细胞外钙敏感受体在缺氧性肺血管收缩中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分细胞外钙敏感受体在缺氧诱导肺动脉平滑肌细胞胞浆钙浓度增加中的作用和机制
     目的:研究细胞外钙敏感受体(extracellular calcium-sensing receptor, CaSR)在缺氧诱导肺动脉平滑肌细胞胞浆内钙离子浓度([Ca2+]i)增加中的作用及机制。
     方法:原代培养SD大鼠肺动脉平滑肌细胞(pulmonary artery smooth muscle cells, PASMCs);免疫组织化学染色和western blot检测PASMCs上CaSR的表达情况;用不同浓度的细胞外Ca2+处理PASMCs检测CaSR功能;用钙离子荧光探针Fura-2/AM和荧光成像系统检测[Ca2+]i;用H2-DCFDA和mito-RoGFP检测细胞内活性氧(reactive oxygen species, ROS)生成;shRNA基因技术干扰CaSR、STIM1和RyR3的表达,并用western blot检测干扰效率。
     结果:(1)免疫组织化学染色和western blot均检测到PASMCs细胞膜和胞浆CaSR表达,western blot结果显示细胞膜和胞浆中CaSR的分子量分别为55-72kD和170kD左右。(2)用4、6、7.5mM细胞外Ca2+处理PASMCs,可诱导ERKl/2磷酸化水平逐渐增强,同时6mM和7.5mM细胞外Ca2+又可以引起[Ca2+]i显著增高,而此效应可被CaSR特异性阻滞剂Calhex231所抑制。(3)缺氧可诱导PASMCs ROS产生增加,用外源性H202校正并模拟,缺氧诱导ROS产生相当于15.6μM H2O2诱导ROS的产生。(4)缺氧以及15.6μM H2O2均能引起PASMCs [Ca24]i升高,同时Calhex231和shRNA-CaSR能抑制缺氧以及15.6μM H2O2引起的[Ca2+]i升高。(5)线粒体DNA剔除不仅抑制缺氧引起的ROS生成增多,也抑制缺氧引起的[Ca2+]i增加,这种效应能被外源性15.6μM H2O2所逆转,Calhex231和shRNA-CaSR又能够阻止H202对上述反应的逆转作用。同时PEG-catalase预处理PASMCs能够抑制缺氧引起的[Ca2+]i增加,而PEG-SOD预处理则无此作用。(5)100μM ryanodine抑制RyR功能,可以减弱缺氧和15.6μM H2O2引起的[Ca2+]i升高,但是IP3R的抑制剂20μM XeC却无此作用;若同时应用PKA抑制剂H-89,则100μM ryanodine不再抑制缺氧和H202引起的[Ca2+]i增加,20μM XeC却可以抑制此反应。储库操纵性钙离子进入(store-operated Ca2+entry, SOCE)抑制剂50μM SKF96365可显著抑制缺氧和15.6μM H2O2引起的[Ca2+]i升高。此外,STIM1和RyR3基因敲除也可减弱缺氧和H202引起的[Ca2+]i升高。结论:缺氧刺激引起PASMCs线粒体源性H202产生增加,增加的H202可以使CaSR敏感性增强,从而被细胞外Ca2+激活,进而引起RyR敏感性钙通道开放,钙库Ca2+释放,并激活SOCE,通过STIM1介导细胞外Ca2+内流,共同造成[Ca2+]i升高。
     第二部分细胞外钙敏感受体在离体和在体缺氧性肺血管收缩中的作用
     目的:探讨CaSR在离体和在体缺氧性肺血管收缩(hypoxic pulmonary vasoconstriction, HPV)中的关键作用。
     方法:慢病毒感染SD大鼠,下调CaSR蛋白表达;Power lab四导仪监测离体肺动脉张力及大鼠在不同条件下肺动脉压和心输出量。
     结果:(1)将慢病毒包装的CaSR特异性干扰质粒,从SD大鼠尾静脉注射72小时后,western blot检测CaSR蛋白表达水平明显下降。(2)离体实验中,缺氧和15.6μM H2O2均能引起肺血管张力增加,同时Calhex231能抑制缺氧以及15.6μM H2O2引起肺血管张力增加。此外,shRNA-CaSR可以抑制缺氧引起的肺血管张力增加。(3)在体实验中,缺氧可以引起SD大鼠肺动脉压力明显增加,同时Calhex231和shRNA-CaSR能抑制缺氧刺激引起的肺动脉压力增加。
     结论:CaSR介导缺氧诱导肺动脉平滑肌细胞[Ca2+]i的升高,最终导致缺氧性肺血管收缩和肺动脉高压。
Part1The role and mechanism of the extracellular calcium-sensing receptor in hypoxia-induced cytoplasmic calcium concentration increase in pulmonary arterial smooth muscle cells
     Objective:To study the role and mechanism of the extracellular calcium-sensing receptor (CaSR) in hypoxia induced [Ca2+]i increase in pulmonary artery smooth muscle cells (PASMCs).
     Methods:Primary culture of SD rat PASMCs were used in this study. The expression of CaSR in PASMCs was detected with immunohistochemistry and western blot. The function of CaSR was detected by using different concentrations of extracellular Ca2+to handle the PASMCs. The calcium fluorescence probe Fura-2/AM and fluorescence imaging system were used to detect [Ca2+]i change. H2-DCFDA and mito-RoGFP were used to detect the generation of intracellular reactive oxygen species (ROS). ShRNA gene technology was used to knock down the CaSR, STIM1and RyR3expression, and the interference efficiency was detected with western blot at the same time.
     Results:(1) Both immunohistochemistry and western blot have detected CaSR expression in PASMCs, and its distribution is reflected in within the cell membrane and the cytoplasm with molecular weights of55-72kD and170kD.(2) By using4,6and7.5mM extracellular Ca2+to handle PASMCs, the phosphorylation level of ERK1/2is enhanced significantly and gradually, then6mM and7.5mM extracellular Ca2+can induce [Ca2+]i significant increase, while this effect is inhibited by Calhex231(CaSR inhibitor).(3) With different concentrations of exogenous H2O2and hypoxia to stimulate PASMCs, and the varying levels of ROS were detected, it is found that15.6μM H2O2and hypoxia-induced ROS change has the same effect.(4) Both hypoxia and15.6μM H2O2can cause PASMCs [Ca2+]i rise, and Calhex231and CaSR gene knockdown can inhibit hypoxia and15.6μM H2O2-induced [Ca2+]i rise.(5)Mitochondrial DNA depletion can not only inhibit hypoxia-induced ROS generation, but also eliminate the hypoxia-induced [Ca2+]i increase, this effect can be reversed by exogenous15.6μM H2O2, and Calhex231and CaSR gene knockout are able to stop this reversal effect. PEG-Catalase pretreatment the PASMCs is able to inhibit hypoxia-induced [Ca2+]i increase, but PEG-SOD pretreatment does not have this effect.(5)100μM ryanodine inhibiting RyR function can reduce hypoxia and15.6μM H2O2caused [Ca2+]; rise, and IP3R inhibitor20μM XeC can be failed to reduce hypoxia and15.6μM H2O2caused [Ca2+]i rise, but if the application of PKA inhibitor H-89is able to make100μM ryanodine and20μM XeC produce opposite effect at the same time. SOCE inhibitor50μM SKF96365can inhibit hypoxia and15.6μM H2O2induced [Ca2+]i rise significant. STIM1and RyR3knockout can also reduce hypoxia and15.6μM H2O2induced [Ca2+]i rise.
     Conclusion:Hypoxia induced the production of mitochondria-derived H2O2increase in the PASMCs, the increased H2O2can sensitize CaSR, and CaSR activated by extracellular Ca2+, which caused the cytoplasm of Ca2+from intracellular calcium stores release by RyR, inducing SOCE opening and extracellular Ca2+inflow through STIM1, the combined action has induced [Ca2+]i rise in the PASMC.
     Part2The role of the extracellular calcium-sensing receptor in hypoxic pulmonary vasoconstriction in vitro and vivo
     Objective:To explore the key role of CaSR in hypoxic pulmonary vasoconstriction (HPV) in vitro and vivo.
     Methods:The lentiviral was used to infect SD rats, aiming to knock down the expression of CaSR protein. The Power lab four conductivity meters was used to monitor the tension of pulmonary artery and rat pulmonary artery pressure and cardiac output under different conditions.
     Results:(1) The lentiviral packaging of CaSR specific interference plasmid was injected into SD rat from tail vein,72hours later, western blot was used to detect the expression level CaSR protein, the expression level was significantly decreased.(2) In vitro experiments, both hypoxia and15.6μM H2O2can cause increased pulmonary vascular tone, the same time Calhex231can inhibit hypoxia and15.6μM H2O2cause increase in pulmonary vascular tone. In addition, the CaSR gene knockdown also can eliminate the increase in hypoxia-induced pulmonary vascular tone.(3) In vivo experiments, hypoxia can cause SD rat pulmonary artery pressure increased significantly, while Calhex231and CaSR knockout can inhibit hypoxia-induced increase in pulmonary artery pressure.
     Conclusion:The CaSR has involved in hypoxia-induced [Ca2+]i rise in pulmonary arterial smooth muscle cells, which resulted in hypoxic pulmonary vasoconstriction and pulmonary hypertension.
引文
[1]Bradford J, and Dean H. The pulmonary circulation. J Physiol.16:34-96,1894.
    [2]Von Euler US, and Liljestrand G. Observation on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand.12:301-320,1946.
    [3]Mauban JR, Remillard CV, and Yuan JX. Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol.98:415-420,2005.
    [4]Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, and Weissmann N. Regulation of hypoxic pulmonary vasoconstriction:basic mechanisms. Eur Respir J.32:1639-1651,2008.
    [5]Wang YX and Zheng YM. ROS-dependent signaling mechanisms for hypoxic Ca2+ responses in pulmonary artery myocytes. Antioxid Redox Signal.12:611-623, 2010.
    [6]Ward JP and McMurtry IF. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension:new findings for an old problem. Curr Opin Pharmacol.9:287-296,2009.
    [7]Weir EK, Cabrera JA, Mahapatra S, Peterson DA, and Hong Z. The role of ion channels in hypoxic pulmonary vasoconstriction. Adv Exp Med Biol.661:3-14, 2010.
    [8]Mauban J.R, Remillard CV, and Yuan JX. Hypoxic pulmonary vasoconstriction: role of ion channels. J. Appl. Physiol.98:415-420,2005.
    [9]Cornfield DN, Stevens T, McMurtry IF, Abman SH, and Rodman DM. Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells. Am J Physiol.265:L53-L56,1993.
    [10]Desireddi JR, Farrow KN, Marks JD, Waypa GB, and Schumacker PT. Hypoxia increases ROS signaling and cytosolic Ca2+ in pulmonary artery smooth muscle cells of mouse lungs slices. Antioxid Redox Signal.12:595-602,2010.
    [11]Harder DR, Madden JA, and Dawson C. Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J Appl Physiol.59:1389-1393,1985.
    [12]Liu Q, Sham JS, Shimoda LA, and Sylvester JT. Hypoxic constriction of porcine distal pulmonary arteries:endothelium and endothelin dependence. Am J Physiol Lung Cell Mol Physiol.280:L856-L865,2001.
    [13]Olschewski A, Hong Z, Nelson DP, and Weir EK. Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol.283:L1143-L1150,2002.
    [14]Robertson TP, Hague D, Aaronson PI, and Ward JP. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol.525(Pt 3):669-680,2000.
    [15]Vadula MS, Kleinman JG, and Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol.265:L591-L597,1993.
    [16]Wang J, Shimoda LA, Weigand L, Wang W, Sun D, and Sylvester JT. Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol.288: L1059-L1069,2005.
    [17]Weigand L, Foxson J, Wang J, Shimoda LA, and Sylvester JT. Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol.289:L5-L13, 2005.
    [18]Archer SL, Wu XC, Thebaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, and Michelakis ED. Preferential expression and function of voltage-gated, O2- sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction:ionic diversity in smooth muscle cells. Circ Res.95:308-318,2004.
    [19]Lin MJ, Yang XR, Cao YN, and Sham JS. Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.292:L1598-L1608,2007.
    [20]Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N, Braun-Dullaeus RC, and Kummer W. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol.284:L710-L719,2003.
    [21]Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res.88:1259-1266, 2001.
    [22]Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res.91:719-726,2002.
    [23]Becker S, Knock GA, Snetkov V, Ward JP, and Aaronson PI. Role of capacitative Ca2+ entry but not Na+/Ca2+ exchange in hypoxic pulmonary vasoconstriction in rat intrapulmonary arteries. Novartis Found Symp.272:259-268,2006.
    [24]Ng LC, Wilson SM, and Hume JR. Mobilization of sarcoplasmic reticulum stores by hypoxia leads to consequent activation of capacitative Ca2+ entry in isolated canine pulmonary arterial smooth muscle cells. J Physiol.563:409-419,2005.
    [25]Cornfield DN, Stevens T, McMurtry IF, Abman SH, and Rodman DM. Acute hypoxia causes membrane depolarization and calcium influx in fetal pulmonary artery smooth muscle cells. Am J Physiol.266:L469-L475,1994.
    [26]Gelband CH and Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation.96:3647-3654,1997.
    [27]Jabr RI, Toland H, Gelband CH, Wang XX, and Hume JR. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol.122:21-30,1997.
    [28]Russell MJ, Pelaez NJ, Packer CS, Forster ME, and Olson KR. Intracellular and extracellular calcium utilization during hypoxic vasoconstriction of cyclostome aortas. Am J Physiol Regul Integr Comp Physiol.281:R1506-R1513,2001.
    [29]Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, and Wang YX. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol.125:427-440,2005.
    [30]Hofer AM and Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol.4:530-538,2003.
    [31]Tfelt-Hansen J, and Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology:a review. Crit Rev Clin Lab Sci.42:35-70,2005.
    [32]Brown EM and Macleod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev.81:239-297,2001.
    [33]Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, and Brown EM. Identification and localization of extracellular Ca2+-sensing receptor in rat intestine. Am J Physiol.274:G122-G130,1998.
    [34]Wonneberger K, Scofield MA, and Wangemann P. Evidence for a calcium-sensing receptor in the vascular smooth muscle cells of the spiral modiolar artery. J Membr Biol.175:203-212,2000.
    [35]Molostvov G, Fletcher S, Bland R, and Zehnder D. Extracellular Calcium-sensing receptor mediated signalling is involved in human vascular smooth muscle cell proliferation and apoptosis. Cell Physiol Biochem.22:413-422,2008.
    [36]Bai M, Trivedi S, and Brown EM. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem.273:23605-23610,1998.
    [37]Zhang Z, Sun S, Quinn SJ, Brown EM, and Bai M. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J Biol Chem.276:5316-5322,2001.
    [38]Chen T, Zhu L, Wang T, Ye H, Huang K, and Hu Q. Mitochondria depletion abolishes agonist-induced Ca2+ plateau in airway smooth muscle cells:potential role of H2O2. Am J Physiol Lung Cell Mol Physiol.298:L178-L188,2010.
    [39]Wang T, Zhang ZX, Xu YJ, and Hu QH.5-Hydroxydecanoate inhibits proliferation of hypoxic human pulmonary artery CASR AND HPV 483 smooth muscle cells by blocking mitochondrial KATP channels. Acta Pharmacol Sin.28:1531-1540, 2007.
    [40]Grynkiewicz G, Poenie M and Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem.260(6):3440-3450,1985.
    [41]Aley PK, Porter KE, Boyle JP, Kemp PJ, Peers C. Hypoxic modulation of Ca2+ signaling in human venous endothelial cells. Multiple roles for reactive oxygen species. J Biol Chem.280(14):13349-13354,2005.
    [42]Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, and Hebert SC. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature.366:575-580, 1993.
    [43]Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitocho-ndrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med.45 (9):1223-1231,2008.
    [44]Roy S, Parinandi N, Zeigelstein R, Hu Q, Pei Y, Travers JB, and Natarajan V. Hyperoxia alters phorbol ester-induced phospholipase D activation in bovine lung microvascular endothelial cells. Antioxid Redox Signal.5:217-228,2003.
    [45]Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, and Schumacker PT. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res.106:526-535,2010.
    [46]Gupte SA, Rupawalla T, Phillibert D Jr, Wolin MS. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO. Am J Physiol Lung Cell Mol Physiol.277:L1124-1132,1999.
    [47]Gutterman DD. Mitochondria and reactive oxygen species:an evolution in function. Circ Res.97:302-304,2005.
    [48]Olschewski A, Hong Z, Nelson DP, and Weir EK. Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol.283:L1143-1150,2002.
    [49]Platoshyn O, Yu Y, Ko EA, Remillard CV, and Yuan JX. Heterogeneity of hypoxia-mediated decrease in IKV andincrease in [Ca2+]cyt in pulmonary artery smooth musclecells. Am J Physiol Lung Cell Mol Physiol.293:L402-L416,2007.
    [50]Rueda A, Song M, Toro L, Stefani E, and Valdivia HH. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells. J Physiol.576:887-901,2006.
    [51]Weissberg PL, Little PJ, and Bobik A. Spontaneous oscillations in cytoplasmic calcium concentration in vascular smooth muscle. Am J Physiol.256:C951-C957, 1989.
    [1]Bradford J, and Dean H. The pulmonary circulation. J Physiol.16:34-96,1894.
    [2]Von Euler U, and Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand.12:301-320,1946.
    [3]Yuan XJ, Goldman W, Tod ML, Rubin LJ, Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol.264:L116-L123,1993.
    [4]Archer SL, Huang J, Henry T, Peterson D, and Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ Res.73:1100-1112,1993.
    [5]Liu JQ, Sham JS, Shimoda LA, Kuppusamy P, and Sylvester JT. Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Am J Physiol Lung Cell Mol Physiol.285:L322-L333,2003.
    [6]Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res.88:1259-1266, 2001.
    [7]Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, and Quanz K. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol.34:505-513,2006.
    [8]Killilea DW, Hester R, Balczon R, Babal P, and Gillespie MN. Free radical production in hypoxic pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol.279:L408-L412,2000.
    [9]Marshall C, Mamary AJ, Verhoeven AJ, and Marshall BE. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol.15:633-644,1996.
    [10]Brimioulle S, LeJeune P, and Naeije R. Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol.81:1535-1543, 1996.
    [11]Marshall BE, Hanson CW, Frasch F, and Marshall C. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution.2. Pathophysiology. Intensive Care Med.20:379-389,1994.
    [12]Lopez-Barneo J, Lopez-Lopez JR, Urena J, and Gonzalez C. Chemotransduction in the carotid body:Kt current modulated by PO2 in type Ⅰ chemoreceptor cells. Science.241:580-582,1988.
    [13]Gurney AM, and Joshi S. The role of twin pore domain and other K+ channels in hypoxic pulmonary vasoconstriction. Novartis Found Symp.272:218-228,2006.
    [14]Becker S, Knock GA, Snetkov V, Ward JP, and Aaronson PI. Role of capacitative Ca2+ entry but not Na+/Ca2+ exchange in hypoxic pulmonary vasoconstriction in rat intrapulmonary arteries. Novartis Found Symp.272:259-268,2006.
    [15]Du W, Frazier M, McMahon TJ, and Eu JP. Redox activation of intracellular calcium release channels (ryanodine receptors) in the sustained phase of hypoxia-induced pulmonary vasoconstriction. Chest.128:556S-558S,2005.
    [16]Leach RM, Hill HM, Snetkov VA, Robertson TP, and Ward JP. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat:identity of the hypoxic sensor. J Physiol.536:211-224, 2001.
    [17]Robertson TP, Aaronson PI, and Ward JP. Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries:evidence for PKC-independent Ca2+ sensitization. Am J Physiol.268:H301-H307,1995.
    [18]Robertson TP, Hague D, Aaronson PI, and Ward JP. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol.525(Pt 3):669-680,2000.
    [19]Li GW, Wang QS, Hao JH, Xing WJ, Guo J, Li HZ, Bai SZ, Li HX, Zhang WH, Yang BF, Yang GD, Wu LY, Wang R, and Xu CQ. The functional expression of extracellular calcium sensing receptor in rat pulmonary artery smooth muscle cells. J Biomed Sci.18:16,2010.
    [20]Wonneberger K, Scofield MA, and Wangemann P. Evidence for a calcium-sensing receptor in the vascular smooth muscle cells of the spiral modiolar artery. J Membr Biol.175:203-212,2000.
    [21]Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, Fernandez RA, Zeifinan A, Makino A, Dong H, and Yuan JX. Enhanced Ca2+-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res. 111(4):469-481,2012.
    [1]Brauner-Osborne H, Wellendorph P, and Jensen AA. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets. 8:169-184,2007.
    [2]Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, and Hebert SC. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature.366:575-580, 1993.
    [3]Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla- Poole M, Mays RW, Brunden KR, Harrington JJ, and Quarles LD. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem.280: 40201-40209,2005.
    [4]Tfelt-Hansen J, and Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology:a review. Crit Rev Clin Lab Sci.42:35-70,2005.
    [5]Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, and Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature.407:971-977,2000.
    [6]Hu J, and Spiegel AM. Naturally occurring mutations in the extracellular Ca2+-sensing receptor:implications for its structure and function. Trends Endocrinol Metab.14:282-288,2003.
    [7]Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D,and Ruat M. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J Biol Chem.280:37917-37923,2005.
    [8]Fan GF, Ray K, Zhao XM, Goldsmith PK, and Spiegel AM. Mutational analysis of the cysteines in the extracellular domain of the human Ca2+ receptor:effects on cell surface expression, dimerization and signal transduction. FEBS Lett.436:353-356, 1998.
    [9]Pidasheva S, Grant M, Canaff L, Ercan O, Kumar U, and Hendy GN. Calcium-sensing receptor dimerizes in the endoplasmic reticulum:biochemical and biophysical characterization of CASR mutants retained intracellularly. Hum Mol Genet.15:2200-2209,2006.
    [10]Huang C, and Miller RT. The calcium-sensing receptor and its interacting proteins. J Cell Mol Med.11:923-934,2007.
    [11]Geibel JP, and Hebert SC. The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol.71:205-217, 2009.
    [12]Mamillapalli R, VanHouten J, Zawalich W, and Wysolmerski J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem.283:24435-24447,2008.
    [13]Awata H, Huang C, Handlogten ME, and Miller RT. Interaction of the calcium-sensing receptor and filamin, a potential scaffolding protein. J Biol Chem. 276:34871-34879,2001.
    [14]Williams RR, Hunt SC, Hasstedt SJ, Hopkins PN, Wu LL, Berry TD, Stults BM, Barlow GK, Schumacher MC, Lifton RP, and Lalouel JM. Are there interactions and relations between genetic and environmental factors predisposing to high blood pressure? Hypertension.18:I29-I37,1991.
    [15]Yarden N, Lavelin I, Genina O, Hurwitz S, Diaz R, Brown EM, and Pines M. Expression of calcium-sensing receptor gene by avian parathyroid gland in vivo: relationship to plasma calcium. Gen Comp Endocrinol.117:173-181,2000.
    [16]Canaff L, and Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem.277:30337-30350,2002.
    [17]Nielsen PK, Rasmussen AK, Butters R, Feldt-Rasmussen U, Bendtzen K, Diaz R, Brown EM, and Olgaard K. Inhibition of PTH secretion by interleukin-lbeta in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem Biophys Res Commun.238:880-885, 1997.
    [18]Canaff L, Zhou X, and Hendy GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Statl/3 and Spl/3. J Biol Chem.283:13586-13600,2008.
    [19]Maiti A, and Beckman MJ. Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal vitamin D metabolism. J Steroid Biochem Mol Biol.103:504-508,2007.
    [20]Smajilovic S, and Tfelt-Hansen J. Calciumacts as a firstmessenger through the calciumsensing receptor in the cardiovascular system. Cardiovasc Res.75:457-467. 2007.
    [21]Ziegelstein RC, Xiong Y, He C, and Hu Q. Expression of functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem Biophys Res Commun.342:153-163,2006.
    [22]Kobayashi-Torii M, Takahashi Y, Sunanaga J, Fujita M, Lee E-Y, and Ichimaru Y. Possible participation of extracellular calcium-sensing receptor in blood pressure regulation in rats. Brain Res.1367:181-187,2011.
    [23]Ortiz-Capisano MC, Ortiz PA, Garvin JL, Harding P, and Beierwaites WH. Expression and function of the calcium-sensing receptor in juxtaglomerular cells. Hypertension.50:737-743,2007.
    [24]Atchison DK, Ortiz-Capisano MC, and Beierwaites WH. Acute activation of the calcium-sensing receptor inhibits plasma renin activity in vivo. Am J Physiol Regul Integr Comp Physiol.299:R1020-1026,2010.
    [25]Sun J, and Murphy E. Calcium-sensing receptor:sensor and mediator of ischemic preconditioning in the heart. Am J Physiol Heart CircPhysiol.299:H1309-1317, 2010.
    [26]Alam M, Kirton JP, Wilkinson FL, Towers E, Sinha S, and Rouhi M.Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res.81:260-268,2009.
    [27]Yano S, Brown EM, and Chattopadhyay N. Calcium-sensing receptor in the brain. Cell Calcium.35:257-264,2004.
    [28]Chiarini A, Dal Pra I, Marconi M, Chakravarthy B, Whit field JF, and Armato U. Calcium-sensing receptor (CaSR) in human brain's pathophysiology:roles in lateonsetAlzheimer's disease (LOAD). Curr Pharm Biotechnol.10:317-326,2009.
    [29]Ye C, Ho-Pao CL, KanazirskaM, Quinn S, Rogers K, and Seidman CE. Amyloid-β proteins activate Ca2+-permeable channels through calcium-sensing receptors. J Neurosci Res.47:547-554,1997.
    [30]Conley YP, Mukherjee A, Kammerer C, DeKosky ST, Kamboh MI, and Finegold DN. Evidence supporting a role for the calcium-sensing receptor in Alzheimer Disease. Am J Med Genet (Part B, Neuropsychiatric Genetics).150B (5):703-709, 2009.
    [31]Dal Pra I, Chiarini A, Nemeth EF, Armato U, and Whitfield JF. Role of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (Nitric Oxide Synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokinestimulated adult human astrocytes. J Cell Biochem.96:428-438,2005.
    [32]Ye C, Ho-Pao CL, Kanazirska M, Quinn S, Seidman CE, and Seidman JG. Deficient cation channel regulation in neurons from mice with targeted disruption of the extracellular Ca2+-sensing receptor gene. Brain Res Bull.44:75-84,1997.
    [33]Vassilev PM, Ho-Pao CL, Kanazirska M, Ye C, Hong K, and Seidman CE. Cao-sensing receptor (CaR)-mediated activation of K+ channels is blunted in CaR gene-deficient mouse neurons. Neuroreport.8:1411-1416,1997.
    [34]Kapoor A, Satishchandra P, Ratnapriya R, Reddy R, Kakandale J, and Shankar SK. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol.64:158-167,2008.
    [35]Bouschet T, and Henley JM. Calcium as an extracellular signaling molecule: perspectives on the calcium sensing receptor in the brain. C R Biol.328:691-700, 2005.
    [36]Chattopadhyay N, Espinosa-Jeffrey A, Tfelt-Hansen J, Yano S, Bandyopadhyay S, and Brown EM. Calciumreceptor expression and function in oligodendrocyte commitment and lineage progression:potential impact on reduced myelin basic protein in CaR-null mice. J Neurosci Res.86:2159-2176,2008.
    [37]Ward BK, Magno AL, Davis EA, Hanyaloglu AC, Stuckey BGA, and Burrows M. Functional deletion of the calcium-sensing receptor in a case of neonatal severe hyperparathyroidism. J Clin Endocrinol Metab.89:3721-3730,2004.
    [38]Yamaguchi T. The calcium-sensing receptor in bone. J Bone Miner Metab.26: 301-311,2008.
    [39]Chang W, Tu C, Chen TH, Bikle D, and Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal.1:1-12,2008.
    [40]Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, and Warren HB. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet.11:389-394,1995.
    [41]Kos CH, Karaplis AC, Peng J-B, Hediger MA, Goltzman D, and Mohammad KS. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest. 111:1021-1028,2003.
    [42]Martin TJ. Osteoblast-derived PTHrP is a physiological regulator of bone formation. J Clin Inves.115(9):2322-2324,t 2005.
    [43]Ahlstrom M, Pekkinen M, Riehle U, and Lamberg-Allardt C. Extracellular calcium regulates parathyroid hormone-related peptide expression in osteoblasts and osteoblast progenitor cells. Bone.42:482-490,2008.
    [44]Sun W, Sun W, Liu J, Zhou X, Xiao Y, and Karaplis A. Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development.137:985-992, 2010.
    [45]Burton DW, Foster M, Johnson KA, Hiramoto M, Deftos LJ, and Terkeltaub R. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression.Osteoarthritis Cartilage.13:395-404,2005.
    [46]Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, and Halldorsson BV. Collaborative meta-analysis:associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med.151(8):528-538, 2009.
    [47]Trivedi R, Goswami R, and Chattopadhyay N. Investigational anabolic therapies for osteoporosis. Expert Opin Investig Drugs.19(8):995-1005,2010.
    [48]Marie PJ, Felsenberg D, and Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporosis Int. 22:1659-1667,2011.
    [49]Squires PE, Harris TE, Persaud SJ, Curtis SB, Buchan AMJ, and Jones PM. The extracellular calcium-sensing receptor on human β-cells negatively modulates insulin secretion. Diabetes.49:409-417,2000.
    [50]Gray E, Muller D, Squires PE, Asare-Anane H, Huang G-C, and Amiel S. Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans:involvement of protein kinases. J Endocrinol. 190:703-710,2006.
    [51]Yang SN, and Berggren PO. β-Cell CaV channel regulation in physiology and pathophysiology. Am J Physiol.288:E16-28,2005.
    [52]Parkash J, and Asotra K. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells. Life Sci. 88:440-446,2011.
    [53]Leech CA, and Habener JF. Regulation of glucagon-like peptide-1 receptor and calcium sensing receptor signaling by L-histidine. Endocrinology.144 (11):4851-4858,2003.
    [54]Saidak Z, Mentaverri R, and Brown EM. The role of the calcium-sensing receptor in the development and progression of cancer. Endocr. Rev.30:178-195,2009.
    [55]Chakrabarty S,Wang H, Canaff L, Hendy GN, Appelman H, and Varani J. Calcium sensing receptor in human colon carcinoma:interaction with Ca2+ and 1,25-dihydroxyvitamin D3. Cancer Res.65:493-498,2005.
    [56]Corbetta S, Eller-Vainicher C, Vicentini L, Lania A, and Mantovani G. Modulation of cyclin D1 expression in human tumoral parathyroid cells:effects of growth factors and calcium sensing receptor activation. Cancer Lett.255:34-41,2007.
    [57]Mamillapalli R, VanHouten J, Zawalich W, and Wysolmerski J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J. Biol. Chem.283:24435-24447,2008.
    [58]Yano S, Macleod RJ, Chattopadhyay N, Tfelt-Hansen J, and Kifor O. Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells:role of epidermal growth factor receptor transactivation. Bone.35:664-672,2004.
    [59]Chakravarti B, Dwivedi SK, Mithal A, and Chattopadhyay N. Calcium-sensing receptor in cancer:good cop or bad cop? Endocrine.35:271-284,2009.
    [60]Geibel JP, and Hebert SC. The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol.71:205-217,2009.
    [61]Ray JM, Squires PE, Curtis SB, Meloche MR, and Buchan AMJ. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J Clin Invest. 99(10):2328-2333,1997.
    [62]Feng J, Petersen CD, Coy DH, Jiang J-K, Thomas CJ, and Pollak MR. Calcium sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci USA.107(41):177911779-6, 2010.
    [63]Busque SM, Kerstetter JE, Geibel JP, and Insogna K. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol.289:G664-669,2005.
    [64]Dufner MM, Kirchhoff P, Remy C, Hafner P, Muller MK, and Cheng SX. The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol.289: G1084-1090,2005.
    [65]Rutten MJ, Bacon KD, Marlink KL, Stoney M, Meichsner CL, and Lee FP. Identification of a functional Ca2+-sensing receptor in normal human gastric mucous epithelial cells. Am J Physiol.277:G662-670,1999.
    [66]Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, and Cook JM. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol.300:G528-537,2011.
    [67]Liou AP, Sei Y, Zhao X, Feng J, Lu X, and Thomas C. The extracellular calcium sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol.300:G538-546,2011.
    [68]Geibel J, Sritharan K, Geibel R, Geibel P, Persing JS, and Seeger A. Calcium-sensing receptor abrogates secretagogue-induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc Natl Acad Sci USA. 103(25):9390-9397,2006.
    [69]Mamillapalli R, VanHouten J, Zawalich W, and Wysolmerski J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem.283:24435-24447,2008.
    [70]Riccardi D, and Kemp PJ. The calcium-sensing receptor beyond extracellular calcium homeostasis:conception, development, adult physiology, and disease. Annu Rev Physiol.74:1110-1127,2012.
    [71]Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, and Poznansky MC. Stem-cell engraftment at the endosteal niche is specified by the calcium sensing receptor. Nature.439:599-603,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700