电渗析法脱除多元醇溶液中有机酸盐工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米经生物发酵、加氢催化裂解可以制取多元醇溶液,产品液中含有一定量的有机酸盐和无机盐(约20g/L),采用反应萃取和渗透汽化等方法分离多元醇产品在实际大规模生产中面临诸多问题,而采用传统精馏方法进行后处理时,多元醇溶液中存在的一定量有机酸盐和无机盐使得过程能耗过高、产品损失过大,阻碍了工业化生产的进行。
     电渗析技术(ED)是在离子交换基础上发展起来的一种高效膜分离技术,也是选择性分离电解质离子的有效方法之一,由于具有能耗低、操作简便、无环境污染等优点而日益受到重视,应用领域也在不断拓宽。
     本文研究了电渗析法脱除多元醇溶液中有机酸盐的可行性。发现,采用电渗析法脱除约95%的有机酸盐后可以显著降低发酵法生产多元醇的后处理能耗及产品损失,具有工业可行性。电渗析实验研究表明,极室溶液导电性能过低,易造成极室极化,适宜极室溶液电导率为8ms/cm;适宜的浓室初始浓度是0.01~0.02mol/L;三种离子交换膜对比实验表明:专用膜综合性能明显优于普通膜和均相膜,采用专用膜可以在控制浓淡室溶液体积比为1:4,在脱盐的同时达到浓室盐溶液浓缩的目的,且对脱盐性能影响不大,当浓淡室流速比为3:1时,多元醇损失率降到1%,淡室流速在实验范围内选择0.8~1cm/s为宜,膜对电压越高,能耗越高,在实验范围内膜对电压选择1V为宜。选择1.0cm/s操作流速和1伏膜对电压,1 L多元醇溶液达到95%脱盐率所需能耗为16.7W·h。
     模拟扩散实验表明,均相膜多元醇产品损失主要来自于浓差扩散,普通膜和化工分离专用膜多元醇损失则由于浓差扩散和漏渗,在控制与电渗析实验相同的条件下,浓淡室流速比为3:1,均相膜多元醇产品损失率为5%,普通膜为2.5%,专用膜为1%。
Polyatomic alcohol can be made from corn by microbial fermentation, Hydrotreating and catalaytic cracking,and it is contained organic acid and inorganic salt in Polyatomic alcohol solution (approximately 20g/L). However, the application of reactive extraction and pervaporation reported by literatures on separation of Polyatomic alcohol is still faced with many problems during industrial production. And if the traditional rectification method is used to purify the Polyatomic alcohol product, lots of organic salts existed in Polyatomic alcohol solution result in high energy consumption and loss of product.
     Electrodialysis (ED) is a membrane separation technology with high efficiency and used to separate ionic species selectively. Since its advantages of low energy consumption, convenient operation and minimal pollution, it has been paid more attentions to and applied in more and more fields.
     The possibility of removal of organic salts in polyatomic alcohol solution by ED method is studied in this paper. It is found that the energy consumption and loss of product decrease evidently during the downstream separation of polyatomic alcohol while about 95% of organic salts in polyatomic alcohol solution are removed by ED process.The experimental investigations show that if conductance of electrode solution is too low,it is easy to be polarized,and the suitable conductance of electrode solution is 8ms/cm ; the suitable initial concentration of concentrated compartment is 0.01~0.02mol/L; The contrasted experimental investigations on three kinds of Ion-exchange membranes show that Ion-exchange membrane used in chemical engineering specially exceeds homogeneous Ion-exchange membrane and general Ion-exchange membrane in integrated performance, the losing fraction of polyatomic alcohol can be less than 1% when the ratio by flow rates of concentrated and dilute compartments is 3:1, and when the ratio by volume of concentrated and dilute compartments is 1:4 ,the change of performances of Ion-exchange membrane used in chemical engineering specially can be ignored, so the organic salts solution can be concentrated while desalination. The suitable flow rate of dilute compartments in experimental extent is 0.8~1cm/s. The higher the operation potential is ,the higher the energy consumption is. The suitable operation potential applied on a pair of membranes is 1V. When the flow rates of concentrated and dilute compartments and the operation potential applied on a pair of membranes are selected to be is 1.0 cm/s and 1v respectively ,the energy consumption for removing 95% of organic salts in 1 L polyatomic alcohol solution is 16 .7W·h by ED process.
     The simulated diffusion experiment of polyatomic alcohol proves that the diffusion of polyatomic alcohol chiefly results in its loss when using homogeneous Ion-exchange membrane,but when using Ion-exchange membrane used in chemical engineering specially and general Ion-exchange membrane, the diffusion,infiltrating and leaking of polyatomic alcohol result in its loss. When the ratio by flow rates of concentrated and dilute compartments is 3:1, and controlling other operations conditions the same to ED experiment the losing fraction of polyatomic alcohol to homogeneous Ion-exchange membrane,general Ion-exchange membrane and Ion-exchange membrane used in chemical engineering specially is 5%, 2.5% and 1%, respectively.
引文
[1]龚燕,电渗析法用于1,3丙二醇发酵液脱盐的实验与模型研究.清华大学,2004年博士学位论文
    [2]瞿礼嘉.现代生物技术导论,高等教育出版社,北京,1998,8:136-141
    [3]沈菊华.国内外乙二醇生产发展概况,精细与专用化学品,13,22,2005
    [4] Arntz Dietrich and Wiegand Norbert. Method of preparing 1,3-propanediol [P]. US:5015789,1991
    [5] Haas Thomas, Jaeger Bernd,et al.Two-stage process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal[P]. US:6297408, 2001
    [6] A.MurphyMark,B.L Smith,A. Adolfo,et al.Process for making 1,3-diols from epoxides,[P].US:4935554,1990
    [7]刘海军,王剑锋,张代佳等,用克雷伯氏菌批式流加发酵法生产1,3-丙二醇的初步研究,食品与发酵工业,2001,27(7):4-7
    [8]赵红英,程可可,向波涛等.微生物发酵法生产1,3-丙二醇,精细与专用化学品,2002,13:21-23
    [9]张健,赵红英,刘宏娟等,以葡萄糖为辅助底物发酵生产1,3-丙二醇的研究,现代化工,2002,22(6):32-35
    [10] Homman T,Carmen T,Deckwer W D,et al. Fermentation of Glycerol to 1,3-glycerol by Klebsiella and Citrobacter Strains. Appl. Microbiol. Biotechnol., 1990,33:121~126
    [11]张从容,新型PTT聚酯材料开发进展,化工商品科技,1999(2): 17-19
    [12]张胜一,PTT纤维的生产与应用,纺织科学研究,1999(1): 43-45
    [13]瞿国华,PTT的工业开发及1,3丙二醇的合成,合成纤维工业,2000,23(4): 31-34
    [14]时钧,袁权,高从堦主编,膜技术手册,北京:化学工业出版社,2001: 421-423
    [15] Mohammadi T, Kaviani A. Water shortage and seawater desalination by electrodialysis. Desalination, 2003, 158: 267-270
    [16] Schugerl K. Integrated processing of biotechnology products. Biotechnol. Adv, 2000, 18 (7): 581-599
    [17] Blackburn J W. Electrodialysis applications for pollution prevention in the chemical processing industry. J. Air Waste Manage, 1999, 49(8): 934-942
    [18] Cauwenberg V, Peels J, Resbeut S. et al. Application of electrodialysis within fine chemistry. Sep. Purify. Technol., 2001,22-3 (1-3): 115-121
    [19] Janssen L J J, Koene L. The role of electrochemistry and electrochemical technology in environmental protection. Chem. Eng. J., 2002, 85 (2-3): 137-146
    [20] Koter S, Piotrowski P, Kerres J. Comparative investigation of ion-exchange membranes, J. Membr. Sci., 1999, 153: 83-90 [ 21]张维润,电渗析工程学,北京:科学出版社,1995 [ 22] Janyou Wang,Shichang Wang,Manrong Jin,A study of the electrodeionization Process—high-purity water production with a RO/EDI system Desalination ,2000(132)349-352
    [23]李学梅,刘茉娥,朱自强,电渗析在发酵法制有机酸中的应用,化学工业与工程,1996,13(3):27~37
    [24]李学梅,刘茉娥,发酵液中乳酸的电渗析法分离.高校化学工程学报,1998,12(3):231~235
    [25]龚燕,唐宇,王晓琳等,电渗析用于1,3-丙二醇发酵液脱盐的实验研究,膜科学与技术,2004.24(2)
    [26] Gong Y, Tang Y, Wang X L, et al.The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis.Desalination, 2004(161): 169~178
    [27]任建新,膜分离技术及其应用,北京:化学工业出版社,2003
    [28]邵刚,膜法水处理技术,北京:冶金工业出版社,1999
    [29]王学松,膜分离技术及其应用,北京:科学出版社,1994
    [30]刘茉娥,膜分离技术,北京:化学工业出版社,1998
    [31]乔宣,刘禄声,电渗析的奥秘,安徽科学技术出版社,1980
    [32]张根生等,电渗析水处理技术,北京:科学出版社,1981
    [33]中国海水淡化与水再利用学会电渗析专业委员会,水处理术,1985,11(5):12-14
    [34]王世昌,解利昕等,海水淡化工程,2003,3(1):179-184
    [35]陈翠仙,余立新,戴猷元,新膜及膜过程的研究现状及发展动态,水处理技术,1996,22 (6):307~313
    [36]徐铜文,孙树声,刘兆明等,双极膜电渗析的组装方式及其功用,膜科学与技术,2000,20(1 ):53~59
    [37]余立新,郭庆丰,黄科等,极稀醋酸废水处理的双极性膜电渗析法,膜科学与技术, 2000,20(2):31~33
    [38] Yu L X, Lin T, Guo Q F, et al. Relation between mass transfer and operation parameters in the electrodialysis recovery of Acetic acid . Desalination, 2003, 154: 147~152
    [39]林爱光,蒋维钧,余立新,双极性膜电渗析技术在维生素C生产中的应用研究,1998,18(5): 24~27
    [40]林涛,余立新,双极性膜电渗析技术在酒石酸生产中的应用研究,化学工程, 2002,30(3):58~61
    [41] Xu T W, Yang W H. Citric acid production by electrodialysis with bipolar membranes. Chem. Eng. Process, 2002, 41: 519~524
    [42] Pinacci P, Radaelli M. Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes. Desalination, 2002, 148: 177~179
    [43] Novalic, Senad, Okwor, et al. The characteristics of citric acid separation using electrodialysis with bipolar membranes. Desalination, 1996, 105: 277~282
    [44] Alvarez F, Alvarez R, Jose C, et al. Salicylic acid production by electrodialysis with bipolar membranes. J. Membr. Sci, 1997, 123: 61~69
    [45] Novalic S, Kongbangkerd T, Kulbe, K D, et al. Recovery of organic acids with high molecular weight using a combined electrodialytic process. J. Membr. Sci., 2000, 166: 99~104
    [46] Hong Li, Roberta Mustacchi,Christopher et al. An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery [J]. Tetrahedron, 2004, 60: 655~661
    [47] Datta R,Tsai S P, Bonsignore P, et al. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. PEMS Microbiology Reviews, 1995, 16: 221~231
    [48]唐宇,龚燕,王晓琳等.双极膜电渗析法综合处理发酵液中的机酸盐[J],清华大学学报(自然科学版)2005,45(9):1232-1235
    [49] Yu L X, Guo Q F, Hao J H, et al. Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis. Desalination, 2000, 129: 283~288
    [50] Liu K J,Chlanda F P,Nagsubramanian K.Application of bipolar membrane technology: A novel process for control of sulfur dioxide from flue gases. J.Membr.Sci,1978,3:57~70
    [51] Liu K J, Nagsubramanian K, Chlanda F P. Journal of Membrane Science, 1978, 3: 71~83
    [52]余立新,孟昭辉,林爱光等,双极性膜电渗析法在脱硫废液NaHSO3再生过程中的应用研究,环境科学,1996,17(6 ):40~42
    [53]保积庆,张启修,二室双极膜电渗析器在低浓度二氧化硫净化工艺中应用的可行性,膜科学与技术, 2003,l 23(2):32~36
    [54]徐铜文,何炳林,双极膜—新的工业革命,世界科技研究与发展,2000,22 (3):19~27
    [55] Millipore Product Bulletin, Lit.Ciool,1987
    [56] Ktaz.W E The Electrodialysis Reversal(EDR) Process.Desalination 1979,28:31
    [57]乔宣,刘禄声,电渗析的奥秘,安徽科学技术出版社,1980
    [58]刘国信等,膜法分离技术及其应用.中国环境科学出版社,1991
    [59] Boniardi N, Rota R, Nano G, et al. Analysis of the sodium lactate concentration process by electrodialysis. Sep. Technol., 1996, 6(1): 43-54
    [60] Narebska A, Kurantowicz M. Separation of fermentation products by membrane techniques.Ⅱ.conversion of lactate to lactic acid by electrodialysis. Separ. Sci. Technol., 1998, 33(7): 959-973
    [61] Chukwu U N, Cheryan M. Electrodialysis of acetate fermentation broths. Appl. Biochem. Biotech., 1999, 77-79: 485-499
    [62]李福勤,杨云龙,电渗析技术发展方向的思考,科技情报开发与经济,2001,11(4):56~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700