κ-阿片受体在低氧性肺动脉高压中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     低氧性肺动脉高压(hypoxic pulmonary hypertension,HPH)是由于各种呼吸系统疾病引起的低氧血症导致的肺动脉高压。慢性阻塞性肺病(chronic obstructivepulmonary disease,COPD)以及长期处于高原环境均可导致HPH的发生。低氧引起的肺动脉收缩(hypoxic pulmonary vasoconstriction,HPV)和肺血管增殖重构(pulmonary artery remodeling,PAR)是HPH的两个重要病理生理环节。首先,低氧引起的肺动脉收缩本是机体的一种代偿反应,可促进肺泡的血流从低氧区流向高氧区,改善肺的通气/血流比值。然而,长期的低氧环境可引起肺动脉的持续不可逆收缩,导致肺动脉高压的形成。其次,低氧早期可伴有舒张因子(一氧化氮、前列腺素等)和收缩因子(内皮素、血管紧张素Ⅱ等)的失衡,引起内皮功能的失调,并逐渐引起肺动脉平滑肌细胞的增殖与肺动脉血管的重构,最终导致肺动脉高压和右心室肥厚。因此,舒张肺动脉、预防内皮功能失调和抑制平滑肌细胞的增殖是防治HPH的潜在策略。
     研究发现,内源性阿片肽(endogenous opioid peptide,EOP)及其受体在心肺血管系统发挥了重要的调节作用,κ-阿片受体(Kappa-opioid-receptor,κ-OR)是其中之一。本室前期研究发现,心肌缺血/再灌注后给予κ-阿片受体激动剂U50,488H可对抗心律失常的发生,减少心肌细胞坏死与凋亡,抑制再灌注后的炎症反应,对心肌发挥直接的保护作用,其机制与κ-OR介导激活PI3K-Akt-eNOS信号通路、增加NO生成有关。Akt-eNOS信号通路障碍是内皮功能失调的重要机制之一,然而,在HPH时,κ-OR能否通过介导激活Akt-eNOS信号通路,恢复肺动脉内皮功能,目前尚不清楚。另外,HPV和PAR是肺动脉高压形成的基本环节,前期研究发现,U50,488H对肺动脉具有明确的血管舒张效应,对肺动脉平滑肌细胞的增殖具有明确的抑制作用,但是这些作用在HPH是否存在?是否由κ-OR所介导也不清楚。
     本研究拟采用大鼠HPH模型,研究激活κ-OR能否对抗HPH,并进一步从改善内皮功能失调、舒张肺动脉血管和抑制肺动脉血管增殖等方面阐明κ-OR在抗HPH中的作用及可能机制。研究结果可为HPH的预防和治疗提供新的受体靶点,也为临床应用阿片类物质预防和治疗HPH提供实验依据,因而具有一定的理论和临床应用意义。
     目的:
     1.研究激活κ-OR在抗HPH中的作用。
     2.探讨激活κ-OR对HPH大鼠肺血管的舒张效应。
     3.探讨激活κ-OR对低氧引起的肺动脉平滑肌细胞增殖的影响
     4.探讨激活κ-OR对HPH大鼠内皮功能失调的影响
     方法:
     1.模拟海拔5000~5500米气压环境(大气压50kPa,氧浓度约10%),通过低压低氧动物仓,构建HPH动物模型。在整体动物上观察κ-OR激动剂U50,488H与κ-OR阻断剂nor-BNI对HPH形成的影响。
     2.自大鼠右侧颈外静脉插入直径为1mm的聚乙烯塑料导管,沿上腔静脉进入右心房、再通过三尖瓣口进入右心室,最后到达肺动脉干。运用RM-6280多道智能生理信号采集和记录系统,测量大鼠平均肺动脉压(mPAP)和右心室压力(RVP)等肺血流动力学指标,并通过该系统分析以上指标。
     3.剖胸取出大鼠心脏,沿室间隔边缘分离出右心室(RV)和左心室以及室间隔(LV+S),称重计算RV、LV+S,以RV/(LV+S)比值和RV/BW(体重)比值来反映右心室肥厚程度。Western blot法检测肺动脉上κ-OR的蛋白表达情况。ELISA试剂盒检测内源性的κ-OR激动剂强啡肽(DynorphinA)的变化。
     4.分离HPH大鼠肺动脉,采用离体血管灌流技术,观察κ-OR激动剂U50,488H与内源性的κ-OR激动剂强啡肽(Dynorphin A)对HPH大鼠肺动脉血管环的舒张作用。
     5.用3H-TdR掺入实验和细胞MTT活性检测,观察κ-OR激动剂U50,488H对低氧下培养的肺动脉平滑肌细胞(PASMCs)增殖的影响。
     6.采用离体血管灌流技术检测HPH大鼠肺动脉对内皮依赖性舒血管物质ACh的反应及U50,488H腹腔注射对该反应的影响,
     7.用硝酸还原酶法检测血清NO水平的变化,并观察κ-OR阻断剂nor-BNI、PI3K抑制剂wortmannin、选择性Akt抑制剂AI以及非选择性NOS抑制剂L-NAME对U50,488H刺激NO生成作用的影响。
     8.建立肺微血管内皮细胞(PMVECs)的原代和传代培养。采用TUNEL法检测U50,488H对低氧时PMVECs凋亡情况的影响,同时应用Western blot法检测低氧环境下给予U50,488H后PMVECs中Akt和eNOS的磷酸化水平。
     结果:
     1.大鼠慢性低氧2W后形成稳定的HPH。血流动力学指标mPAP和RVP明显升高。隔天、低氧前10分钟腹腔注射κ-OR激动剂U50,488H(1.5mg/kg)、连续2周,可显著降低低氧两周大鼠的mPAP、RVP以及右心室肥厚指标(RV/(LV+S))和RV/BW,这些效应可被κ-OR阻断剂nor-BNI所阻断。
     2.慢性低氧可以上调肺动脉上κ-OR的表达,U50,488H可以进一步上调慢性低氧时肺动脉上κ-OR的表达,该作用可被κ-OR阻断剂nor-BNI所阻断。
     3.低氧1W和低氧2W均可上调大鼠血清中内源性κ-OR激动剂强啡肽(DynorphinA)的水平,而低氧4W后强啡肽(Dynorphin A)的水平回复至基线水平以下。
     4. U50,488H可呈浓度依赖性地舒张HPH大鼠的离体肺动脉,该作用可以被κ-OR阻断剂nor-BNI和非选择性NOS抑制剂L-NAME所阻断。强啡肽(DynorphinA)对HPH大鼠离体肺动脉亦具有显著的舒张作用,该作用可被κ-OR阻断剂nor-BNI所完全阻断。
     5. PASMCs在低氧条件下3H-TdR掺入量和MTT的OD值明显升高,而U50,488H可以明显降低低氧条件下培养的大鼠PASMCs的3H-TdR掺入量和MTT的OD值,该效应呈明显的浓度依赖性(10~100μmol/L),且该作用可被κ-OR阻断剂nor-BNI所阻断。
     6. U50,488H可改善HPH大鼠对内皮依赖性血管舒张剂乙酰胆碱(ACh)的舒张效应。
     7. U50,488H可明显增加慢性低氧大鼠血清中NO的生成,该作用可被κ-OR阻断剂nor-BNI、PI3K抑制剂wortmannin、选择性Akt抑制剂AI以及非选择性NOS抑制剂L-NAME所阻断。
     8. U50,488H具有抗内皮细胞凋亡的作用,该作用可被κ-OR阻断剂nor-BNI、PI3K抑制剂wortmannin、选择性Akt抑制剂AI以及非选择性NOS抑制剂L-NAME所阻断。
     9. U50,488H可明显增加PMVECs中Akt和eNOS的磷酸化水平,该效应可被κ-OR阻断剂nor-BNI和PI3K抑制剂wortmannin所阻断。
     结论:
     1.激活κ-OR具有抗HPH的作用,低氧早期可刺激大鼠内源性阿片肽Dynorphin的释放,同时上调κ-OR的表达,这可能是机体的一种代偿反应,但尚需进一步确认。
     2. κ-OR介导的抗HPH的作用机制可能涉及舒张大鼠肺动脉、改善HPH大鼠肺动脉内皮细胞功能以及抑制低氧诱导的PASMCs过度增殖等。
     3.外源性给予U50,488H可进一步激活κ-OR,其一方面通过NOS途径发挥对HPH大鼠肺血管的舒张效应;另一方面,通过PI3K-Akt-eNOS信号通路改善HPH大鼠肺动脉内皮细胞功能。
Background:
     Hypoxic pulmonary hypertension (HPH) is a progressive disorder characterized byabnormally high blood pressure in the pulmonary artery caused by hypoxemia after allkinds of respiratory system diseases. Both chronic obstructive pulmonary disease andliving in the plateau for a long time can lead to HPH. Hypoxia-induced pulmonaryvasoconstriction and pulmonary vascular remodeling are two key pathophysiologicprocesses in HPH. First, hypoxia-induced pulmonary vasoconstriction is a compensatorymechanism, redirecting blood flow from alveoli with a lower oxygen content to alveoliwith a higher oxygen content and improving ventilation/perfusion ratio. However,long-term hypoxia can result in irreversible vasoconstriction in the pulmonary artery andfurther lead to HPH. Then, hypoxia upsets the balance between the vasoconstrictor (ET-1, Ang Ⅱ) and vasodilator (NO, PGI), triggering endothelial dysfunction and graduallyleading to vascular remodeling characterized by proliferation of pulmonary artery smoothmuscle cells. In the end, HPH and right ventricular hypertrophy come into being.Therefore, dilating pulmonary artery, preventing endothelial dysfunction and inhibitingsmooth muscle cell proliferation are potential strategies for the prevention and treatmentof HPH.
     It has been demonstrated that endogenous opioid peptide and its receptor playsignificant role in cardiovascular system, of which the main subtype is κ opioid receptor(κ-OR). Our previous study demonstrates that selective κ-OR agonist U50,488Hadministered after ischemia/reperfusion exhibits an anti-arrhythmic effect, decreasescardiomyocyte necrosis and apoptosis and inhibits inflammation after reperfusion. Theprotective effects of κ-OR are associated with the activation of PI3K-Akt-eNOS pathwaymediated by κ-OR, which increases NO synthesis. The impairment of Akt-eNOS pathwayis one of the important mechanisms of endothelial dysfunction. However, it remainsunclear whether κ-OR ameliorates endothelial function through the activation ofAkt-eNOS pathway. Moreover, hypoxia-induced pulmonary vasoconstriction andpulmonary vascular proliferation are two key processes in HPH. Our previous studydemonstrates that U50,488H has a definite dilating effect on pulmonary artery and adefinite inhibitive effect on pulmonary artery smooth muscle cell proliferation. However,whether those effects exist in HPH and whether those are mediated by κ-OR remainobscure.
     By utilizing rat HPH model, this study aims to determine whether κ-OR activationantagonizes HPH and further improves endothelial function and pulmonary artery dilation,and inhibits pulmonary artery smooth muscle proliferation and to elucidate the role ofκ-OR in antagonizing HPH and its underlying mechanism. The results may provide newtherapeutic target for the prevention and treatment of HPH and provide experimentalevidence for the clinical application of opioid in the prevention and treatment of HPH,which reveals significant theoretical and clinical implication.
     Aims:
     1. To investigate the effect of κ-OR activation on antagonizing HPH.
     2. To investigate the effect of κ-OR activation on dilating pulmonary artery in HPH rats.
     3. To clarify the effect of κ-OR activation on the pulmonary artery smooth muscle cellproliferation induced by hypoxia.
     4. To investigate the effect of κ-OR activation on endothelial dysfunction in HPH rats.
     Methods:
     1. Hypoxic condition was created for8hours every day with the exposure of the rats toboth low pressure and low oxygen (air pressure50kpa, oxygen concentration10%), sothe HPH rat model was established. The effects of κ-OR agonist U50,488H and κ-ORantagonist nor-BNI were studied in HPH rats in vivo.
     2. After hypoxia, rats were anesthetized via peritoneal injection with pentobarbitalsodium (60mg/kg, IP injected). A micro-catheter (diameter=1mm) was inserted intothe pulmonary artery through the right external jugular vein. Then the meanpulmonary arterial pressure (mPAP) and right ventricular pressure (RVP) weremeasured.
     3. The hearts and blood were then harvested. Each of the following was isolated in orderto calculate the right ventricular hypertrophy index (RVHI): body weight (BW), rightventricle (RV), left ventricle (LV), and septum (S). The RVHI itself was expressed asthe tissue weight ratio of RV/(LV+S) and RV/BW. Expression of κ-OR was determinedby Western-Blot, and concentration of endogenous dynorphin A was determined byELISA.
     4. The pulmonary artery was carefully isolated and cleaned of fat and connective tissue.In vitro vascular ring perfusion was utilized. U50,488H and dynorphin A were addedrespectively to determine its relaxation effect on the artery rings in HPH rats.
     5. The effect of U50,488H on the proliferation of pulmonary arterial smooth muscle cells (PASMCs) under hypoxic condition was measured by MTT and [3H]-thymidine(3H-TdR) incorporation assay.
     6. Isolated perfusion of pulmonary artery ring was used to determine the reaction of theartery ring to ACh, which is an endothelium-dependent vasodilator. Besides, the effectof U50,488H i.p. administration on the reaction of the artery ring to ACh.
     7. The serum NO was determined by measuring the concentration of nitrite, a stablemetabolite of nitric oxide, through a modified Griess reaction method. The underlyingmechanism was investigated by several inhibitors such as nor-BNI (a selective κ-ORantagonist), wortmannin (a selective PI3K antagonist), AI (a selective PI3Kantagonist), and L-NAME (a non-selective NOS inhibitor).
     8. The primary culture and subculture of pulmonary microvascular endothelial cells(PMVECs) was performed. The effect of U50,488H on PMVECs apoptosis induced byhypoxia was determined by TUNEL staining. The phosphorylation of Akt and eNOSin the PMVECs was detected by Western-Blot after U50,488H administration inhypoxia.
     Results:
     1. The HPH was established after exposing rats to chronic hypoxia for2weeks. ThemPAP and RVP of rats in hypoxia were significantly higher compared with both themPAP and RVP of normoxic rats. Compared with the hypoxia2w group, the hypoxia
     2w+U50,488H group showed a significant decrease in mPAP, RVP, RV/(LV+S) andRV/BW, and the effect of U50,488H was abolished by nor-BNI.
     2. Compared with the normoxia group, the expression of κ-OR in pulmonary artery wasincreased in the hypoxia group. U50,488H further up-regulated the expression of κ-ORin the hypoxia groups, which was abolished by nor-BNI.
     3. The level of dynorphin A was increased at1wk and2wks after hypoxia, whereas itreturned to below baseline level at4wks exposure to hypoxia.4. U50,488H exhibited both time-dependent and dose-dependent relaxation effect on HPH rat pulmonary artery rings. This vasorelaxing effect was abolished by nor-BNIand L-NAME. Dynorphin A also showed time-dependent relaxation effect and theeffect was completely abolished by nor-BNI.
     5. When PASMCs were exposed to hypoxia, the quantity of3H-TdR incorporation andOD optimum in MTT detection increased significantly compared to the normoxicgroup. U50,488H significantly inhibited the PASMCs proliferation in a dose dependentmanner (10~100μmol/L), which was also abolished by nor-BNI.
     6. Chronic hypoxia resulted in a significant endothelial dysfunction. This dysfunctionwas demonstrated through decreased vasorelaxation in response to ACh. U50,488Hadministration significantly improved the pulmonary artery relaxation response toACh.
     7. Hypoxia resulted in a significant decrease in serum NO compared with that in thenormoxic group. U50,488H pretreatment significantly restored serum NO content inHPH rats, which was abolished by nor-BNI, wortmannin (a PI3K inhibitor), AI (aselective Akt inhibitor) and L-NAME (a non-selective NOS inhibitor).
     8. U50,488H antagonized endothelial cell apoptosis, which was abolished by nor-BNI,wortmannin (a PI3K inhibitor), AI (a selective Akt inhibitor) and L-NAME (anon-selective NOS inhibitor).
     9. In the cultured PMVECs that were exposed to hypoxia, U50,488H treatment increasedAkt phosphorylation and endothelial nitric oxide synthase (eNOS) phosphorylationsignificantly, which were abolished by both nor-BNI and wortmannin.
     Conclusions:
     1. κ-opioid receptor activation exhibits definite effect against HPH. Hypoxia at an earlystage stimulates the release of dynorphin and upregulates κ-OR expression, which maybe a compensatory reaction but needs further investigation.
     2. The mechanism underlying the effect of antagonizing HPH mediated by κ-ORinvolves dilating pulmonary artery in HPH rats, improving pulmonary artery endothelial dysfunction in HPH rats and inhibiting excessive proliferation of PASMCsinduced by hypoxia, etc.
     3. U50,488H administration further activates κ-OR. For one thing, U50,488H dilatespulmonary artery through NOS pathway. For another, U50,488H improves endothelialdysfunction through PI3K-Akt-eNOS pathway.
引文
[1] Nakanishi N.2009ESC/ERS pulmonary hypertension guidelines and connectivetissue disease[J]. Allergol Int,2011,60(4):419-424.
    [2] Plumier L. La circulation pulmonaire chez le chien[M].1904.
    [3] Sylvester J T. Hypoxic pulmonary vasoconstriction: a radical view[J]. Circ Res,2001,88(12):1228-1230.
    [4] Sommer N, Dietrich A, Schermuly R T, Ghofrani H A, Gudermann T, Schulz R,Seeger W, Grimminger F, Weissmann N. Regulation of hypoxic pulmonaryvasoconstriction: basic mechanisms[J]. Eur Respir J,2008,32(6):1639-1651.
    [5]杜军保.缺氧性肺动脉高压:基础与临床[M].北京医科大学,中国协和医科大学联合出版社,1994.
    [6] Fishman A P. Hypoxia on the pulmonary circulation. How and where it acts[J]. CircRes,1976,38(4):221-231.
    [7] Ahmed T, Mirbahar K B, Oliver W J, Eyre P, Wanner A. Characterization of H1-and H2-receptor function in pulmonary and systemic circulations of sheep[J]. JAppl Physiol,1982,53(1):175-184.
    [8] Russell P C, Wright C E, Barer G R, Howard P. Histamine induced pulmonaryvasodilatation in the rat: site of action and changes in chronic hypoxia[J]. EurRespir J,1994,7(6):1138-1144.
    [9] Mungall I P. Hypoxia and lung mast cells: influence of disodium cromoglycate[J].Thorax,1976,31(1):94-100.
    [10] Wanstall J C, O'Donnell S R. Endothelin and5-hydroxytryptamine on ratpulmonary artery in pulmonary hypertension[J]. Eur J Pharmacol,1990,176(2):159-168.
    [11] Maclean M R, Herve P, Eddahibi S, Adnot S.5-hydroxytryptamine and thepulmonary circulation: receptors, transporters and relevance to pulmonary arterialhypertension[J]. Br J Pharmacol,2000,131(2):161-168.
    [12] Maclean M R, Sweeney G, Baird M, Mcculloch K M, Houslay M, Morecroft I.5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteriesfrom control and pulmonary hypertensive rats[J]. Br J Pharmacol,1996,119(5):917-930.
    [13] Berkov S. Hypoxic pulmonary vasoconstriction in the rat: the necessary role ofangiotensin II[J]. Circulation Research,1974,35(2):256-261.
    [14] Kiely D G, Cargill R I, Lipworth B J. Acute hypoxic pulmonary vasoconstriction inman is attenuated by type I angiotensin II receptor blockade[J]. Cardiovasc Res,1995,30(6):875-880.
    [15] Morrell N W, Morris K G, Stenmark K R. Role of angiotensin-converting enzymeand angiotensin II in development of hypoxic pulmonary hypertension[J]. Am JPhysiol,1995,269(4Pt2): H1186-H1194.
    [16] Yanagisawa M, Inoue A, Ishikawa T, Kasuya Y, Kimura S, Kumagaye S, NakajimaK, Watanabe T X, Sakakibara S, Goto K, Et A. Primary structure, synthesis, andbiological activity of rat endothelin, an endothelium-derived vasoconstrictorpeptide[J]. Proc Natl Acad Sci U S A,1988,85(18):6964-6967.
    [17] Masaki T. Historical review: Endothelin[J]. Trends Pharmacol Sci,2004,25(4):219-224.
    [18] Gray M O, Long C S, Kalinyak J E, Li H T, Karliner J S. Angiotensin II stimulatescardiac myocyte hypertrophy via paracrine release of TGF-beta1and endothelin-1from fibroblasts[J]. Cardiovasc Res,1998,40(2):352-363.
    [19] Shirakami G, Nakao K, Saito Y, Magaribuchi T, Jougasaki M, Mukoyama M, AraiH, Hosoda K, Suga S, Ogawa Y, Et A. Acute pulmonary alveolar hypoxia increaseslung and plasma endothelin-1levels in conscious rats[J]. Life Sci,1991,48(10):969-976.
    [20] Galie N, Manes A, Branzi A. The endothelin system in pulmonary arterialhypertension[J]. Cardiovasc Res,2004,61(2):227-237.
    [21] Pepke-Zaba J, Morrell N W. The endothelin system and its role in pulmonaryarterial hypertension (PAH)[J]. Thorax,2005,60(6):443-444.
    [22] Dupuis J, Hoeper M M. Endothelin receptor antagonists in pulmonary arterialhypertension[J]. Eur Respir J,2008,31(2):407-415.
    [23] Forsythe J A, Jiang B H, Iyer N V, Agani F, Leung S W, Koos R D, Semenza G L.Activation of vascular endothelial growth factor gene transcription byhypoxia-inducible factor1[J]. Mol Cell Biol,1996,16(9):4604-4613.
    [24] Ke Q, Costa M. Hypoxia-inducible factor-1(HIF-1)[J]. Mol Pharmacol,2006,70(5):1469-1480.
    [25] Hu R, Dai A, Tan S. Hypoxia-inducible factor1alpha upregulates the expression ofinducible nitric oxide synthase gene in pulmonary arteries of hypoxic rat[J].Chinese medical journal,2002,115(12):1833-1837.
    [26] Semenza G. Signal transduction to hypoxia-inducible factor1[J]. BiochemPharmacol,2002,64(5-6):993-998.
    [27] Bunting S, Moncada S, Vane J R. The prostacyclin--thromboxane A2balance:pathophysiological and therapeutic implications[J]. Br Med Bull,1983,39(3):271-276.
    [28] Busse R, Forstermann U, Matsuda H, Pohl U. The role of prostaglandins in theendothelium-mediated vasodilatory response to hypoxia[J]. Pflugers Arch,1984,401(1):77-83.
    [29] de Leval X, Hanson J, David J L, Masereel B, Pirotte B, Dogne J M. Newdevelopments on thromboxane and prostacyclin modulators part II: prostacyclinmodulators[J]. Curr Med Chem,2004,11(10):1243-1252.
    [30] Currie M G, Geller D M, Cole B R, Boylan J G, Yusheng W, Holmberg S W,Needleman P. Bioactive cardiac substances: potent vasorelaxant activity inmammalian atria[J]. Science,1983,221(4605):71-73.
    [31] Tohse N, Nakaya H, Takeda Y, Kanno M. Cyclic GMP-mediated inhibition ofL-type Ca2+channel activity by human natriuretic peptide in rabbit heart cells[J].Br J Pharmacol,1995,114(5):1076-1082.
    [32] Winquist R J, Faison E P, Nutt R F. Vasodilator profile of synthetic atrial natriureticfactor[J]. Eur J Pharmacol,1984,102(1):169-173.
    [33] Perreault T, Gutkowska J. Role of atrial natriuretic factor in lung physiology andpathology[J]. Am J Respir Crit Care Med,1995,151(1):226-242.
    [34] Rogers T K, Stewart A G, Morice A H. Effect of chronic hypoxia on rat pulmonaryresistance vessels: vasodilatation by atrial natriuretic peptide[J]. Clin Sci (Lond),1992,83(6):723-729.
    [35] Yu J, Feng H S, Chen B Y, Qu P, Liu L B, Chen J K, Tie R, Huang X J, Zhao Y F,Zhu X X, Zhu M Z. Protective effects of vasonatrin peptide against hypobarichypoxia-induced pulmonary hypertension in rats[J]. Clin Exp Pharmacol Physiol,2010,37(1):69-74.
    [36] Alderton W K, Cooper C E, Knowles R G. Nitric oxide synthases: structure,function and inhibition[J]. Biochem J,2001,357(Pt3):593-615.
    [37] Ma X L, Gao F, Lopez B L, Christopher T A, Vinten-Johansen J. Peroxynitrite, atwo-edged sword in post-ischemic myocardial injury-dichotomy of action incrystalloid-versus blood-perfused hearts[J]. J Pharmacol Exp Ther,2000,292(3):912-920.
    [38] Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonaryhypertension[J]. Physiol Rev,2000,80(4):1337-1372.
    [39] Fagan K A, Fouty B W, Tyler R C, Morris K J, Hepler L K, Sato K, Lecras T D,Abman S H, Weinberger H D, Huang P L, Mcmurtry I F, Rodman D M. Thepulmonary circulation of homozygous or heterozygous eNOS-null mice ishyperresponsive to mild hypoxia[J]. J Clin Invest,1999,103(2):291-299.
    [40] Le Cras T D, Xue C, Rengasamy A, Johns R A. Chronic hypoxia upregulatesendothelial and inducible NO synthase gene and protein expression in rat lung[J].Am J Physiol,1996,270(1Pt1): L164-L170.
    [41] Hampl V, Bibova J, Banasova A, Uhlik J, Mikova D, Hnilickova O, Lachmanova V,Herget J. Pulmonary vascular iNOS induction participates in the onset of chronichypoxic pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2006,290(1): L11-L20.
    [42] Mcmurtry I F, Rounds S, Stanbrook H S. Studies of the mechanism of hypoxicpulmonary vasoconstriction[J]. Adv Shock Res,1982,8:21-33.
    [43] Cutaia M, Rounds S. Hypoxic pulmonary vasoconstriction. Physiologic significance,mechanism, and clinical relevance[J]. Chest,1990,97(3):706-718.
    [44] Gelband C H, Gelband H. Ca2+release from intracellular stores is an initial step inhypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels[J].Circulation,1997,96(10):3647-3654.
    [45] Marshall B E, Marshall C, Benumof J, Saidman L J. Hypoxic pulmonaryvasoconstriction in dogs: effects of lung segment size and oxygen tension[J]. J ApplPhysiol,1981,51(6):1543-1551.
    [46] Archer S, Michelakis E. The mechanism (s) of hypoxic pulmonary vasoconstriction:potassium channels, redox O2sensors, and controversies[J]. Physiology,2002,17(4):131-137.
    [47] Winter R J, Dickinson K E, Rudd R M, Sever P S. Tissue specific modulation ofbeta-adrenoceptor number in rats with chronic hypoxia with an attenuated responseto down-regulation by salbutamol[J]. Clin Sci (Lond),1986,70(2):159-165.
    [48]张桦.缺氧性肺动脉高压发病的分子机制研究肾上腺素能受体基因转录活性的变化[D].中国协和医科大学北京协和医学院清华大学医学部中国医学科学院,1996.
    [49] Humbert M, Morrell N W, Archer S L, Stenmark K R, Maclean M R, Lang I M,Christman B W, Weir E K, Eickelberg O, Voelkel N F, Rabinovitch M. Cellularand molecular pathobiology of pulmonary arterial hypertension[J]. J Am CollCardiol,2004,43(12Suppl S):13S-24S.
    [50] Stenmark K R, Mcmurtry I F. Vascular remodeling versus vasoconstriction inchronic hypoxic pulmonary hypertension: a time for reappraisal?[J]. Circ Res,2005,97(2):95-98.
    [51] Miserocchi G, Passi A, Negrini D, Del F M, De Luca G. Pulmonary interstitialpressure and tissue matrix structure in acute hypoxia[J]. Am J Physiol Lung CellMol Physiol,2001,280(5): L881-L887.
    [52] Sylvester J T, Shimoda L A, Aaronson P I, Ward J P. Hypoxic pulmonaryvasoconstriction[J]. Physiol Rev,2012,92(1):367-520.
    [53] Dugard A, Naimark A. Effect of hypoxia on distribution of pulmonary bloodflow[J]. J Appl Physiol,1967,23(5):663-671.
    [54] Blaise G, Langleben D, Hubert B. Pulmonary arterial hypertension:pathophysiology and anesthetic approach[J]. Anesthesiology,2003,99(6):1415-1432.
    [55] Fuster V, Steele P M, Edwards W D, Gersh B J, Mcgoon M D, Frye R L. Primarypulmonary hypertension: natural history and the importance of thrombosis[J].Circulation,1984,70(4):580-587.
    [56] Rich S, Kaufmann E, Levy P S. The effect of high doses of calcium-channelblockers on survival in primary pulmonary hypertension[J]. N Engl J Med,1992,327(2):76-81.
    [57] Herve P, Humbert M, Sitbon O, Parent F, Nunes H, Legal C, Garcia G, SimonneauG. Pathobiology of pulmonary hypertension. The role of platelets and thrombosis[J].Clin Chest Med,2001,22(3):451-458.
    [58] Montani D, Savale L, Natali D, Jais X, Herve P, Garcia G, Humbert M, SimonneauG, Sitbon O. Long-term response to calcium-channel blockers in non-idiopathicpulmonary arterial hypertension[J]. Eur Heart J,2010,31(15):1898-1907.
    [59] Rubin L J, Mendoza J, Hood M, Mcgoon M, Barst R, Williams W B, Diehl J H,Crow J, Long W. Treatment of primary pulmonary hypertension with continuousintravenous prostacyclin (epoprostenol). Results of a randomized trial[J]. AnnIntern Med,1990,112(7):485-491.
    [60] Barst R J, Rubin L J, Long W A, Mcgoon M D, Rich S, Badesch D B, Groves B M,Tapson V F, Bourge R C, Brundage B H, Koerner S K, Langleben D, Keller C A,Murali S, Uretsky B F, Clayton L M, Jobsis M M, Blackburn S D, Shortino D,Crow J W. A comparison of continuous intravenous epoprostenol (prostacyclin)with conventional therapy for primary pulmonary hypertension[J]. N Engl J Med,1996,334(5):296-301.
    [61] Olschewski H, Walmrath D, Schermuly R, Ghofrani A, Grimminger F, Seeger W.Aerosolized prostacyclin and iloprost in severe pulmonary hypertension[J]. AnnIntern Med,1996,124(9):820-824.
    [62] Hoeper M M, Schwarze M, Ehlerding S, Adler-Schuermeyer A, Spiekerkoetter E,Niedermeyer J, Hamm M, Fabel H. Long-term treatment of primary pulmonaryhypertension with aerosolized iloprost, a prostacyclin analogue[J]. N Engl J Med,2000,342(25):1866-1870.
    [63] Olschewski H, Simonneau G, Galie N, Higenbottam T, Naeije R, Rubin L J,Nikkho S, Speich R, Hoeper M M, Behr J, Winkler J, Sitbon O, Popov W, GhofraniH A, Manes A, Kiely D G, Ewert R, Meyer A, Corris P A, Delcroix M,Gomez-Sanchez M, Siedentop H, Seeger W. Inhaled iloprost for severe pulmonaryhypertension[J]. N Engl J Med,2002,347(5):322-329.
    [64] Pepke-Zaba J, Higenbottam T W, Dinh-Xuan A T, Stone D, Wallwork J. Inhalednitric oxide as a cause of selective pulmonary vasodilatation in pulmonaryhypertension[J]. Lancet,1991,338(8776):1173-1174.
    [65] Anggard E. Nitric oxide: mediator, murderer, and medicine[J]. Lancet,1994,343(8907):1199-1206.
    [66] Atz A M, Adatia I, Wessel D L. Rebound pulmonary hypertension after inhalationof nitric oxide[J]. Ann Thorac Surg,1996,62(6):1759-1764.
    [67] Miller O I, Tang S F, Keech A, Celermajer D S. Rebound pulmonary hypertensionon withdrawal from inhaled nitric oxide[J]. Lancet,1995,346(8966):51-52.
    [68] Rubin L J, Badesch D B, Barst R J, Galie N, Black C M, Keogh A, Pulido T, FrostA, Roux S, Leconte I, Landzberg M, Simonneau G. Bosentan therapy forpulmonary arterial hypertension[J]. N Engl J Med,2002,346(12):896-903.
    [69] Strange G, Keogh A M, Williams T J, Wlodarczyk J, Mcneil K D, Gabbay E.Bosentan therapy in patients with pulmonary arterial hypertension: the relationshipbetween improvements in6minute walk distance and quality of life[J]. Respirology,2008,13(5):674-682.
    [70] Akil H, Watson S J, Young E, Lewis M E, Khachaturian H, Walker J M.Endogenous opioids: biology and function[J]. Annu Rev Neurosci,1984,7:223-255.
    [71]杨溢秦,马敏.内源性阿片肽家族的结构特点和生理功能[J].南京军医学院学报,2002,24(2):102-103.
    [72] Krumins S A. Characterization of dermorphin binding to membranes of rat brainand heart[J]. Neuropeptides,1987,9(2):93-102.
    [73] Oka T, Aoki K, Kajiwara M. The choice of opioid receptor subtype in isolatedpreparations by dynorphins[J]. Life Sci,1983,33Suppl1:311-314.
    [74]崔凤侠,王利江,王宏伟,高大昕. K阿片受体的研究新进展[J].承德医学院学报,2006,23(1):57-59.
    [75] Zhu Y, Hsu M S, Pintar J E. Developmental expression of the mu, kappa, and deltaopioid receptor mRNAs in mouse[J]. J Neurosci,1998,18(7):2538-2549.
    [76] Bian J S, Wang H X, Zhang W M, Wong T M. Effects of kappa-opioid receptorstimulation in the heart and the involvement of protein kinase C[J]. Br JPharmacol,1998,124(3):600-606.
    [77] Pepe S, van den Brink O W, Lakatta E G, Xiao R P. Cross-talk of opioid peptidereceptor and beta-adrenergic receptor signalling in the heart[J]. Cardiovasc Res,2004,63(3):414-422.
    [78] Barron B A. Cardiac opioids[J]. Proc Soc Exp Biol Med,2000,224(1):1-7.
    [79] Pugsley M K. The diverse molecular mechanisms responsible for the actions ofopioids on the cardiovascular system[J]. Pharmacol Ther,2002,93(1):51-75.
    [80] Feng Y, He X, Yang Y, Chao D, Lazarus L H, Xia Y. Current research on opioidreceptor function[J]. Curr Drug Targets,2012,13(2):230-246.
    [81] Gautret B, Schmitt H. Cardiac slowing induced by peripheral kappa-opiate receptorstimulation in rats[J]. Eur J Pharmacol,1984,102(1):159-163.
    [82] Wong T M, Lee A Y, Tai K K. Effects of drugs interacting with opioid receptorsduring normal perfusion or ischemia and reperfusion in the isolated rat heart--anattempt to identify cardiac opioid receptor subtype(s) involved inarrhythmogenesis[J]. J Mol Cell Cardiol,1990,22(10):1167-1175.
    [83] Cheng L, Ma S, Wei L X, Guo H T, Huang L Y, Bi H, Fan R, Li J, Liu Y L, WangY M, Sun X, Zhang Q Y, Yu S Q, Yi D H, Ma X L, Pei J M. Cardioprotective andantiarrhythmic effect of U50,488H in ischemia/reperfusion rat heart[J]. HeartVessels,2007,22(5):335-344.
    [84] Jin-Cheng L, Wen Y, Zhao Y, Quan-Yu Z, Shu-Miao Z, Hai-Tao G, Hui B,Yue-Min W, Xin S, Liang C, Qin C, Shi-Qiang Y, Kaye A D, Ding-Hua Y,Jian-Ming P. Anti-arrhythmic effects of kappa-opioid receptor and its changes inischemia and reperfusion[J]. Arch Med Res,2008,39(5):483-488.
    [85] Yu X C, Wang H X, Pei J M, Wong T M. Anti-arrhythmic effect of kappa-opioidreceptor stimulation in the perfused rat heart: involvement of a cAMP-dependentpathway[J]. J Mol Cell Cardiol,1999,31(10):1809-1819.
    [86] El-Sharkawy T Y, Al-Shireida M F, Pilcher C W. Vascular effects of some opioidreceptor agonists[J]. Can J Physiol Pharmacol,1991,69(6):846-851.
    [87] Li J, Zhang P, Zhang Q Y, Zhang S M, Guo H T, Bi H, Wang Y M, Sun X, Liu J C,Cheng L, Cui Q, Yu S Q, Kaye A D, Yi D H, Pei J M. Effects of U50,488H onhypoxia pulmonary hypertension and its underlying mechanism[J]. VasculPharmacol,2009,51(2-3):72-77.
    [88]裴建明,李娟. κ-阿片受体激动剂防治低氧性肺动脉高压的研究进展与展望[J].西安交通大学学报:医学版,2012(5):527-532.
    [89] Schultz J E, Rose E, Yao Z, Gross G J. Evidence for involvement of opioidreceptors in ischemic preconditioning in rat hearts[J]. Am J Physiol,1995,268(5Pt2): H2157-H2161.
    [90] Schultz J E, Hsu A K, Gross G J. Ischemic preconditioning in the intact rat heart ismediated by delta1-but not mu-or kappa-opioid receptors[J]. Circulation,1998,97(13):1282-1289.
    [91] Zhang W M, Wang H X, Xia Q, Wong T M. Inhibition of [3H]-U69593bindingand the cardiac effects of U50,488H by calcium channel blockers in the rat heart[J].Br J Pharmacol,1997,120(5):827-832.
    [92] Wu S, Li H Y, Wong T M. Cardioprotection of preconditioning by metabolicinhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor[J].Circ Res,1999,84(12):1388-1395.
    [93] Wang G Y, Wu S, Pei J M, Yu X C, Wong T M. Kappa-but not delta-opioidreceptors mediate effects of ischemic preconditioning on both infarct andarrhythmia in rats[J]. Am J Physiol Heart Circ Physiol,2001,280(1): H384-H391.
    [94]陈迈,贾国良,裴建明,周京军. KATP通道介导了刺激κ阿片受体诱导的延迟性心脏保护效应[J].第四军医大学学报,2003,24(16):1460-1462.
    [95]李娟,郭海涛,毕辉,仝黎,魏保真,肖安,王跃民,裴建明. U50,488H抗大鼠缺血/再灌注损伤心律失常作用与抑制钠通道电流有关[J].中国药理学通报,2007,23(3):331-336.
    [96] Zhang Q Y, Wang W, Shi Q X, Li Y L, Huang J H, Yao Y, Li J, Zhang S M, Fan R,Zhou J J, Guo H T, Wang Y M, Yin W, Pei J M. Antiarrhythmic effect mediated bykappa-opioid receptor is associated with Cx43stabilization[J]. Crit Care Med,2010,38(12):2365-2376.
    [97] Tong G, Sun Z, Wei X, Gu C, Kaye A D, Wang Y, Li J, Zhang Q, Guo H, Yu S, YiD, Pei J. U50,488H postconditioning reduces apoptosis after myocardial ischemiaand reperfusion[J]. Life Sci,2011,88(1-2):31-38.
    [98] Belkowski S M, Alicea C, Eisenstein T K, Adler M W, Rogers T J. Inhibition ofinterleukin-1and tumor necrosis factor-alpha synthesis following treatment ofmacrophages with the kappa opioid agonist U50,488H[J]. J Pharmacol Exp Ther,1995,273(3):1491-1496.
    [99]童光,魏旭峰,顾春虎,张权宇,李娟,易定华,裴建明. U50,488H抑制中性粒细胞在大鼠缺血/再灌注心肌中的聚集和TNF-α生成[J].心脏杂志,2010(4):491-495.
    [100]魏保真,肖安,毕辉,张鹏,郭海涛,王跃民,裴建明. U50,488H对缺血-再灌注大鼠心肌的直接保护作用[J].医学研究生学报,2006,19(2):136-138.
    [101] Quinn D A, Du HK, Thompson B T, Hales C A. Amiloride analogs inhibit chronichypoxic pulmonary hypertension[J]. Am J Respir Crit Care Med,1998,157(4Pt1):1263-1268.
    [102] Michelakis E D, Mcmurtry M S, Wu X C, Dyck J R, Moudgil R, Hopkins T A,Lopaschuk G D, Puttagunta L, Waite R, Archer S L. Dichloroacetate, a metabolicmodulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats:role of increased expression and activity of voltage-gated potassium channels[J].Circulation,2002,105(2):244-250.
    [103] Pei J M, Yu X C, Fung M L, Zhou J J, Cheung C S, Wong N S, Leung M P, WongT M. Impaired G(s)alpha and adenylyl cyclase cause beta-adrenoceptordesensitization in chronically hypoxic rat hearts[J]. Am J Physiol Cell Physiol,2000,279(5): C1455-C1463.
    [104]毕辉,朱妙章,王跃民,孙新,张鹏,槐勇,裴建明. U50,488H对大鼠血压的影响及机制[J].医学研究生学报,2004,17(5):404-407.
    [105] Pei J M, Sun X, Guo H T, Ma S, Zang Y M, Lu S Y, Bi H, Wang Y M, Ma H, MaX L. U50,488H depresses pulmonary pressure in rats subjected to chronichypoxia[J]. J Cardiovasc Pharmacol,2006,47(4):594-598.
    [106]陈迈,李兰荪,裴建明,王跃民,范谦,黄德明. U50,488H对大鼠腹主动脉的舒张作用及其机制[J].第四军医大学学报,2001,22(1):29-32.
    [107]裴建明,陈迈,王跃民,文竣,朱运龙. κ-阿片受体激动通过激活KATP通道对大鼠腹主动脉产生舒张作用[J].生理学报,2003,55(1):91-95.
    [108] Devine J O, Armstead W M. The role of nitric oxide in opioid-induced pial arteryvasodilation[J]. Brain Res,1995,675(1-2):257-263.
    [109] Chamley J H, Campbell G R, Burnstock G. Dedifferentiation, redifferentiation andbundle formation of smooth muscle cells in tissue culture: the influence of cellnumber and nerve fibres[J]. J Embryol Exp Morphol,1974,32(2):297-323.
    [110]林树新,高歌.亮氨酸脑啡肽对缺氧时肺动脉平滑平细胞增殖的影响[J].第四军医大学学报,1999,20(1):51-53.
    [111]裴建明,陈迈,毕辉,王跃民,朱运龙. κ-阿片受体在抑制心肌肥厚中的作用[J].心脏杂志,2002,14(6):465-468.
    [112]时全星,孙新,李娟,郭海涛,殷玥,毕辉,胡玉珍,王跃民,裴建明.肺微血管内皮细胞的原代培养[J].现代生物医学进展,2010(19):3609-3612.
    [113] Gavrieli Y, Sherman Y, Ben-Sasson S A. Identification of programmed cell death insitu via specific labeling of nuclear DNA fragmentation[J]. J Cell Biol,1992,119(3):493-501.
    [114] Li J, Shi Q X, Fan R, Zhang L J, Zhang S M, Guo H T, Wang Y M, Kaye A J, KayeA D, Bueno F R, Xu X Z, Yu S Q, Yi D H, Pei J M. Vasculoprotective effect ofU50,488H in rats exposed to chronic hypoxia: role of Akt-stimulated NOproduction[J]. J Appl Physiol,2013,114(2):238-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700