非去极化心脏停跳液对缺血再灌注心肌的保护作用及其电生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.观察St. Thomas液(ST液)、Histidine-Tryptophan-Ketoglutarate液(HTK液)和非去极化停跳液(Non-depolarizing cardioplegia, NDP液)对短时间(1小时)常温(24~26℃)和长时间(8小时)低温(4℃)缺血再灌注(Ischemia-reperfusion, I-R)离体心脏的心肌保护效果;
     2.观察ST液、HTK液和NDP液对I-R乳鼠心肌细胞动作电位(Action Potential, AP)、快钠通道电流(Fast sodium current, INa)、L型钙通道电流(L-type calcium current,ICa-L)和瞬时外向钾通道电流(Transient outward potassium current,Ito)特性的影响;
     3.观察ST液、HTK液和NDP液对乳鼠心肌细胞和线粒体钙离子代谢以及心肌细胞膜和线粒体膜电位的影响;
     4.比较ST液、HTK液和NDP液对I-R心肌的保护效果及其电生理机制的异同。
     方法:
     1.SD大鼠64只,取其心脏建立Langendorff离体心脏灌注模型,用37℃氧饱和后的含钙KH缓冲液平衡15main后,随机分为8组,每组8只。(1)短时间常温心脏保存实验分组处理:对照组(Control, Con)、ST组、HTK组和NDP组分别在平衡后以室温(24-26℃)的无钙KH液、ST液、HTK液和NDP液灌注5min,在室温下相应的液体中保存1hr,再以37℃氧饱和的含钙KH液复灌lhr;(2)长时间低温心脏保存实验分组处理:Con组、ST组、HTK组和NDP组分别在平衡后以低温(4℃)的无钙KH液、ST液、HTK液和NDP液灌停5min,在4℃的相应液体中保存8hr后,分别以室温下的相应液体复温5main,再以37℃氧饱和的含钙KH液复灌1hr。比较各组再灌注后血流动力学、冠脉流出液中心脏肌钙蛋白I(Cardiac troponin I, cTnI)含量水平、心肌梗死面积、组织ATP和乳酸含量、心肌组织形态和超微结构。
     2.原代培养出生1~2天的SD乳鼠心肌细胞。培养36hr后,分为5组。各组分别进行如下处理:(1)正常对照组(Normal Control, Con):不经缺血再灌注处理的正常心肌细胞;(2)缺血再灌注组(Ischemia/reperfusion, I/R):缺血缺氧处理3hr,再灌注lhr;(3)ST组:缺血缺氧处理3hr,再灌注lhr,期间加入ST液干预;(4)HTK组:缺血缺氧处理3hr,再灌注lhr,期间加入HTK液干预;(5)NDP组:缺血缺氧处理3hr,再灌注lhr,期间加入NDP液干预。使用全细胞膜片钳技术记录并比较各组心肌细胞AP、INa、ICa-L和Ito通道的特性。
     3.原代培养出生1-2天的SD乳鼠心肌细胞。培养5天后,用荧光探针进行孵育,分为4组。各组分别进行如下处理:正常对照组(Con):在激光共聚焦显微镜下持续观察35min; ST组、HTK组和NDP组观察5min后,分别加入ST液、HTK液和NDP液,再连续观察30min。
     结果:
     1.短时间常温心脏保存环境下:HTK组和NDP组I-R后心脏心功能的恢复水平优于ST组(P<0.05),两组差异无统计学意义;NDP组冠脉流量高于ST组和HTK组(P<0.05);HTK组心梗面积、冠脉流出液中cTnI水平较ST组和NDP组降低(P<0.05);各组心肌组织ATP和乳酸含量,心肌组织形态和超微结构无显著差异。
     2.长时间低温心脏保存环境下:ST组心脏保存后心功能得不到有效恢复;NDP组再灌注后心功能和冠脉流量可恢复至平衡期的90%以上,显著高于Con组和HTK组(P<0.05);HTK组和NDP组流出液中cTnI水平低于其他组(P<0.05);NDP组心梗面积显著低于其他组(P<0.05),心肌组织ATP含量高于其他组(P<0.05),心脏超微结构损伤程度最轻;各组组织乳酸含量、光镜下形态结构的差异无统计学意义。
     3.各组心肌细胞电生理特性的变化。(1)AP:I/R组动作电位幅度(Action Potential Amplifide, APA)和动作电位时程(Action Potential Duration, APD)较Con组显著降低,心肌细胞静息膜电位(Resting Membrane Potential, RMP)去极化,NDP液干预后RMP. APA和APD可恢复至接近正常水平,较ST组和HTK组增大(P<0.05);(2) INa:I/R组峰值电流密度较Con组显著降低,激活曲线右移,失活曲线左移,与I/R组、ST组和HTK组相比,NDP组INa峰值电流密度明显提升(P<0.05),失活曲线右移;(3)ICa-L:I/R组峰值电流密度较Con组显著降低,激活曲线右移,失活曲线左移,与I/R组、ST组和HTK组相比,NDP组峰值电流密度显著增高(P<0.05),失活曲线右移;(4)Ito:I/R组峰值电流密度较Con组显著降低,激活曲线右移,失活曲线左移,与I/R组、ST组和HTK组相比,NDP组峰值电流密度显著增高(P<0.05),失活曲线左移。
     4.心肌细胞和线粒体钙代谢和膜电位的变化。加入停跳液后:(1)细胞内钙:NDP组停跳效果好,荧光强度基线水平较ST组和HTK组降低;(2)细胞膜电位:NDP组膜电位持续维持在超极化水平,ST组和HTK组膜电位持续维持在去极化水平,ST组去极化程度高于HTK组;(3)线粒体钙:ST组钙荧光强度基线水平较Con组和HTK组升高,NDP组较之降低;(4)线粒体膜电位:ST组膜电位去极化水平逐渐升高,NDP组和Con组膜电位具有超极化趋势。
     结论:
     1.对于短时间常温保存心脏而言,NDP液对冠脉血管舒张作用的保护优于ST液和HTK液;HTK液和NDP液促进I-R后心功能恢复的作用优于ST液;HTK液和NDP液心肌保护效果无明显差异。因此,NDP液在常规心脏外科手术心肌保护中的应用优势有待进一步探讨。
     2.对于长时间低温保存心脏而言,ST液保存后心脏功能完全得不到恢复;NDP液保存后心脏功能基本可恢复至正常水平,与HTK液相比存在明显优势;NDP液的心肌保护效果最佳。从本研究结果来看,NDP液是一种较HTK液更为理想的体外心脏保存液。
     3.停跳液的干预可不同程度的缓解MIRI引起的心肌细胞AP、INa、ICa-L和Ito通道特性的改变。NDP液对AP和各离子通道的恢复作用优于ST液和HTK液。
     4.NDP液可有效诱导心脏停跳并使心肌细胞内和线粒体内的钙离子浓度持续维持在低水平。这有利于再灌注期间细胞内外钙离子梯度的维持,加快再灌注心脏功能的恢复,降低细胞内钙离子浓度升高引发心肌细胞损伤的风险;提高了线粒体对细胞质内钙离子的清除能力,增强心肌细胞抵御MIRI的作用。
     5.NDP液可使心肌细胞膜电位稳定维持于超极化水平,亦可使得线粒体膜电位轻度超极化。这可以阻止细胞膜-钙离子-氧化应激-心肌损伤和炎性反应损伤的发生,减轻MIRI;同时有助于心肌细胞钙稳态和抗氧化损伤能力的维持。
Objective:
     1. To investigate the cardioprotective effects of St. Thomas (ST) solution, Histidine-Tryptophan-Ketoglutarate (HTK) solution and Non-depolarizing (NDP) solution after preservation in the three solutions at room temperature and4℃, separately.
     2. To investigate the effects of ST solution, HTK solution and NDP solution on the electrophysiological characteristics of action potential (AP), fast sodium current (INa), L-type calcium current (Ica-L and transient outward potassium current (Ito) from new-born rat cardiomyocytes.
     3. To investigate the effects of ST solution, HTK solution and NDP solution on the cytoplasmic and mitochondrial calcium metabolism and their membrane potential migration.
     4. Compare the cardioprotective and electrophysiological effects of ST solution, HTK solution and NDP solution.
     Methods:
     1. Sixty-four isolated SD rat hearts were perfused with37℃oxygen-saturated KH solution for15min and then divided into8groups,8for each group.(1) for the hearts preserved under room temperature:we used24~26℃calcium-free KH solution, ST solution, HTK solution and NDP solution for cardiac arrest and the1hour-preservation for the Con group, the ST group, the HTK group and the NDP group separately. After preservation, hearts were reperfused with37℃oxygen-saturated KH solution for lhr;(2) for the hearts preserved under icy temperature:we used4℃calcium-free KH solution, ST solution, HTK solution and NDP solution for cardiac arrest and the8hour-preservation for the Con group, the ST group, the HTK group and the NDP group separately. After preservation, hearts were rewarmed with each solution and reperfused with37℃oxygen-saturated KH solution for1hr. Heart function recovery, Cardiac troponin I (cTnI) level, myocardial infarction area, ATP and lactic acid (LA) content and morphology variations were compared between each group.
     2. We cultured the new-born rat cardiomyocytes. Cells after36hours'culturation were usded for whole-cell patch clamp detection. Five groups were included:(1) the Control (Con) group:normal cardiomyocytes;(2) the ischemia/reperfusion (I/R) group:cells were treated with3-hour ischemia and1-hour-reperfusion;(3) the ST group, the HTK group and the NDP group:during the ischemia-reperfusion (I-R) treatment, ST solution, HTK solution and NDP solution were added in the culture medium separately. The characteristics of the AP, INa、ICa-L and Ito were compared between each group.
     3. We cultured the new-born rat cardiomyocytes. Cells after5days'culturation were usded for laser confocal microscopy scanning. Cells were incubated with four different fluorochromes. Under each condition, four groups were included:the Con group were scanned for35min continuously; after5min scanning, the ST group, the HTK group and the NDP group were treated with ST solution, HTK solution and NDP solution separately, and then followed with30min continuous scanning.
     Results:
     1. Under the1-hour-room temperature condition:the heart function recovery in the HTK group and the NDP group were superior to the ST group (P<0.05); the coronary flow in the NDP group increased compared with the ST group and the HTK group (P<0.05); the infarction percentage and cTnI level in the HTK group were lower than the ST and NDP groups (P<0.05); there was no significant difference in the ATP and LA content among the three groups.
     2. Under the8-hour-icy temperature condition:the heart function of the ST group could not effectively recover; the heart function of the NDP group could recover to the level of90%of the preischemic value; the cTnI levels of the HTK and NDP groups were lower than the ST group. Compared with the ST group and the HTK group, the infarction area of the NDP group decreased, and the ATP content increased. There was no significant difference in the LA content among the three groups.
     3. The electrophysiological changes of each group were as follows.(1) AP:the action potential amplified (APA) and action potential duration (APD) of the I/R group decreased and the resting membrane potential (RMP) depolarized compared with the Con group. The RMP, APA, APD of the NDP group recovered almost to the normal level.(2) INa:the peak current density of the I/R group decreased significantly than the Con group (P<0.05), the activation curve right-shifted and the inactivation curve left-shifted. Compared with the I/R, ST and the HTK groups, the peak current density increased (P<0.05), and the inactivation curve right-shifted.(3) ICa-L:the Peak current density of the I/R group decreased significantly than the Con group (P<0.05), the activation curve right-shifted and the inactivation curve left-shifted. Compared with the I/R, ST and the HTK groups, the peak current density increased (P<0.05), and the inactivation curve right-shifted.(4) Ito:the peak current density of the I/R group decreased significantly than the Con group (P<0.05), the activation curve right-shifted and the inactivation curve left-shifted. Compared with the I/R, ST and the HTK groups, the peak current density of the NDP group increased (P<0.05), and the inactivation curve left-shifted.
     4. The calcium and membrane potential variations of each group were as follows. After the addition of each cardioplegia:(1) cytoplasmic calcium:the fluorescent intensity baseline in the NDP group kept staying at a lower level compared with the ST and the HTK groups.(2) cell membrane potential:the potential of the NDP group maintained at a hyperpolarization level, while of the ST and the HTK groups, the membrane potential kept at a depolarization level.(3) mitochondrial calcium:the fluorescent intensity in the ST group increased than the Con and the HTK groups, while the NDP group decreased.(4) mitochondrial membrane potential:the depolarization level of the ST group increased gradually, while the NDP and the Con groups tended to be more hyperpolarized.
     Conclusion:
     1. Under the1-hour-room temperature condition, the NDP solution could effectively protect the coronary function. The HTK solution and the NDP solution could improve the I-R heart function recovery, while there was no significant difference between the two groups. The result suggested that the application advantage of NDP solution in the regular cardiac surgery needed further studies.
     2. Under the8-hour-icy temperature condition, the NDP solution could improve the heart function to an almost normal level. This result suggested, compared with the HTK solution, that the NDP solution was a more ideal preservation solution during the organ transferation process in heart transplantation.
     3. The NDP solution could superiorly recover the electrophysiological characteristic changes caused by I-R injury.
     4. The NDP solution could maintain the cytoplasm and the mitochondria calcium concentration at a continuous low level. These results indicated that the NDP solution could effectively reduce the risk of the intracellular calcium overload, and was beneficial for the mitochondrial calcium absorption function, which could intensify the myocardiual anti-I-R effects.
     5. The NDP solution tended to induce the cell and the mitochondria membrane potential at hyperpolarization level, which could help maintain the cell calcium homeostatic and prevent the heart against oxidative damges during the I-R procedure.
引文
[1]Maganti M, Badiwala M, Sheikh A, et al. Predictors of low cardiac output syndrome after isolated mitral valve surgery[J]. J Thorac Cardiovasc Surg, 2010,140(4):790-796.
    [2]Lagercrantz E, Lindblom D, Sartipy U. Survival and quality of life in cardiac surgery patients with prolonged intensive care[J]. Ann Thorac Surg, 2010,89(2):490-495.
    [3]Chambers D J. Mechanisms and alternative methods of achieving cardiac arrest[J]. Ann Thorac Surg,2003,75(2):S661-S666.
    [4]Eng S, Maddaford T G, Kardami E, et al. Protection against myocardial ischemic/reperfusion injury by inhibitors of two separate pathways of Na+ entry[J]. J Mol Cell Cardiol,1998,30(4):829-835.
    [5]Snabaitis A K, Chambers D. Long-term myocardial preservation:beneficial and additive effects of polarized arrest (Na+-channel blockade), Na+/H+-exchange inhibition, and Na+/K+/2C1--cotransport inhibition combined with calcium desensitization[J]. Transplantation,1999,68(10):1444-1453.
    [6]Baczko I, Giles W R, Light P E. Resting membrane potential regulates Na(+)-Ca2+exchange-mediated Ca2+overload during hypoxia-reoxygenation in rat ventricular myocytes[J]. J Physiol,2003,550(Pt 3):889-898.
    [7]Askenasy N, Navon G. Volume-related activities of sodium ion transporters: multinuclear NMR studies of isolated rat hearts[J]. Am J Physiol,1996,271(1 Pt 2):H94-H102.
    [8]Dobson G P, Jones M W. Adenosine and lidocaine:a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation[J]. J Thorac Cardiovasc Surg,2004,127(3):794-805.
    [9]Dobson G P. Membrane polarity:a target for myocardial protection and reduced inflammation in adult and pediatric cardiothoracic surgery[J]. J Thorac Cardiovasc Surg,2010,140(6):1213-1217.
    [10]Rudd D M, Dobson G P. Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery after 6 hours of cold static storage[J]. J Thorac Cardiovasc Surg,2011,141(4):1044-1055.
    [11]Waller E S. Pharmacokinetic principles of lidocaine dosing in relation to disease state[J]. J Clin Pharmacol,1981,21(4):181-194.
    [12]Belardinelli L, Giles W R, West A. Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart[J]. J Physiol,1988,405:615-633.
    [13]Martynyuk A E, Seubert C N, Zima A, et al. Contribution of I(K,ADO) to the negative dromotropic effect of adenosine[J]. Basic Res Cardiol, 2002,97(4):286-294.
    [14]Fallouh H B, Kentish J C, Chambers D J. Targeting for cardioplegia:arresting agents and their safety[J]. Curr Opin Pharmacol,2009,9(2):220-226.
    [15]Baczko I, Jones L, McGuigan C F, et al. Plasma membrane KATP channel-mediated cardioprotection involves posthypoxic reductions in calcium overload and contractile dysfunction:mechanistic insights into cardioplegia[J]. FASEB J,2005,19(8):980-982.
    [16]Lawton J S, Hsia P W, McClain L C, et al. Myocardial oxygen consumption in the rabbit heart after ischemia:hyperpolarized arrest with pinacidil versus depolarized hyperkalemic arrest[J]. Circulation,1997,96(9 Suppl):247-252.
    [17]Ward J W, McBurney A, Farrow P R, et al. Pharmacokinetics and hypotensive effect in healthy volunteers of pinacidil, a new potent vasodilator[J]. Eur J Clin Pharmacol,1984,26(5):603-608.
    [18]Kowaltowski A J, Seetharaman S, Paucek P, et al. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria[J]. Am J Physiol Heart Circ Physiol,2001,280(2):H649-H657.
    [19]Sato T, Sasaki N, O'Rourke B, et al. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels[J]. J Am Coll Cardiol,2000,35(2):514-518.
    [20]Frampton J, Buckley M M, Fitton A. Nicorandil. A review of its pharmacology and therapeutic efficacy in angina pectoris[J]. Drugs,1992,44(4):625-655.
    [21]Mizumura T, Nithipatikom K, Gross G J. Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog[J]. Cardiovasc Res,1995,29(4):482-489.
    [22]Lamping K A, Christensen C W, Pelc L R, et al. Effects of nicorandil and nifedipine on protection of ischemic myocardium[J]. J Cardiovasc Pharmacol, 1984,6(3):536-542.
    [23]Endo T, Nejima J, Kiuchi K, et al. Reduction of size of myocardial infarction with nicorandil, a new antianginal drug, after coronary artery occlusion in dogs[J]. J Cardiovasc Pharmacol,1988,12(5):587-592.
    [24]黑飞龙,王寿世,曹焕军,等.阜外极化停搏液大鼠离体心肌保护效果研究[J].中国体外循环杂志,2008,6(3):183-186.
    [25]Chambers D J, Fallouh H B. Cardioplegia and cardiac surgery:pharmacological arrest and cardioprotection during global ischemia and reperfusion[J]. Pharmacol Ther,2010,127(1):41-52.
    [26]Rudd D M, Dobson G P. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions:toward therapeutic suspended animation[J]. J Thorac Cardiovasc Surg,2011,142(6):1552-1561.
    [27]Shi W, Jiang R, Dobson G P, et al. The nondepolarizing, normokalemic cardioplegia formulation adenosine-lidocaine (adenocaine) exerts anti-neutrophil effects by synergistic actions of its components[J]. J Thorac Cardiovasc Surg, 2012,143(5):1167-1175.
    [28]Sloots K L, Dobson G P. Normokalemic adenosine-lidocaine cardioplegia: importance of maintaining a polarized myocardium for optimal arrest and reanimation[J]. J Thorac Cardiovasc Surg,2010,139(6):1576-1586.
    [29]Jin Z X, Zhang S L, Wang X M, et al. The myocardial protective effects of a moderate-potassium adenosine-lidocaine cardioplegia in pediatric cardiac surgery[J]. J Thorac Cardiovasc Surg,2008,136(6):1450-1455.
    [30]O'Rullian J J, Clayson S E, Peragallo R. Excellent outcomes in a case of complex re-do surgery requiring prolonged cardioplegia using a new cardioprotective approach:adenocaine[J]. J Extra Corpor Technol,2008,40(3):203-205.
    [31]Oyamada Y, Murai M, Harada N, et al. Age-dependent involvement of ATP-sensitive potassium channel Kir6.2 in hypoxic ventilatory depression of mouse[J]. Respir Physiol Neurobiol,2008,162(1):80-84.
    [32]Vinten-Johansen J. Adenosine-lidocaine-magnesium non-depolarizing cardioplegia:Moving forward from bench to bedside[J]. Int J Cardiol,2012.
    [1]Rudd D M, Dobson G P. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation[J]. J Thorac Cardiovasc Surg,2009,137(1):198-207.
    [2]Demmy T L, Biddle J S, Bennett L E, et al. Organ preservation solutions in heart transplantation--patterns of usage and related survival[J]. Transplantation, 1997,63(2):262-269.
    [3]Fallouh H B, Kentish J C, Chambers D J. Targeting for cardioplegia:arresting agents and their safety[J]. Curr Opin Pharmacol,2009,9(2):220-226.
    [4]Ruel M, Khan T A, Voisine P, et al. Vasomotor dysfunction after cardiac surgery[J]. Eur J Cardiothorac Surg,2004,26(5):1002-1014.
    [5]Ozeki T, Kwon M H, Gu J, et al. Heart preservation using continuous ex vivo perfusion improves viability and functional recovery[J]. Circ J, 2007,71(1):153-159.
    [6]Ellis R J, Mavroudis C, Gardner C, et al. Relationship between atrioventricular arrhythmias and the concentration of K+ion in cardioplegic solution[J]. J Thorac Cardiovasc Surg,1980,80(4):517-526.
    [7]Spinale F G. Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest[J]. Ann Thorac Surg, 1999,68(5):1934-1941.
    [8]Suleiman M S, Halestrap A P, Griffiths E J. Mitochondria:a target for myocardial protection[J]. Pharmacol Ther,2001,89(1):29-46.
    [9]Chmiel B, Cierpka L. Organ preservation solutions impair deformability of erythrocytes in vitro[J]. Transplant Proc,2003,35(6):2163-2164.
    [10]Rudd D M, Dobson G P. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions:toward therapeutic suspended animation[J]. J Thorac Cardiovasc Surg,2011,142(6):1552-1561.
    [11]Chambers D J. Mechanisms and alternative methods of achieving cardiac arrest[J]. Ann Thorac Surg,2003,75(2):S661-S666.
    [12]Eng S, Maddaford T G, Kardami E, et al. Protection against myocardial ischemic/reperfusion injury by inhibitors of two separate pathways of Na+ entry[J]. J Mol Cell Cardiol,1998,30(4):829-835.
    [13]Dobson G P, Jones M W. Adenosine and lidocaine:a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation[J]. J Thorac Cardiovasc Surg,2004,127(3):794-805.
    [14]Cohen N M, Damiano R J, Wechsler A S. Is there an alternative to potassium arrest?[J]. Ann Thorac Surg,1995,60(3):858-863.
    [15]Jayawant A M, Stephenson E J, Matte G S, et al. Potassium-channel opener cardioplegia is superior to St. Thomas'solution in the intact animal[J]. Ann Thorac Surg,1999,68(1):67-74.
    [16]Vinten-Johansen J. Adenosine-lidocaine-magnesium non-depolarizing cardioplegia:Moving forward from bench to bedside[J]. Int J Cardiol,2012.
    [17]Oyamada Y, Murai M, Harada N, et al. Age-dependent involvement of ATP-sensitive potassium channel Kir6.2 in hypoxic ventilatory depression of mouse[J]. Respir Physiol Neurobiol,2008,162(1):80-84.
    [18]Holscher M, Groenewoud A F. Current status of the HTK solution of Bretschneider in organ preservation[J]. Transplant Proc,1991,23(5):2334-2337.
    [19]Landymore R, Murphy J T, Hall R, et al. Randomized trial comparing intermittent antegrade warm blood cardioplegia with multidose cold blood cardioplegia for coronary artery bypass[J]. Eur J Cardiothorac Surg, 1996,10(3):179-184.
    [20]Jayawant A M, Damiano R J. The superiority of pinacidil over adenosine cardioplegia in blood-perfused isolated hearts[J]. Ann Thorac Surg, 1998,66(4):1329-1335,1335-1336.
    [21]Yamaguchi S, Watanabe G, Tomita S, et al. Lidocaine-magnesium blood cardioplegia was equivalent to potassium blood cardioplegia in left ventricular function of canine heart[J]. Interact Cardiovasc Thorac Surg,2007,6(2):172-176.
    [22]Yang L, Yu T. Prolonged donor heart preservation with pinacidil:the role of mitochondria and the mitochondrial adenosine triphosphate-sensitive potassium channel[J]. J Thorac Cardiovasc Surg,2010,139(4):1057-1063.
    [23]Sohn H Y, Keller M, Gloe T, et al. The small G-protein Rac mediates depolarization-induced superoxide formation in human endothelial cells [J]. J Biol Chem,2000,275(25):18745-18750.
    [24]He G W. Effect and mechanism of cardioplegic arrest on the coronary endothelium-smooth muscle interaction[J]. Clin Exp Pharmacol Physiol, 1998,25(10):831-835.
    [25]Masuda T, Dobson G P, Veech R L. The Gibbs-Donnan near-equilibrium system of heart[J]. J Biol Chem,1990,265(33):20321-20334.
    [26]Markham A, Plosker G L, Goa K L. Nicorandil. An updated review of its use in ischaemic heart disease with emphasis on its cardioprotective effects [J]. Drugs, 2000,60(4):955-974.
    [27]Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease[J]. Atherosclerosis, 2009,202(2):330-344.
    [28]Wilkinson J M, Grand R J. Comparison of amino acid sequence of troponin I from different striated muscles[J]. Nature,1978,271(5640):31-35.
    [29]Apple F S. Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinase-MB[J]. Clin Chim Acta,1999,284(2):151-159.
    [30]Chapman R A, Tunstall J. The calcium paradox of the heart[J]. Prog Biophys Mol Biol,1987,50(2):67-96.
    [31]Taylor J.2012 ESC Guidelines on acute myocardial infarction (STEMI)[J]. Eur Heart J,2012,33(20):2501-2502.
    [32]White H D, Chew D P. Acute myocardial infarction[J]. Lancet, 2008,372(9638):570-584.
    [33]Hu K, Li G R, Nattel S. Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC[J]. Am J Physiol, 1999,276(2 Pt 2):H488-H495.
    [34]Grover G J, Garlid K D. ATP-Sensitive potassium channels:a review of their cardioprotective pharmacology [J]. J Mol Cell Cardiol,2000,32(4):677-695.
    [35]Light P E, Kanji H D, Fox J E, et al. Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery[J]. FASEB J,2001,15(14):2586-2594.
    [36]Jovanovic A, Lopez J R, Alekseev A E, et al. Adenosine prevents K+-induced Ca2+loading:insight into cardioprotection during cardioplegia[J]. Ann Thorac Surg,1998,65(2):586-591.
    [37]Vinten-Johansen J, Thourani V H, Ronson R S, et al. Broad-spectrum cardioprotection with adenosine[J]. Ann Thorac Surg,1999,68(5):1942-1948.
    [38]Hollmann M W, Difazio C A, Durieux M E. Ca-signaling G-protein-coupled receptors:a new site of local anesthetic action?[J]. Reg Anesth Pain Med, 2001,26(6):565-571.
    [39]Mizumura T, Nithipatikom K, Gross G J. Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog[J]. Cardiovasc Res,1995,29(4):482-489.
    [40]Lamping K A, Christensen C W, Pelc L R, et al. Effects of nicorandil and nifedipine on protection of ischemic myocardium[J]. J Cardiovasc Pharmacol, 1984,6(3):536-542.
    [41]Masters T N, Fokin A A, Schaper J, et al. Changes in the preserved heart that limit the length of preservation[J]. J Heart Lung Transplant,2002,21 (5):590-599.
    [42]Baicu S C, Taylor M J. Acid-base buffering in organ preservation solutions as a function of temperature:new parameters for comparing buffer capacity and efficiency[J]. Cryobiology,2002,45(1):33-48.
    [43]Dunphy G, Richter H W, Azodi M, et al. The effects of mannitol, albumin, and cardioplegia enhancers on 24-h rat heart preservation[J]. Am J Physiol, 1999,276(5 Pt 2):H1591-H1598.
    [44]Wu B, Long C, Hei F, et al. The protective effect of St. Thomas cardioplegia enriched with zacopride on the isolated rat heart[J]. Artif Organs, 2013,37(1):E44-E50.
    [1]Sanchez J A, Rodriguez-Sinovas A, Fernandez-Sanz C, et al. Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts[J]. Am J Physiol Heart Circ Physiol,2011,301(6):H2442-H2453.
    [2]de Diego C, Pai R K, Chen F, et al. Electrophysiological consequences of acute regional ischemia/reperfusion in neonatal rat ventricular myocyte monolayers[J]. Circulation,2008,118(23):2330-2337.
    [3]Fallouh H B, Kentish J C, Chambers D J. Targeting for cardioplegia:arresting agents and their safety[J]. Curr Opin Pharmacol,2009,9(2):220-226.
    [4]Rudd D M, Dobson G P. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions:toward therapeutic suspended animation[J]. J Thorac Cardiovasc Surg,2011,142(6):1552-1561.
    [5]Dobson G P. Membrane polarity:a target for myocardial protection and reduced inflammation in adult and pediatric cardiothoracic surgery[J]. J Thorac Cardiovasc Surg,2010,140(6):1213-1217.
    [6]Ruel M, Khan T A, Voisine P, et al. Vasomotor dysfunction after cardiac surgery[J]. Eur J Cardiothorac Surg,2004,26(5):1002-1014.
    [7]Sloots K L, Dobson G P. Normokalemic adenosine-lidocaine cardioplegia: importance of maintaining a polarized myocardium for optimal arrest and reanimation[J]. J Thorac Cardiovasc Surg,2010,139(6):1576-1586.
    [8]Raju T N. The Nobel chronicles.1991 Erwin Neher (b 1944) and Bert Sakman (b 1942)[J]. Lancet,2000,355(9216):1732.
    [9]Fermini B, Schanne O F. Determinants of action potential duration in neonatal rat ventricle cells[J]. Cardiovasc Res,1991,25(3):235-243.
    [10]Pucelik P, Jezek K, Bartak F. Postnatal development of electrophysiological manifestations of the working ventricular myocardium of albino rats[J]. Physiol Bohemoslov,1982,31(3):217-224.
    [11]Cerbai E, Pino R, Sartiani L, et al. Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes[J]. Cardiovasc Res,1999,42(2):416-423.
    [12]刘泰槰.心肌细胞电生理学——离子通道,离子载体和离子流[M].1.北京:人民卫生出版社,2005.
    [13]Gong J S, Yao Y T, Fang N X, et al. Sevoflurane postconditioning alleviates action potential duration shortening and L-type calcium current suppression induced by ischemia/reperfusion injury in rat epicardial myocytes[J]. Chin Med J (Engl),2012,125(19):3485-3491.
    [14]Ding C, Fu X H, He Z S, et al. Cardioprotective effects of simvastatin on reversing electrical remodeling induced by myocardial ischemia-reperfusion in normocholesterolemic rabbits[J]. Chin Med J (Engl),2008,121(6):551-556.
    [15]Chambers D J. Mechanisms and alternative methods of achieving cardiac arrest[J]. Ann Thorac Surg,2003,75(2):S661-S666.
    [16]HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. J Physiol, 1952,117(4):500-544.
    [17]Fohlmeister J F, Adelman W J. Gating current harmonics. I. Sodium channel activation gating in dynamic steady states[J]. Biophys J,1985,48(3):375-390.
    [18]Bezanilla F, Armstrong C M. Properties of the sodium channel gating current[J]. Cold Spring Harb Symp Quant Biol,1976,40:297-304.
    [19]Weiss S, Benoist D, White E, et al. Riluzole protects against cardiac ischaemia and reperfusion damage via block of the persistent sodium current[J]. Br J Pharmacol,2010,160(5):1072-1082.
    [20]Lu H R, Rohrbacher J, Vlaminckx E, et al. Predicting drug-induced slowing of conduction and pro-arrhythmia:identifying the 'bad' sodium current blockers[J]. Br J Pharmacol,2010,160(1):60-76.
    [21]Gujja P, Rosing D R, Tripodi D J, et al. iron overload cardiomyopathy:better understanding of an increasing disorder[J]. J Am Coll Cardiol, 2010,56(13):1001-1012.
    [22]Liu K X, Yamamoto F, Yamamoto H, et al. The effects of Na movement on surgical myocardial protection:the role of the Na+-H+exchange system and Na-channel in the development of ischemia and reperfusion injury[J]. Ann Thorac Cardiovasc Surg,2007,13(5):301-307.
    [23]Barry W H. Na"Fuzzy space":does it exist, and is it important in ischemic injury?[J]. J Cardiovasc Electrophysiol,2006,17 Suppl 1:S43-S46.
    [24]Kang L, Zheng M Q, Morishima M, et al. Bepridil up-regulates cardiac Na+ channels as a long-term effect by blunting proteasome signals through inhibition of calmodulin activity[J]. Br J Pharmacol,2009,157(3):404-414.
    [25]Casini S, Tan H L, Demirayak I, et al. Tubulin polymerization modifies cardiac sodium channel expression and gating[J]. Cardiovasc Res,2010,85(4):691-700.
    [26]Ji X, Xu Z, Criswell H E, et al. Propyl paraben inhibits voltage-dependent sodium channels and protects cardiomyocytes from ischemia-reperfusion injury[J]. Life Sci,2004,74(24):3043-3052.
    [27]龚俊松.七氟烷预处理和后处理对离体大鼠心脏再灌注心律失常和心肌细胞电生理的影响[D].北京:北京协和医学院阜外心血管病医院,2012.
    [28]齐书英.急性心肌梗死及模拟心肌缺血对心室肌细胞离子通道活性的影响[D].石家庄:河北医科大学第一医院,2003.
    [29]Lue W M, Boyden P A. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current[J]. Circulation,1992,85(3):1175-1188.
    [30]Patterson E, Scherlag B J, Lazzara R. Rapid inward current in ischemically-injured subepicardial myocytes bordering myocardial infarction[J]. J Cardiovasc Electrophysiol,1993,4(1):9-22.
    [31]Pu J, Boyden P A. Alterations of Na+currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness [J]. Circ Res, 1997,81(1):110-119.
    [32]Eng S, Maddaford T G, Kardami E, et al. Protection against myocardial ischemic/reperfusion injury by inhibitors of two separate pathways of Na+ entry[J]. J Mol Cell Cardiol,1998,30(4):829-835.
    [33]Snabaitis A K, Chambers D. Long-term myocardial preservation:beneficial and additive effects of polarized arrest (Na+-channel blockade), Na+/H+-exchange inhibition, and Na+/K+/2C1- -cotransport inhibition combined with calcium desensitization[J]. Transplantation,1999,68(10):1444-1453.
    [34]Baczko I, Giles W R, Light P E. Resting membrane potential regulates Na(+)-Ca2+exchange-mediated Ca2+ overload during hypoxia-reoxygenation in rat ventricular myocytes[J]. J Physiol,2003,550(Pt 3):889-898.
    [35]Tolkacheva E G, Anumonwo J M, Jalife J. Action potential duration restitution portraits of mammalian ventricular myocytes:role of calcium current[J]. Biophys J,2006,91(7):2735-2745.
    [36]Hagihara H, Yoshikawa Y, Ohga Y, et al. Na+/Ca2+exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energy-wasting processes[J]. Am J Physiol Heart Circ Physiol,2005,288(4):H1699-H1707.
    [37]Gomez A M, Guatimosim S, Dilly K W, et al. Heart failure after myocardial infarction:altered excitation-contraction coupling[J]. Circulation, 2001,104(6):688-693.
    [38]Macdonald W A, Hool L C. The effect of acute hypoxia on excitability in the heart and the L-type calcium channel as a therapeutic target[J]. Curr Drug Discov Technol,2008,5(4):302-311.
    [39]Viola H M, Arthur P G, Hool L C. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+channel function in the absence of apoptosis in ventricular myocytes[J]. Circ Res,2007,100(7):1036-1044.
    [40]Zhang P, Lader A S, Etcheverry M A, et al. Crotoxin potentiates L-type calcium currents and modulates the action potential of neonatal rat cardiomyocytes[J]. Toxicon,2010,55(7):1236-1243.
    [41]李宁.参松养心胶囊抗心律失常机理研究[D].北京:北京协和医学院阜外心血管病医院,2007.
    [42]王庭槐.生理学[M].1.高等教育出版社,2004.
    [43]Bers D M. Cardiac excitation-contraction coupling[J]. Nature, 2002,415(6868):198-205.
    [44]谭真,廖大清,黄德嘉.花生四烯酸乙醇胺对乳鼠心肌细胞外向钾通道电流的影响[J].中国心脏起搏与心电生理杂志,2009,23(3):241-243.
    [45]Wickenden A D, Kaprielian R, Parker T G, et al. Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle[J]. J Physiol,1997,504 (Pt 2):271-286.
    [46]Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia[J]. Cardiovasc Res,1996,32(3):593-603.
    [47]Sidorov V Y, Uzelac I, Wikswo J P. Regional increase of extracellular potassium leads to electrical instability and reentry occurrence through the spatial heterogeneity of APD restitution[J]. Am J Physiol Heart Circ Physiol, 2011,301(1):H209-H220.
    [48]Fu J D, Yang H T. Developmental regulation of intracellular calcium homeostasis in early cardiac myocytes[J]. Sheng Li Xue Bao,2006,58(2):95-103.
    [49]Barry W H, Bridge J H. Intracellular calcium homeostasis in cardiac myocytes[J]. Circulation,1993,87(6):1806-1815.
    [50]Csordas G, Thomas A P, Hajnoczky G. Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle[J]. Trends Cardiovasc Med,2001,11(7):269-275.
    [51]Vosler P S, Graham S H, Wechsler L R, et al. Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics[J]. Stroke,2009,40(9):3149-3155.
    [52]Distelmaier F, Koopman W J, Testa E R, et al. Life cell quantification of mitochondrial membrane potential at the single organelle level[J]. Cytometry A, 2008,73(2):129-138.
    [53]Jayawant A M, Stephenson E J, Matte G S, et al. Potassium-channel opener cardioplegia is superior to St. Thomas'solution in the intact animal[J]. Ann Thorac Surg,1999,68(1):67-74.
    [54]Ascensao A, Lumini-Oliveira J, Oliveira P J, et al. Mitochondria as a target for exercise-induced cardioprotection[J]. Curr Drug Targets,2011,12(6):860-871.
    [55]Rudd D M, Dobson G P. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation[J]. J Thorac Cardiovasc Surg,2009,137(1):198-207.
    [56]齐卡.钙转运异常与高尿酸导致的内皮细胞损伤的相关关系及其分子机制研究[D].解放军总医院军医进修学院,2010.
    [57]Pizzo P, Drago I, Filadi R, et al. Mitochondrial Ca(2)(+) homeostasis:mechanism, role, and tissue specificities[J]. Pflugers Arch,2012,464(1):3-17.
    [58]Raffaello A, De Stefani D, Rizzuto R. The mitochondrial Ca(2+) uniporter[J]. Cell Calcium,2012,52(1):16-21.
    [59]Vianello A, Casolo V, Petrussa E, et al. The mitochondrial permeability transition pore (PTP)-an example of multiple molecular exaptation?[J]. Biochim Biophys Acta,2012,1817(11):2072-2086.
    [60]Bernardi P, von Stockum S. The permeability transition pore as a Ca(2+) release channel:new answers to an old question[J]. Cell Calcium,2012,52(1):22-27.
    [61]McCarron J G, Olson M L, Chalmers S.Mitochondrial regulation of cytosolic Ca(2)(+) signals in smooth muscle[J]. Pflugers Arch,2012,464(1):51-62.
    [62]Floryk D, Houstek J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin[J]. Biosci Rep,1999,19(1):27-34.
    [63]Armstrong J S. The role of the mitochondrial permeability transition in cell death[J]. Mitochondrion,2006,6(5):225-234.
    [64]Davidson S M, Yellon D, Duchen M R. Assessing mitochondrial potential, calcium, and redox state in isolated mammalian cells using confocal microscopy [J]. Methods Mol Biol,2007,372:421-430.
    [65]Guo W, Kamiya K, Toyama J. Modulated expression of transient outward current in cultured neonatal rat ventricular myocytes:comparison with development in situ[J]. Cardiovasc Res,1996,32(3):524-533.
    [66]张颖,郑燕倩,王红卫,等.新生大鼠心肌细胞培养及电生理特性观察[J].上海交通大学学报:医学版,2007,27(4):398-400.
    [1]KD K, JQ X, SL M, et al. Deaths:final data for 2009.[J]. Natl Vital Stat Rep, 2009,3(60).
    [2]王文,朱曼璐,王拥军,等.心血管病已成为我国重要的公共卫生间题——《中国心血管病报告2011》概要[J].中国循环杂志,2012,27(6):409-411.
    [3]Roger V L, Go A S, Lloyd-Jones D M, et al. Heart disease and stroke statistics--2012 update:a report from the American Heart Association[J]. Circulation,2012,125(1):e2-e220.
    [4]Maganti M, Badiwala M, Sheikh A, et al. Predictors of low cardiac output syndrome after isolated mitral valve surgery[J]. J Thorac Cardiovasc Surg, 2010,140(4):790-796.
    [5]Lagercrantz E, Lindblom D, Sartipy U. Survival and quality of life in cardiac surgery patients with prolonged intensive care[J]. Ann Thorac Surg, 2010,89(2):490-495.
    [6]Fallouh H B, Kentish J C, Chambers D J. Targeting for cardioplegia:arresting agents and their safety[J]. Curr Opin Pharmacol,2009,9(2):220-226.
    [7]Rudd D M, Dobson G P. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions:toward therapeutic suspended animation[J]. J Thorac Cardiovasc Surg,2011,142(6):1552-1561.
    [8]Rudd D M, Dobson G P. Toward a new cold and warm nondepolarizing, normokalemic arrest paradigm for orthotopic heart transplantation[J]. J Thorac Cardiovasc Surg,2009,137(1):198-207.
    [9]Demmy T L, Biddle J S, Bennett L E, et al. Organ preservation solutions in heart transplantation--patterns of usage and related survival[J]. Transplantation, 1997,63(2):262-269.
    [10]LEWIS F J, TAUFIC M. Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments and the report of one successful case[J]. Surgery,1953,33(1):52-59.
    [11]Katz A M, Tada M. The "stone heart":a challenge to the biochemist[J]. Am J Cardiol,1972,29(4):578-580.
    [12]Hutchins G M, Silverman K J. Pathology of the stone heart syndrome. Massive myocardial contraction band necrosis and widely patent coronary arteries[J]. Am J Pathol,1979,95(3):745-752.
    [13]MELROSE D G, DREYER B, BENTALL H H, et al. Elective cardiac arrest[J]. Lancet,1955,269(6879):21-22.
    [14]LAM C R, GAHAGAN T, SERGEANT C, et al. Clinical experiences with induced cardiac arrest during intracardiac surgical procedures[J]. Ann Surg, 1957,146(3):439-449.
    [15]Chambers D J, Fallouh H B. Cardioplegia and cardiac surgery:pharmacological arrest and cardioprotection during global ischemia and reperfusion[J]. Pharmacol Ther,2010,127(1):41-52.
    [16]Hearse D J, Stewart D A, Braimbridge M V. Hypothermic arrest and potassium arrest:metabolic and myocardial protection during elective cardiac arrest[J]. Circ Res,1975,36(4):481-489.
    [17]Braimbridge M V, Chayen J, Bitensky L, et al. Cold cardioplegia or continuous coronary perfusion? Report on preliminary clinical experience as assessed cytochemically[J]. J Thorac Cardiovasc Surg,1977,74(6):900-906.
    [18]Robinson L A, Schwarz G D, Goddard D B, et al. Myocardial protection for acquired heart disease surgery:results of a national survey[J]. Ann Thorac Surg, 1995,59(2):361-372.
    [19]Follette D M, Mulder D G, Maloney J V, et al. Advantages of blood cardioplegia over continuous coronary perfusion or intermittent ischemia. Experimental and clinical study[J]. J Thorac Cardiovasc Surg,1978,76(5):604-619.
    [20]Karthik S, Grayson A D, Oo A Y, et al. A survey of current myocardial protection practices during coronary artery bypass grafting[J]. Ann R Coll Surg Engl,2004,86(6):413-415.
    [21]Dobson G P. Membrane polarity:a target for myocardial protection and reduced inflammation in adult and pediatric cardiothoracic surgery[J]. J Thorac Cardiovasc Surg,2010,140(6):1213-1217.
    [22]Ruel M, Khan T A, Voisine P, et al. Vasomotor dysfunction after cardiac surgery[J]. Eur J Cardiothorac Surg,2004,26(5):1002-1014.
    [23]Sohn H Y, Keller M, Gloe T, et al. The small G-protein Rac mediates depolarization-induced superoxide formation in human endothelial cells[J]. J Biol Chem,2000,275(25):18745-18750.
    [24]Cohen N M, Damiano R J, Wechsler A S. Is there an alternative to potassium arrest?[J]. Ann Thorac Surg,1995,60(3):858-863.
    [25]Spinale F G. Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest[J]. Ann Thorac Surg, 1999,68(5):1934-1941.
    [26]综述夏春秋,审校景华.心肌保护液与心脏移植[J].医学研究生学报,2007,20(12):1329-1332.
    [27]Cobert M L, Peltz M, West L M, et al. Importance of organ preservation solution composition in reducing myocardial edema during machine perfusion for heart transplantation[J]. Transplant Proc,2010,42(5):1591-1594.
    [28]Jahania M S, Sanchez J A, Narayan P, et al. Heart preservation for transplantation: principles and strategies[J]. Ann Thorac Surg,1999,68(5):1983-1987.
    [29]综述邢家林,审校龚庆成.康斯特保护液的心肌保护效果[J].中国体外循环杂志,2006,4(1):55-58.
    [30]He G W, Yang C Q. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries by cold storage with University of Wisconsin solution[J]. J Thorac Cardiovasc Surg,1998,116(1):122-130.
    [31]Michel P, Vial R, Rodriguez C, et al. A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia[J]. J Heart Lung Transplant,2002,21(9):1030-1039.
    [32]McAllister R E, Noble D, Tsien R W. Reconstruction of the electrical activity of cardiac Purkinje fibres[J]. J Physiol,1975,251(1):1-59.
    [33]Attwell D, Cohen I, Eisner D, et al. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres[J]. Pflugers Arch,1979,379(2):137-142.
    [34]Pike M M, Luo C S, Clark M D, et al. NMR measurements of Na+ and cellular energy in ischemic rat heart:role of Na(+)-H+ exchange[J]. Am J Physiol, 1993,265(6 Pt 2):H2017-H2026.
    [35]Satoh H, Hayashi H, Katoh H, et al. Na+/H+and Na+/Ca2+exchange in regulation of [Na+]i and [Ca2+]i during metabolic inhibition[J]. Am J Physiol, 1995,268(3 Pt2):H1239-H1248.
    [36]Lahorra J A, Torchiana D F, Tolis G J, et al. Rapid cooling contracture with cold cardioplegia[J]. Ann Thorac Surg,1997,63(5):1353-1360.
    [37]Satoh H, Ginsburg K S, Qing K, et al. KB-R7943 block of Ca(2+) influx via Na(+)/Ca(2+) exchange does not alter twitches or glycoside inotropy but prevents Ca(2+) overload in rat ventricular myocytes[J]. Circulation, 2000,101(12):1441-1446.
    [38]Rudd D M, Dobson G P. Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery after 6 hours of cold static storage[J]. J Thorac Cardiovasc Surg,2011,141(4):1044-1055.
    [39]Sloots K L, Dobson G P. Normokalemic adenosine-lidocaine cardioplegia: importance of maintaining a polarized myocardium for optimal arrest and reanimation[J]. J Thorac Cardiovasc Surg,2010,139(6):1576-1586.
    [40]Chambers D J. Mechanisms and alternative methods of achieving cardiac arrest[J]. Ann Thorac Surg,2003,75(2):S661-S666.
    [41]Jayawant A M, Stephenson E J, Matte G S, et al. Potassium-channel opener cardioplegia is superior to St. Thomas'solution in the intact animal[J]. Ann Thorac Surg,1999,68(1):67-74.
    [42]Ozeki T, Kwon M H, Gu J, et al. Heart preservation using continuous ex vivo perfusion improves viability and functional recovery[J]. Circ J, 2007,71(1):153-159.
    [43]Leicher F G, Magrassi P, LaRaia P J, et al. Blood cardioplegia delivery. Deleterious effects of potassium versus lidocaine[J]. Ann Surg, 1983,198(3):266-272.
    [44]Ellis R J, Mavroudis C, Gardner C, et al. Relationship between atrioventricular arrhythmias and the concentration of K+ion in cardioplegic solution[J]. J Thorac Cardiovasc Surg,1980,80(4):517-526.
    [45]Chmiel B, Cierpka L. Organ preservation solutions impair deformability of erythrocytes in vitro[J]. Transplant Proc,2003,35(6):2163-2164.
    [46]Ward C A, Bazzazi H, Clark R B, et al. Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes[J]. Prog Biophys Mol Biol, 2006,90(1-3):249-269.
    [47]Yamaguchi S, Watanabe G, Tomita S, et al. Lidocaine-magnesium blood cardioplegia was equivalent to potassium blood cardioplegia in left ventricular function of canine heart[J]. Interact Cardiovasc Thorac Surg,2007,6(2):172-176.
    [48]Dobson G P, Jones M W. Adenosine and lidocaine:a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation[J]. J Thorac Cardiovasc Surg,2004,127(3):794-805.
    [49]Asano M, Inoue K, Ando S, et al. Optimal temperature of continuous lidocaine perfusion for the heart preservation[J]. Jpn J Thorac Cardiovasc Surg, 2003,51(1):1-9.
    [50]Snabaitis A K, Shattock M J, Chambers D J. Comparison of polarized and depolarized arrest in the isolated rat heart for long-term preservation[J]. Circulation,1997,96(9):3148-3156.
    [51]Kambouris N G, Nuss H B, Johns D C, et al. A revised view of cardiac sodium channel "blockade" in the long-QT syndrome[J]. J Clin Invest, 2000,105(8):1133-1140.
    [52]Jovanovic A, Lopez J R, Alekseev A E, et al. Adenosine prevents K+-induced Ca2+loading:insight into cardioprotection during cardioplegia[J]. Ann Thorac Surg,1998,65(2):586-591.
    [53]Waller E S. Pharmacokinetic principles of lidocaine dosing in relation to disease state[J]. J Clin Pharmacol,1981,21(4):181-194.
    [54]FOLDES F F, MOLLOY R, McNALL P G, et al. Comparison of toxicity of intravenously given local anesthetic agents in man[J]. J Am Med Assoc, 1960,172:1493-1498.
    [55]Ross J D, Ripper R, Law W R, et al. Adding bupivacaine to high-potassium cardioplegia improves function and reduces cellular damage of rat isolated hearts after prolonged, cold storage[J]. Anesthesiology,2006,105(4):746-752.
    [56]Weinberg G, Paisanthasan C, Feinstein D, et al. The effect of bupivacaine on myocardial tissue hypoxia and acidosis during ventricular fibrillation[J]. Anesth Analg,2004,98(3):790-795.
    [57]Mio Y, Fukuda N, Kusakari Y, et al. Comparative effects of bupivacaine and ropivacaine on intracellular calcium transients and tension in ferret ventricular muscle[J]. Anesthesiology,2004,101(4):888-894.
    [58]Sun X, Garlid K D. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes[J]. J Biol Chem, 1992,267(27):19147-19154.
    [59]Dabadie P, Bendriss P, Erny P, et al. Uncoupling effects of local anesthetics on rat liver mitochondria[J]. FEBS Lett,1987,226(1):77-82.
    [60]Sztark F, Malgat M, Dabadie P, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics[J]. Anesthesiology, 1998,88(5):1340-1349.
    [61]Weinberg G L, Palmer J W, VadeBoncouer T R, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria[J]. Anesthesiology, 2000,92(2):523-528.
    [62]Parang P, Singh B, Arora R. Metabolic modulators for chronic cardiac ischemia[J]. J Cardiovasc Pharmacol Ther,2005,10(4):217-223.
    [63]De Iuliis A, Zanatta L, Vincenti E, et al. Differences of ropivacaine and bupivacaine relevant to antiinflammatory activity, platelet aggregation and antioxidant activity in vitro[J]. Farmaco,2001,56(3):153-157.
    [64]Leduc C, Gentili M E, Estebe J P, et al. The effect of local anesthetics and amitriptyline on peroxidation in vivo in an inflammatory rat model:preliminary reports[J]. Anesth Analg,2002,95(4):992-996.
    [65]Weinberg G L, VadeBoncouer T, Ramaraju G A, et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats[J]. Anesthesiology,1998,88(4):1071-1075.
    [66]Weinberg G, Ripper R, Feinstein D L, et al. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity[J]. Reg Anesth Pain Med, 2003,28(3):198-202.
    [67]Cohen N M, Wise R M, Wechsler A S, et al. Elective cardiac arrest with a hyperpolarizing adenosine triphosphate-sensitive potassium channel opener. A novel form of myocardial protection? [J]. J Thorac Cardiovasc Surg, 1993,106(2):317-328.
    [68]Belardinelli L, Giles W R, West A. Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart[J]. J Physiol,1988,405:615-633.
    [69]Martynyuk A E, Seubert C N, Zima A, et al. Contribution of I(K,ADO) to the negative dromotropic effect of adenosine[J]. Basic Res Cardiol, 2002,97(4):286-294.
    [70]Grover G J, Garlid K D. ATP-Sensitive potassium channels:a review of their cardioprotective pharmacology[J]. J Mol Cell Cardiol,2000,32(4):677-695.
    [71]Jayawant A M, Damiano R J. The superiority of pinacidil over adenosine cardioplegia in blood-perfused isolated hearts[J]. Ann Thorac Surg, 1998,66(4):1329-1335,1335-1336.
    [72]Corvera J S, Kin H, Dobson G P, et al. Polarized arrest with warm or cold adenosine/lidocaine blood cardioplegia is equivalent to hypothermic potassium blood cardioplegia[J]. J Thorac Cardiovasc Surg,2005,129(3):599-606.
    [73]Jakobsen O, Muller S, Aarsaether E, et al. Adenosine instead of supranormal potassium in cardioplegic solution improves cardioprotection[J]. Eur J Cardiothorac Surg,2007,32(3):493-500.
    [74]Baczko I, Jones L, McGuigan C F, et al. Plasma membrane KATP channel-mediated cardioprotection involves posthypoxic reductions in calcium overload and contractile dysfunction:mechanistic insights into cardioplegia[J]. FASEB J,2005,19(8):980-982.
    [75]Lawton J S, Hsia P W, McClain L C, et al. Myocardial oxygen consumption in the rabbit heart after ischemia:hyperpolarized arrest with pinacidil versus depolarized hyperkalemic arrest[J]. Circulation,1997,96(9 Suppl):247-252.
    [76]Ward J W, McBurney A, Farrow P R, et al. Pharmacokinetics and hypotensive effect in healthy volunteers of pinacidil, a new potent vasodilator[J]. Eur J Clin Pharmacol,1984,26(5):603-608.
    [77]Kowaltowski A J, Seetharaman S, Paucek P, et al. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria[J]. Am J Physiol Heart Circ Physiol,2001,280(2):H649-H657.
    [78]Matsubara T, Minatoguchi S, Matsuo H, et al. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease[J]. J Am Coll Cardiol,2000,35(2):345-351.
    [79]Geshi E, Ishioka H, Nomizo A, et al. The role of ATP-sensitive potassium channels in the mechanism of ischemic preconditioning[J]. J Cardiovasc Pharmacol,1999,34(3):446-453.
    [80]Frampton J, Buckley M M, Fitton A. Nicorandil. A review of its pharmacology and therapeutic efficacy in angina pectoris[J]. Drugs,1992,44(4):625-655.
    [81]Mizumura T, Nithipatikom K, Gross G J. Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog[J]. Cardiovasc Res,1995,29(4):482-489.
    [82]Lamping K A, Christensen C W, Pelc L R, et al. Effects of nicorandil and nifedipine on protection of ischemic myocardium[J]. J Cardiovasc Pharmacol, 1984,6(3):536-542.
    [83]Endo T, Nejima J, Kiuchi K, et al. Reduction of size of myocardial infarction with nicorandil, a new antianginal drug, after coronary artery occlusion in dogs[J]. J Cardiovasc Pharmacol,1988,12(5):587-592.
    [84]Imagawa J, Baxter G F, Yellon D M. Myocardial protection afforded by nicorandil and ischaemic preconditioning in a rabbit infarct model in vivo[J]. J Cardiovasc Pharmacol,1998,31(1):74-79.
    [85]Suleiman M S, Halestrap A P, Griffiths E J. Mitochondria:a target for myocardial protection[J]. Pharmacol Ther,2001,89(1):29-46.
    [86]O'Rourke S T. KATP channel activation mediates nicorandil-induced relaxation of nitrate-tolerant coronary arteries[J]. J Cardiovasc Pharmacol, 1996,27(6):831-837.
    [87]Wolf D L, Hearron A E, Metzler C M, et al. The pharmacokinetics and haemodynamic effects of continuous nicorandil infusion in healthy volunteers[J]. Eur J Clin Pharmacol,1993,45(5):437-443.
    [88]Liu Y, Sato T, O'Rourke B, et al. Mitochondrial ATP-dependent potassium channels:novel effectors of cardioprotection?[J]. Circulation, 1998,97(24):2463-2469.
    [89]Miyamae M, Camacho S A, Weiner M W, et al. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts[J]. Am J Physiol,1996,271(5 Pt 2):H2145-H2153.
    [90]Kevelaitis E, Oubenaissa A, Mouas C, et al. Opening of mitochondrial potassium channels:a new target for graft preservation strategies?[J]. Transplantation, 2000,70(4):576-578.
    [91]Bers D M. Cardiac excitation-contraction coupling[J]. Nature, 2002,415(6868):198-205.
    [92]Chapman R A, Tunstall J. The calcium paradox of the heart[J]. Prog Biophys Mol Biol,1987,50(2):67-96.
    [93]BRETSCHNEIDER H J. [SURVIVAL TIME AND RECUPERATIVE TIME OF THE HEART IN NORMOTHERMIA AND HYPOTHERMIA][J]. Verh Dtsch Ges Kreislaufforsch,1964,30:11-34.
    [94]Jynge P, Hearse D J, Braimbridge M V. Protection of the ischemic myocardium. Volume-duration relationships and the efficacy of myocardial infusates[J]. J Thorac Cardiovasc Surg,1978,76(5):698-705.
    [95]Vouhe P R, Helias J, Grondin C M. Myocardial protection through cold cardioplegia using diltiazem, a calcium channel blocker[J]. Ann Thorac Surg, 1980,30(4):342-348.
    [96]Popovic J, Mitic R, Sabo A, et al. Spline functions in convolutional modeling of verapamil bioavailability and bioequivalence. II:study in healthy volunteers[J]. Eur J Drug Metab Pharmacokinet,2006,31(2):87-96.
    [97]Dillon J S, Nayler W G. [3H]-verapamil binding to rat cardiac sarcolemmal membrane fragments; an effect of ischaemia[J]. Br J Pharmacol, 1987,90(1):99-109.
    [98]Shattock M J, Hearse D J, Fry C H. The ionic basis of the anti-ischemic and anti-arrhythmic properties of magnesium in the heart[J]. J Am Coll Nutr, 1987,6(1):27-33.
    [99]Vahl C F, Bonz A, Hagl C, et al. "Cardioplegia on the contractile apparatus level": evaluation of a new concept for myocardial preservation in perfused pig hearts [J]. Thorac Cardiovasc Surg,1995,43(4):185-193.
    [100]Gwathmey J K, Hajjar R J, Solaro R J. Contractile deactivation and uncoupling of crossbridges. Effects of 2,3-butanedione monoxime on mammalian myocardium[J]. Circ Res,1991,69(5):1280-1292.
    [101]Stringham J C, Paulsen K L, Southard J H, et al. Improved myocardial ischemic tolerance by contractile inhibition with 2,3-butanedione monoxime[J]. Ann Thorac Surg,1992,54(5):852-859,859-860.
    [102]Hohnloser S H, Meinertz T, Klingenheben T, et al. Usefulness of esmolol in unstable angina pectoris. European Esmolol Study Group[J]. Am J Cardiol, 1991,67(16):1319-1323.
    [103]Roth E, Matos G, Guarnieri C, et al. Influence of the beta-blocker therapy on neutrophil superoxide generation and platelet aggregation in experimental myocardial ischemia and reflow[J]. Acta Physiol Hung,1995,83(2):163-170.
    [104]Bessho R, Chambers D J. Myocardial protection with oxygenated esmolol cardioplegia during prolonged normothermic ischemia in the rat[J]. J Thorac Cardiovasc Surg,2002,124(2):340-351.
    [105]Arlock P, Wohlfart B, Sjoberg T, et al. The negative inotropic effect of esmolol on isolated cardiac muscle[J]. Scand Cardiovasc J,2005,39(4):250-254.
    [106]Deng C Y, Lin S G, Zhang W C, et al. Esmolol inhibits Na+current in rat ventricular myocytes[J]. Methods Find Exp Clin Pharmacol, 2006,28(10):697-702.
    [107]Erhardt P W, Woo C M, Matier W L, et al. Ultra-short-acting beta-adrenergic receptor blocking agents.3. Ethylenediamine derivatives of (aryloxy)propanolamines having esters on the aryl function[J]. J Med Chem, 1983,26(8):1109-1112.
    [108]Mehlhorn U, Sauer H, Kuhn-Regnier F, et al. Myocardial beta-blockade as an alternative to cardioplegic arrest during coronary artery surgery[J]. Cardiovasc Surg,1999,7(5):549-557.
    [109]Pirk J, Kolar F, Ost'Adal B, et al. The effect of the ultrashort beta-blocker esmolol on cardiac function recovery:an experimental study [J]. Eur J Cardiothorac Surg,1999,15(2):199-203.
    [110]Le Rhun Y, Kirkland J B, Shah G M. Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase[J]. Biochem Biophys Res Commun, 1998,245(1):1-10.
    [111]Ozeren M, Sucu N, Tamer L, et al. Caffeic acid phenethyl ester (CAPE) supplemented St. Thomas'hospital cardioplegic solution improves the antioxidant defense system of rat myocardium during ischemia-reperfusion injury [J]. Pharmacol Res,2005,52(3):258-263.
    [112]Masters T N, Fokin A A, Schaper J, et al. Changes in the preserved heart that limit the length of preservation[J]. J Heart Lung Transplant,2002,21(5):590-599.
    [113]Xing Y, Gopalrao R K, Suzuki R, et al. Supplementation of nucleoside-nucleotide mixture enhances functional recovery and energy metabolism following long-time hypothermic heart preservation[J]. J Surg Res, 2005,127(2):144-150.
    [114]Hua D, Zhuang X, Ye J, et al. Using fructose-1,6-diphosphate during hypothermic rabbit-heart preservation:a high-energy phosphate study[J]. J Heart Lung Transplant,2003,22(5):574-582.
    [115]Masuda T, Dobson G P, Veech R L. The Gibbs-Donnan near-equilibrium system of heart[J]. J Biol Chem,1990,265(33):20321-20334.
    [116]Dobson G P, Cieslar J H. Intracellular, interstitial and plasma spaces in the rat myocardium in vivo[J]. J Mol Cell Cardiol,1997,29(12):3357-3363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700