et al. Enrichment of Schwann cell cultures from neonatal rat sciatic nerve by differential adhesion[J]. Brain Res, 1981, 207(2): 433-44
    
    8. Ansselin AD, Corbeil SD, Davey DF. Culture of Schwann cells from adult animals[J]. In Vitro Cell Dev Biol Anim. 1995 , 31(4):253-4.
    
    
    9. Calderon-Martinez D, Garavito Z, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C) [J]. J Neurosci Methods. 2002,114(1):1-8.
    
    10. Tomkins CE, Edwars SN, Apoptosis is induced in post-mitotic rat sympathetic neurons by arabinosides and topoisomerase II inhibitors in the presence of NGF[J]. J Cell Sci,1994, 107:1499-507
    
    11. Assouline JG, Bosch EP, Lim R Purification of rat Schwann cells from cultures of peripheral nerve: an immunoselective method using surfaces coated with anti-immunoglobulin antibodies[J]. Brain Res, 1983, 277(2): 389-92.
    1. E. Verdu, F. J. Rodriguez, G. Gudino-Cabrera, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves[J]. J. Neurosci. Methods, 2000, 99: 111-117.
    2.劳杰 熊良俭 顾玉东.等 应用激活态的雪旺细胞填充导管修复周围神经缺损的初步研究[J].中华手外科杂志,2000,16(4):236—240
    3. La Fleur, J. L. Underwood, D. A. Rappolee, et al. Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1[J] J. Exp. Med. 1996, 184: 2311-2326
    4. Dong Z, Brennan A, Liu N, et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors[J]. Neuron, 1995, 15: 585-96.
    5. Harborth J, Elbashir SM, Berchert L, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs[J]. J Cell Sci, 2001, 114: 4557-65.
    6. J. P. Brockes, K. L. Fields, d M. C. Raff. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve[J]. Brain Res, 1979, 165: 105-118.
    7. D. Calderon-Martinez, Z. Garavito, C. Spinel, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside(Ara-C)[J]. J. Neurosci Methods 2002, 114: 1-8.
    8. Tomkins CE, Edwars SN, Apoptosis is induced in post-mitotic rat sympathetic neurons by arabinosides and topoisomerase Ⅱ inhibitors in the presence of NGF[J]. J Cell Sci 1994, 107: 1499-507
    9. Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits[J]. J Neurosci Methods, 1999, 89: 17-24
    1.劳杰,熊良俭,顾玉东,等.应用激活态的SC充填导管修复周围神经缺损的初步研究.中华手外科杂志,2000,16:236-240
    2. Simon M, Porter R, Brown R et al. Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres[J]. Eur J Neurosci. 2003, 18(9): 2460-6.
    3. Zhang JY, Luo XG, Xian CJ et al Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents[J]. Eur J Neurosci 2000, 12(12): 4171-80
    4. Kawasaki T, Nishio T, Kawaguchi S, et al. Spatiotemporal distribution of GAP-43 in the developing rat spinal cord: a histological and quantitative immunofluorescence study. Neurosci Res, 2001, 39: 347-358
    5. Meyer M, Matsuoka I, Wetmore Cet al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA[J]. J Cell Biol. 1992, 119(1): 45-54
    6. Hall GP, Kent AP, Gurtis R, et al. Electron microscopic immunocytochemistry of GAP-43 within proximal and chronically denervated distal stumps of transected peripheral nerve[J]. J Neurocytol, 1992, 8: 820-825.
    7. ling S, Tapley P, Barbacid M, Nerve growth factor mediates signal transduction through trk homodimer receptors. Euron. 1992, 9: 1067-1075
    8. Li Y, Jia YC, Cui K, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor[J]. Nature. 2005, 434(7035): 894-8.
    9. Jonah R. Chan, lose Miguel Cosgaya et al. Inaugural Article: Neurotrophins are key mediators of the myelination program in the peripheral nervous system[J]. PNAS, 2001, 98: 14661-14668
    10. Barbara L. Hempstead James L et al. NEUROBIOLOGY: A Glial Spin on Neurotrophins[J]. Science, 2002, 298: 1184-118
    11. Omura T, Sano M, Omura K et al. Different expressions of BDNF, NT3, and NT4 in muscle and nerve after various types of peripheral nerve injuries[J]. J Peripher Nerv Syst. 2005, 10(3): 293-300
    12. Vogelin E, Baker JM, Gates J et al. Effects of local continuous release of brain derived neurotrophic factor(BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol. 2006 Feb 15; [Epub ahead of print]
    13.李云春,李林,王全林,等脑源性神经营养因子在面神经的转运研究[J].同位素,2000,13(2):88-91
    14. Serpe CJ, Byram SC, Sanders VM et al Brain-derived neurotrophic factor supports facial motoneuron survival after facial nerve transection in immunodeficient mice[J]. Brain Behav Immun, 2005, 19(2): 173-80
    15. Davies SFA, Fitch MT, Memberg SP, et al. Regeneration of adult axon in white matter tracts of the central nervous system[J]. Nature, 1997, 390: 680-683
    16. Frey D, LauxT, Xu L, et al. Shared and unique roles of Gap23 and Gap43 in actin regulation, neurite outgrowth, and anatomical plasticity[J]. J. Cell Biol. 2000, 149: 1443-1453.
    17. Curtis R, Stewart HJ, Hall SM et al. GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system[J]. J Cell Biol. 1992, 116(6): 1455-64
    18. Angel P, Imagawa M, Chiu R, et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated transacting factor[J]. Cell, 1987, 49(6): 729~739
    19. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinasesJ Biol Chem. 1995; 270(28): 16483-6。Han J, Jiang Y, Li Z, et al.. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation[J]. Nature 1997, 386(6622): 296-9.
    20. Wisdom, R S Johnson, C Moore. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms[J]. EMBO J, 1999, 18(1): 188-197
    21. Waga S, Hannon GJ, Beach D, et al. The P21 WAF1 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA[J]. Nature, 1994, 369: 5742578.
    22. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases[J]. Cell, 1993, 75: 805-816
    23. Seoane J, Le HV, Massague J. Myc suppression of the p21Cipl Cdk inhibitor influences the outcome of the p53 response to DNA damage[J]. Nature, 2002, 419: 729-734.
    24. Kawata S, Ariumi Y, Shimotohno K. p21(Waf1/Cipl/Sdil) prevents apoptosis as well as stimulates growth in cells transformed or immortalized by human T-cell leukemia virus type 1-encoded tax[J]. J Virol, 2003, 77(13):7291-9.
    
    25. Spierings DC, de Vries EG, Stel AJ et al. Low p21Wafl/Cipl protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis[J]. Oncogene. 2004, 23(28):4862-72.
    
    26. Suzuki A, Tsutomi Y, Miura M , et al . Caspase 3 inactivation to suppress Fas2mediated apoptosis: identification of binding domain with p21 and IL P and inactivation machinery by p21 [J]. Oncogene. 1999,18:1239-1244
    1. Fansa H, Keilhoff G, Wolf G, et al. Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells[J]. Plast Reconstr Surg, 2001, 107: 485-494.
    2. Mohammad J, Shenaq J, Rabinovsky E, et al. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 12centimeter nerve gap[J]. Plast Reconstr Surg. 2000, 105(2): 660-666.
    3. Song YX, Muramatsu K, Kurokawa Y, et al. Functional recovery of rat hind-limb allografts[J]. J Reconstr Microsurg. 2005, 21(7): 471-6.
    4. Varon S, William s IR. Peripheral nerve regeneration in a silicone model chamber: cellular and molecular aspects[J]. Peripheral Nerve Repair and Regeneration, 1986, 1: 9-15
    5. Wei X, Lao J, Gu YD. Bridging peripheral nerve defect with chitosan-eollagen film[J]. Chin J Traumatol. 2003, 6(3): 131-4.
    6.张家胜.胶原—几丁糖复合生物材料研制及其修复神经缺损的实验研究[D].上海:复旦大学,2001
    7. A. Chenite, C. Chaput, D. Wang, C. Combes, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J] Biomaterials. 2000(21) 2155-2161.
    8. B. Ouattara, R. E. Simard, G. Piette, et al. lnhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Microbiology. 2000, (62) 139-148.
    9. K. Kofuji, T. Ito, Y. Murata, S. Kawashima, et al. The controlled release of a drug from biodegradable chitosan gel beads[J] Chem. Pharm. Bull. 2000(48) 579-581.
    10. M. Sato, M. Maeda, H. Kurosawa, et al. Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies[J]. J. Orthop. Sci. 2000 (5) 256-267.
    11. F. L. Mi, S. S. Shyu, Y. B. Wu, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials[J]. 2001(22) 165-173.
    12. Itoh Soichiro; Yamaguchi Isamu; Shinomiya Kenichi; et al. Development of the chitosan tube prepared from crab tendon for nerve regeneration[J]. Science and Technology of Advanced Materials 2003,264 (4) :261 - 268
    
    13. Gibby WA, Koerber HR, Horch KW. A quantitative evaluation of suture and tubulization nerve repair techniques [J]. J Neurosurg 1983,58:574-579.
    
    14. S. Hall. Nerve repair a neurobiologist's view[J].J Hand Surg 2001, 26B: 129 - 136.
    
    15. Q. Yin, G. J. Kemp and S. P. Frostick, Neurotrophins, neurones and peripheral nerve regeneration [J]. J Hand Surg 1998, 23B : 433-437.
    
    16. Martin Lietz, Lars Dreesmann, Martin Hoss.et al Neuro tissue engineering of glial nerve guides and the impact of different cell types[J]. Biomaterials. 2006, 27 (8) :1425-1436
    
    17. Navarro X, Rodriguez FJ, Ceballos D, et al. Engineering an artificial nerve graft for the repair of severe nerve injuries[J]. Med Biol Eng Comput, 2003, 41 (2): 220-6.
    
    18. Novikova LN, Mosahebi A, Wiberg M, Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation[J]. J Biomed Mater Res A, 2006, 77A(2):242-252
    
    19. Brandt J, Nilsson A, Kanje M, et al. Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: a new principle for tissue engineering in nerve reconstruction [J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(6):321-5.
    1. Wei X, Lao J, Gu YD. Bridging peripheral nerve defect with chitosan-collagen film[J]. Chin J Traumatol. 2003, 6(3):131-4.
    
    2. Brandt J, Nilsson A, Kanje M, et al. Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: a new principle for tissue engineering in nerve reconstruction [J]. Scand J Plast Reconstr Surg Hand Surg. 2005;39(6):321-5.
    
    3. Strauch B, Rodriguez DM, Diaz J, Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr Microsurg[J]. 2001 Nov;17(8):589-95.
    
    4. Rodriguez FJ, Verdu E, Ceballos D, Nerve guides seeded with autologous Schwann cells improve nerve regeneration[J]. Exp Neurol. 2000 Feb; 161 (2): 571-84.
    
    5. Armati PJ, Pollard JD, Gatenby P. Rat and human Schwann cells in vitro can synthesize and express MHC molecules[J]. Muscle Nerve. 1990 13(2): 106-16.
    
    6. Fansa H, KeilhoffG, Wolf G, et al. Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells[J]. Plast Reconstr Surg, 2001, 107:485-494.
    
    7. Merle M, DellonAL, Campbell JN, et al. Complications from silicon-polymer intubulation of nerves[J]. Microsurgery, 1989,10:130-133
    
    8. Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair[J]. Clin Plast Surg, 1999,26:617-628
    
    9.侯春林,顾其胜,主编.几丁质与医学[M].上海:上海科学技术出版社,2001.第1版:53
    
    10. Cho YW, Cho Y N, Chung S H, et al. Water-soluble chitin as a wound healing accelerator [J]. Biomaterials, 1999, 20 (22): 2139—2145
    
    11. Haipeng G, Yinghui 1, Jianchun L, et al. Studies on nerve cell affinity of chitosan-derived materials[J].J Biomed Mater Res, 2000, 52(2): 285-295.
    
    12. Singh N, Birdi TJ, Chandrashekar S, et al. Schwann cell extracellular matrix protein production is modulated by Mycobacterium leprae and macrophage secretory products[J]. J Neurol Sci, 1997, 151:13-22.
    
    13. Tada H, Hatoko M, Tanaka A, et al. Detection of E-cadherin expression after nerve repair in a rat sciatic nerve model[J]. Ann Plast Surg, 2001,47:178-182.
    14.张文捷,李兵仓,岳寿伟,等.GDNF基因修饰的人工神经复合体对大鼠坐骨神经缺损的修复作用研究.中国康复医学杂志.2004,19(2):91—94
    15. Hurtado A, Moon LD, Maquet V, Poly(D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord[J]. Biomaterials. 2006; 27(3): 430-42.
    16. Hu Y, Leaver SG, Plant GW, et al Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration[J]. Mol Ther. 200511(6): 906-15.
    1. Langer R, Vacanti J P. Tissue engneering. Science, 1993, 250: 920-926
    2. Torigoe K, Tanaka HF, Takahashi A, et al. Basic behavior of migratory Schwanns cells in peripheral nerve regeneration[J]. Exp Neurol, 1996, 137: 301-308.
    3. Singh N, Birdi TJ, Chandrashekar S, et al. Schwann cell extracellular matrix protein production is modulated by Mycobacterium leprae and macrophage secretory products[J]. J Neurol Sci, 1997, 151: 13-22.
    4. Russell FD, Koishi K, Jiang Y, et al. Anterograde axonal transport of glial cell line-derived neurotrophic factor and its receptors in rat hypoglossal nerve[J]. Neuroscience, 2000, 97: 575-580.
    5. Tada H, Hatoko M, Tanaka A, et al. Detection of E-cadherin expression after nerve repair in a rat Sciatic nerve model[J]. Ann Plast Surg, 2001, 47: 178-182.
    6. Chernousov MA, Scherer SS, Stahl RC, et al. p200, a collagen secreted by Schwann cells, is expressed in developing nerves and in adult nerves following axotomy[J]. J Neurosci Res, 1999, 56: 284-294.
    7. Yanagida H, Tanaka J, Maruo S. Immunocytochemical localization of a cell adhesion molecule, integrin alpha5betal, in nerve growth cones[J]. Orthop Sci, 1999, 4: 353-360.
    8. Manent J, Oguievetskaia K, Bayer J, et al Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves[J]. J Neurosci Methods. 2003, 123(2): 167-73.
    9. Calderon-Martinez D, Garavito Z, et al. Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside(Ara-C)[J]. J NeuroSCi Methods. 2002, 114(1): 1-8.
    10.秦煜,顾立强,吴岚晓,等.感觉性和运动性神经来源雪旺细胞神经生长因子的表达.中华显微外科杂志[J].2001,24(2):278—281.
    11. Fansa H, Keilhoff G, Wolf G, et al. Cultivating human Schwann cells for tissue engineering of peripheral nerves[J]. Handchir Mikrochir Plast Chir, 2000, 32: 181-186.
    12. Keilhoff G, Fansa H, Smalla KH, et al. Neuroma: a donor-age independent source of human Schwann cells for tissue engineered nerve grafts[J]. Neuroreport, 2000, 11: 3805-3809.
    13. Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells[J]. Cur J Neurosci, 2001, 14: 1771-1776.
    14. Askanas V, Engel WK, Dalakas ME, Lawrence Jr, Carter LS. Human Schwann cells in tissue culture: histochemical and ultrastructural studies[J]. Arch Neurol, 1980, 37(6): 329-37.
    15.杨柳:邓传宗:顾晓松,等.雪旺氏细胞体外培养方法研究[J].交通医学,2000,14:46-47.
    16. Wood PM. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue[J]. Brain Res, 1976, 115(3): 361-75.
    17. Kreider BQ, Messing A, Doan H, et al. Enrichment of Schwann cell cultures from neonatal rat Sciatic nerve by differential adhesion[J]. Brain Res, 1981, 207(2): 433-44.
    18. Jirsova K, Sodaar P, Mandys V, Bar PR. Cold jet: a method to obtain pure Schwann cell cultures without the need for cytotoxic, apoptosis-inducing drug treatment[J]. J Neurosci Methods, 1997, 78(1-2): 133-7
    19. Wood PM. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue[J]. Brain Res, 1976, 115(3): 361-75
    20.韩岩,汤朝武,王剑波,等.利用Geneticin纯化雪旺细胞的实验研究[J].中华显微外科杂志.1997,20(4):277—280
    21. Armati PJ, Constable AL, Llewellyn F. A new medium for in vitro peripheral nervous tissue myelination without the use of antimitotics[J]. J Neurosci Methods, 1990, 33(2-3): 149-55.
    22. Brockes JP, Fields KL, Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve[J]. Brain Ues, 1979, 165(1): 105-18.
    23. Assouline JG, Bosch EP, Lim n Purification of rat Schwann cells from cultures of peripheral nerve: an immunoselective method using surfaces coated with anti-immunoglobulin antibodies[J]. Brain Res, 1983, 277(2): 389-92.
    24. Benmessahel Y, Guennoun R, Cadepond F, et al Expression of steroidogenic acute regulatory protein in cultured Schwann cells and its regulation by cAMP[J]. Ann N Y Acad Sci, 2002, 973: 83-7.
    25. Sobue G, Kreider B, Asbury A, Specific and potent mitogenic effect of axolemmal fraction on Schwann cells from rat Sciatic nerves in serum-containing and defined media[J]. Brain Res, 1983, 280(2): 263-75.
    26. Mason PW, Bigbee JW, DeVries GH. Cerebellar granule cells contain a membrane mitogen for cultured Schwann cells[J]. J Cell Biol. 1989, 108(2): 607-11.
    27. Fansa H, Keilhoff G, Horn T, et al. Stimulation of Schwann cell growth and axon regeneration of peripheral nerves by the mmunosuppressive drug FK 506[J]. Handchir Mikrochir Plast Chir, 1999, 31(5): 323-9
    28. Verdu E, Rodriguez FJ, Gudino-Cabrera G, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves[J]. J NeuroSCi Methods, 2000, 99(1-2): 111-7.
    29. C. E. Schmidt and J. B. Leach, et al. Neural tissue engineering. Strategies for repair and regeneration[J]. Annu Rev Eng, 2003, (5): 293-347
    30. M. H. Tuszynski, N. Weidner, M. McCormack, I. Miller, H. Powell and J. Conner, Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplantation[J]. 1998, 7(2): 187-196
    31. S. T. Sayers, N. Khan, Y. Ahmed, R. Shahid and T. Khan, Preparation of brain-derived neurotrophic factor-and neurotrophin-3-secreting Schwann cells by infection with a retroviral vector[J]. J Mol Neurosci, 1998, 10: 143-160.
    32. P. Menei, C. Montero-Menei, S. R. Whittemore, R. P. Bunge and M. B. Bunge, SChwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord[J]. Eur J Neurosci 1998, 10,: 607-621.
    33. Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits[J]. J Neurosci Methods, 1999, 89: 17-24.
    34.劳杰,熊良,顾玉东,等.应用激活态的雪旺细胞填充导管修复周围神经缺损的初步研究[J].中华手外科杂志,2000,16:236-240.
    35. Ansselin, A. D., and J. D. Pollard. Immunopathological factors in peripheral nerve allograft rejection: Quantification of lymphocyte invasion and major histocompatibility complex expression[J]. J. Neurol. Sci, 1990, 96: 75-88.
    36. Armati PJ, Pollard JD, Gatenby P. Rat and human Schwann cells in vitro can synthesize and express MHC molecules [J]. Muscle Nerve, 1990, 13(2): 106-16.
    
    37. Fox IK, Schwetye KE, Keune JD, Schwann-cell injection of cold-preserved nerve allografts[J]. Microsurgery,2005,25(6):502-7.
    
    38. Mosahebi A, Fuller P, Wiberg M, et al. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration[J]. Exp Neurol, 2002, 173(2):213-23.
    
    39. Brandt J, Nilsson A, Kanje M, et al. Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: a new principle for tissue engineering in nerve reconstruction [J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(6): 321-5.
    
    40. Strauch B, Rodriguez DM, Diaz J, Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit [J]. J Reconstr Microsurg, 2001, 17(8):589-95
    
    41. Rodriguez FJ, Verdu E, Ceballos D, Nerve guides seeded with autologous SChwann cells improve nerve regeneration[J]. Exp Neurol, 2000 , 161 (2): 571-84.
    
    42. Choi BH, Zhu SJ, Kim SH, et al. Nerve repair using a vein graft filled with collagen gel[J]. J Reconstr Microsurg, 2005, 21(4):267-72
    
    
    43. Geuna S, Tos P, Battiston B, et al. Bridging peripheral nerve defects with muscle-vein combined guides[J]. Neurol Res, 2004, 26(2):139-44.
    
    44. Keynes R J, Hopkins W C. Regeneration of mouse peripheral nerves in degenerating skeletal muscle[J]. Brain Res, 1984, 295: 275-281
    
    45. Norris R W, Glasby M A. Peripheral nerx re repair in numaus using muscle autografts[J]. J Bone and Joint Surg,1988, 70:530-537
    
    46. Kubo M , Sonoda Y, Muramatsu R , et al . Immunogenicity of human amniotic membrane in experimental xenotransplantation [J]. Invest Ophthalmol Vis SCi, 2001,42 (7): 1539-1546.
    
    47. Mohammad J , Shenaq J , Rabinovsky E , et al . Modulation of peripheral nerve regeneration : a tissue-engineering approach. The role of amnion tube nerve conduit across a 12centimeter nerve gap [J] . Plast Reconstr Surg, 2000,105 (2): 660-666.
    
    48. Mligilich N, Endo K, Okanoto K, et al . Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration [J] . J Biomed Mater Res, 2002, 63(5): 591-600.
    49.匡勇,侯春林,苟三怀,等几丁糖管修复周围神经缺损的实验研究中华创伤杂志.1998,14(2):72—74
    50. Hu M, Sabelman EE, Tsai C, et al. Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine. Tissue Eng, 2000, 6: 585-593.
    51. Wei X, Lao J, Gu YD. Bridging peripheral nerve defect with chitosancollagen film[J]. Chin J Traumatol. 2003, 6(3): 131-4.
    52. Varon S, William s IR. Peripheral nerve regeneration in a silicone model chamber: cellular and molecular aspects[J]. Peripheral Nerve Repair and Regeneration, 1986, 1: 9-15
    53. Ceonzo K, Gaynor A, Shaffer L, Polyglycolic Acid-Induced Inflammation: Role of Hydrolysis and Resulting Complement Activation[J]. Tissue Eng, 2006, 12(2): 301-308.
    54. Felix Stanga, Hisham Fansab, Gerald Wolfa, et al. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials, 2005, 26(16): 3083-3091
    55. Yusuke Katayamaa, Rivelino Montenegroa, Thomas Freier. et al Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts[J]. Biomaterials, 2006, 27(3): 505-518.
    56. Widmer MS, Gupta PK, Lu L, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration[J]. Biomaterials, 1998, 19: 1945—1955.
    57. Evans GR, Brandt K, Widmer MS, et al. In vivo evaluation of poly (1-lactic acid)porous conduit for peripheral nerve regeneration[J]. Biomaterials, 1999, 20: 1109—1115.
    58. Chen-Jung Changa, Shan-hui Hsu. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration[J]. Biomaterials, 2006, 27(7): 1035-1042
    59. Matsumoto K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves[J]. Brain Res. 2000, 868(2): 315-28.
    60. Hadlock T, Sundback C, Hunter D, et al. A polymer foam conduit seeded with SChwann cells promotes guided peripheralnerve regeneration[J]. Tissue Eng, 2000,6:119-127.
    
    61.崔树森,徐莘香,尹维田,等.组织工程人工周围神经的研制[J].白求恩医科大学学报2000,26:20-22.
    
    62. Stang F, Fansa H, Wolf G, et al. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration[J]. Biomaterials, 2005 , 26(16): 3083-91.
    
    63. Sufan W, Suzuki Y, Tanihara M, et al. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat[J]. J Neurotrauma. 2001, 18(3): 329-38.
    
    64. Yoshii S, Oka M, Ikeda N, et al. Bridging a peripheral nerve defect using collagen filaments [J]. J Hand Surg(Am), 2001, 26:52-59.
    
    65. Pu LL, Syed SA, Reid M, et al. Effects of nerve growth factor on nerve regeneration through a vein graft across a gap[J]. Plast Reconstr Surg, 1999, 104(5): 1379-85.
    
    66. Bryan DJ, Holway AH, Wang KK, et al. Influence of glial growth factor and Schwann cells in a bioresorbable guidancechannel on peripheral nerve regeneration[J]. Tissue Eng, 2000, 6:129-38.
    
    67. Mohanna PN, Young RC, Wiberg M, et al. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs[J]. J Anat, 2003 , 203(6):553-65
    
    68. Newman JP, Verity AN, Hawatmeh S, et al. Ciliary neurotrophic factors enhances peripheral nerve regeneration[J]. Arch Otolaryngol Head Neck Surg, 1996, 122(4):399-403.
    
    69. Annie C. Leea, Vivian M. Yua, James B. Lowe, III a, et al. Controlled release of nerve growth factor enhances Sciatic nerve regeneration[J]. Experimental Neurology, 2003, 184 (1): 295-303
    
    70. Yang Y, De Laporte L, Rives CB, Neurotrophin releasing single and multiple lumen nerve conduits[J]. J Control Release. 2005, 2;104(3):433-46.
    
    71. Watanabe TS, Ohtori S, Koda M, et al. Adenoviral gene transfer in the peripheral nervous system[J]. J Orthop Sci, 2006, 11(1):64—9.
    
    72. Girard C, Tenenbaum L, Chtarto A, et al. Efficiency of adeno-associated virus type-2 vectors in non-human primate Schwann cells[J]. Neuroreport. 2005, 16(16): 1757-62.
    73. Joung I, Kim HS, Hong JS, et al Effective gene transfer into regenerating Sciatic nerves by adenoviral vectors: potentials for gene therapy of peripheral nerve injury[J]. Mol Cells, 2000, 10(5): 540-5.
    74. Sakamoto T, Watabe K, Ohashi T, et al. Adenoviral vector-mediated GDNF gene transfer prevents death of adult facial motoneurons[J]. Neuroreport, 2000, 11(9): 1857-60.
    75. Li O, Ping P, Jiang H, et al. Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve[J]. Microsurgery, 2006, 26(2): 116-21.
    76.文小泉,高景恒,陈要武,等.天然神经细胞外基质桥接周围神经缺损的实验研究[J].实用美容整形外科杂志,1999,10:207-212.
    77. Kiyotani T, Teramachi M, Takimoto Y, et al. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: histological and electrophysiological evaluation[J]. Brain Res, 1996, 740: 66~74.
    78. Chen YS, Hsieh CL, Tsai CC, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin[J]. Biomaterials, 2000, 21(15): 1541-7.
    79. Sinis N, Schaller HE, Schulte-Eversum C, Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. J Neurosurg, 2005, 103(6): 1067-76.
    80. Fansa H, Keilhoff G. Comparison of different biogenic matrices seeded with cultured SChwann cells for bridging peripheral nerve defects[J]. Neurol Res[J]. 2004, 26(2): 167-73.
    81. Nishiura Y, Brandt J, Nilsson A, et al. Addition of cultured Schwann cells to tendon autografts and freeze-thawed muscle grafts improves peripheral nerve regeneration[J]. Tissue Eng, 2004, 10(1-2): 157-64
    82. Navarro X, Rodriguez FJ, Ceballos D, et al. Engineering an artificial nerve graft for the repair of severe nerve injuries[J]. Med Biol Eng Comput, 2003, 41(2): 220-6.
    83. Novikova LN, Mosahebi A, Wiberg M, Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation[J]. J Biomed Mater Res A, 2006, 77A(2): 242-252
    84. Brandt J, Nilsson A, Kanje M, et al. Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: a new principle for tissue engineering in nerve reconstruction[J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(6): 321-5.
    85.戴传昌,曹谊林,王炜,等.许旺细胞在聚羟基乙酸纤维上三维定向培养[J].中华显微外科杂志,2000,13(4):286-289.
    86. Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimentional modeling in rotating wall vessels: An application of simulated microgravity[J]. J Tissue Culture Methods, 1992, 14: 51—57.
    87.黎志明,朱家恺,程钢,等.模拟微重力对许旺细胞三维培养影响的初步研究[J].现代临床医学生物工程学杂志,2000,6(4):255—258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700