城镇污水改进型UASB工艺处理及后续除氮系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,UASB反应器处理城镇污水已有广泛应用,但城镇污水经UASB反应器处理后COD仍较高,难以达到国家城镇污水处理厂排放标准,且出水硫化物浓度较高,研究表明经厌氧处理后出水COD有很大部分由硫化物贡献;再则厌氧生物处理对废水中的氨氮去除较少.设法改进厌氧处理工艺来降低出水COD对促进城镇污水厌氧处理的推广具有很大现实意义,再加上适当后续工艺解决出水中氨氮问题,从而使厌氧处理更好地应用于城镇污水处理。
     本研究探讨了加入铁刨花后UASB反应器出水硫化物去除状况和机理以及UASB反应器整体处理性能的改善,并且研究了电化学法和吸附法两种后续工艺对UASB反应器出水氨氮的去除状况及应用可行性。主要研究结果如下:
     1.向UASB反应器加入铁刨花后,其出水平均COD值、硫化物、SS分别为47、8和8 mg/L,较加入铁刨花前分别减少了55、12和13 mg/L,均达到国家城镇污水厂污染物排放一级A标准。铁刨花在UASB反应器中形成Fe~(2+),与硫酸还原所产生的S~(2-)反应生成FeS沉淀,从而减少了出水硫化物浓度;溶解铁离子局部形成的水合化合物导致了出水SS、色度、浊度的减小,显著改善了出水表观性状。
     2.电化学反应器处理UASB反应器出水,氨氮去除效率随电流密度、氯离子浓度和水力停留时间增加而提高。当电流密度为15.4 mA·cm~(-2)时,采用水力停留时间30、60、90分钟,出水氨氮分别降至17、10、5 mg/L,相应达到国家城镇污水二级、一级B、一级A排放标准;当水力停留时间为90分钟时,采用电流密度为7.6、11.6、15.4 mA·cm~(-2),出水氨氮可分别达到二级、一级B、一级A标准。实际运用中应根据能耗及排放标准等情况选择适合的工艺条件。废水初始COD浓度对氨氮电化学去除有一定影响,COD含量越高,氨氮的去除速率越慢,反之氨氮去除速率越快。
     3.静态吸附研究中,沸石、Na-沸石及蛭石、Na-蛭石对氨氮的吸附符合Freundlich、Langmuir等温式,更适用于Langmuir等温式。沸石、Na-沸石的静态饱和吸附量分别为8.09、13.55 mg/g,远高于蛭石。沸石钠型改性显著提高其吸附容量和吸附效果,具有很高的应用价值。动态吸附吸附柱吸附率与进水氨氮浓度有关,氨氮进水浓度增大,沸石吸附达饱和的时间减短。首次提出电化学再生饱和沸石新工艺,采用电化学再生仅需3 h,而采用NaCl再生213 mg/L浓度的氨氮溶液需15 h,采用NaCl+NaOH(重量比为3:7)再生也需要3.5 h,且由于电化学过程将氨氮氧化成氮气,解决了再生废液的处理困难,实现无氨氮排放。
In recent years,domestic treatment using UASB reactor has been widely applied. However,the effluent COD concentrations of domestic sewage from UASB reactor are still high,difficult to reach the national emission standards of domestic sewage treatment plants(level 2) and a higher concentration of effluent sulfide.Studies showed that a large portion of the anaerobic treated effluent COD was contributed to sulphide and the anaerobic biological treatment of waste water in basically did not remove ammonia nitrogen.Therefore,the efforts of improving the anaerobic process in order to reduce effluent COD have great practical significance to promote the anaerobic treatment of domestic sewage.Appropriate follow-up processes are also needed to solve the problem of ammonia nitrogen in effluents,so that anaerobic treatment can be better applied in domestic sewage water treatment.
     This study discussed the removal of sulfide and its mechanisms after adding iron particles into UASB reactor,and the overall improved performance of UASB reactor. This study also researched the removal of ammonia nitrogen through two kinds of follow-up process of UASB reactor(electrochemistry and absorption) and their feasibilities.The main results are as follows:
     1.After adding iron shavings into UASB reactor,the average COD,sulfide,SS in the effluents were 47,8 and 8 mg/L,respectively,reduced by 55,12 and 13 mg/L, respectively,comparing with the values before adding iron shavings.Both reach the national emission standards of domestic sewage treatment plants(level 1A).Iron shavings formed Fe~(2+) in UASB reactor,and S~(2-) generated by sulfate reduction formed FeS precipitation,thus reducing the effluent sulphide;hydrated compounds formed by dissolved iron in some parts have led to the decreases of effluent SS,color and turbidity,significantly improved the apparent traits of effluents.
     2.In Electrochemical treatment of UASB reactor effluents,the ammonia nitrogen removal efficiency increased with the raises of current density,chloride ion concentration and HRT.If the current density was 15.4 mA·cm~(-2),the effluent ammonia nitrogen reduced to 17,10,5 mg/L,when HRT was 30,60,90 minutes, respectively,reaching the national emission standards of domestic sewage treatment plants(level 2,level 1B and level 1A,respectively).If HRT was 90 minutes,the effluent ammonia nitrogen could reach the national emission standards of domestic sewage treatment plants(level 2,level 1B and level 1A,respectively),when the current density was 7.6,11.6,15.4 mA·cm~(-2),respectively.In accordance with the actual use of energy consumption and emission standards,appropriate process conditions were chosen.The initial COD concentration in wastewater had influence on electrochemical removal of ammonia nitrogen,to a certain extent.The higher the COD content was,the slower the removal rate of ammonia nitrogen was,and vice versa.
     3.In the static adsorption study,the adsorptions of ammonia nitrogen by four kinds of materials followed Freundlich or Langmuir isotherm,especially Langrnuir isotherm.The static saturated adsorption capacity of Zeolite and Na-zeolite was 8.09 and 13.55 mg/g,respectively,much higher than that of vermiculite.Na-modification of Zeolite significantly increased its adsorption capacity and adsorption effect,which is of high value.In the dynamic adsorption study,the adsorption rate of adsorption column had relationship with influent concentration of ammonia nitrogen.The higher the influent concentration was,the shorter the time of zeolite reaching saturated adsorption was.The new technique of electrochemical regeneration of saturated zeolite was proposed for the first time.Zeolite was used in 213 mg/L ammonia nitrogen solution.The regeneration of zeolite by electrochemistry cost only 3 h,while it would cost around 15 h using NaCl,and 3.5 h using NaCl + NaOH(weight ratio of 3:7).In electrochemical process,ammonia nitrogen could be oxidized into nitrogen, resolving the difficulties of renewable liquid treatment,and realizing no ammonia nitrogen emissions.
引文
[1]国家环境保护总局.2006年环境状况公告[EB/OL].http://www.zhb.gov.cn.2006.
    [2]广东省环保局,深圳市环保局.城镇污水处理技术与实例[M].广州:广东科技出版社,2003.
    [3]Lettinga G,Rebac S,Zeeman G.Chellenge of psychrophlic anaerobic wastewater treatment[J].Trends in Biotech,2001,19(9):363-370.
    [4]Verstraete W,Vanderivere P.Broader and newer applications of anaerobic digestion[A].In Proceedings of the 8~(th) International Conference of Anaerobic Digestion[C].Sendal:Sendal International Center,1997,67-74.
    [5]Lens P,Zeeman G,Lettinga G.Decentralised Sanitation and Reuse--Concepts,Systems and Implemenlation[M].London:IWA publishing,2001.
    [6]Alaerts G J,Veenstra S,Bentvlsen M,et al.Feasibility of anaerabic sewage treatment in sanitation strategies in developing countries[J].Wat Sci Tech,1993,27(1):179-186.
    [7]Lettinga G.Anaerobic treatment of sewage and low strength wastewater,In Proc Anaerobic Diestion[C].Amsterdam:Elsevier Biomedical Press,1981,271 - 291.
    [8]Vieira S M M,Souza M E.Development of Technology for the Use of UASB Reactor in Domestic Sewage Treatment[J].Wat Sci Tech,1986,18(12):109-121.
    [9]Van Der Last A R M,Lettinga G.Anaerobic Treatment of Domestic Sewage under Moderate Climatic(Du tch) Conditions Using Upflow Reactors at Increased Superficial Vel-ocities [J].Wat Sci Tech,1992,25(7):167-178.
    [10]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002.
    [11]Frankin R J.Application of the Biobed Upflow Flyidized Bed Process for Anaerobic dilate wastewater at psychrophilic temperatures[J].Water Research,1998,70(2):155-160.
    [12]Dague R R,Bunik G G,Ellis T G.Anaerobic sequencing batch reactor treatment of Waste Water Treatment[J].Wat.Sci.Tech.,1992,25(7):378.
    [13]张耀斌.铁锈及Fe(OH)_3处理硫酸盐废水厌氧方法试验[J].中国环境科学,1999,19(6):493-495.
    [14]Nielsen A,Piet L,Tes V,et al.Sulfide-iron interactions in domestic wastewater from a gravity sewer[J].Water Research.2005,39(12):2747-2755.
    [15]关宏讯,张国珍,赵家慧.含硫废水预处理方案的经济技术性研究[J].甘肃环境研究与监测,2003,16(4):303-306.
    [16]高 远.电石渣浆废水处理研究[J].化工设计,2006,16(2):41-45.
    [17]王凯军等.UASB工艺的理论于工程实践[M].北京:中国环境科学出版社,2002.
    [18]Colleran E.,Finnegan S.and Keefe R.B.O.Anaerobic Digestion of High Sulphate-Containing Wastewater from the Industrial Production of Critic Acid[J].International Symposia on Anaerobic Digestion-South Africa,1994,7:160.
    [19]Olsson,L.E and Schleicher O.Anaerobic-Aerobic Treatment of Black Liquorfrom an NSSC Pulp Mill Including a Sulphur Recovery Plant[J].International Symposia on Anaerobic Digestation South Africa,1994,7:170.
    [20]Yoda M.,Kitagawa M,and Miyaji Y.Long Term Competition Between a Sulfate-Reducing and Methane-Producing Bacteria for Acetate in Anaerobic Biofilm[J].Wat.Res.,1987,21:1547-1556.
    [21]Buisman et al.Biotechnological Sulfide Removal with Oxygen[J].Ph.D.Thesis.The Netherlands,1994.
    [22]Choi E.and Rim J.M.Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment[J].Water Science and Technology,1991,23:1259-1264.
    [23]胡忠鲠.现代化学基础[M].北京:高等教育出版社,2000.
    [24]孙德智.环境工程中的高级氧化技术IM].北京:化学工业出版社,2002.
    [25]王 令,丁忠浩.电凝聚法脱除高浓度染料废水色度的研究[J].工业安全与环保,2004,30(9):3-5.
    [26]王蓉沙,邓皓,肖 遥,等.电絮凝法处理油田污水[J].环境科学研究,1999,12(4):30-32.
    [27]董晓丹,王恩德,王晨煜.用电凝聚装置去除废水中重金属离子[J].安全与环境学报2002,2(1):24-27.
    [28]陈希慧,王志江,黄初升,等.铁阳极电絮凝法处理纸业废水的研究[J].广西大学学报(自然科学版),2003,28(2):87-90.
    [29]Chen G H.Electrochemical technologies in wastewater treatment[J].Separation Purification Technology,2004,38:11-41.
    [30]陶映初,陶举洲.环境电化学[M].北京:化学工业出版社,2003.
    [31]Eckenfelder W W Jr.Industrial Water Pollution Control(third edition)[M].New York:McGraw-Hill Companies,2000.
    [32]姜力强,郑精武,刘 昊,等.电解法处理含氰含铜废水工艺研究[J].水处理技术2004,30(3):153-156.
    [33]吴星五.电化学法水处理新技术-降解有机废水[J].环境科学学报,2000,20(增):80-84.
    [34]Naumczyk J,Szpyrkowicz L,Zilio-Grandi F.Electrochemical treatment of textile wastewater[J].Water Science and Technology,1996,34(11):17-24.
    [35]刘乐文,欧义芳,黄秋莲.纸浆碱处理段废水的电化学降解研究[J].林产化学与工 业2002,22(2):51-53.
    [36]Chiang L C,Chiang J E,Wen T C.Indirect oxidation effect in electrochemical oxidation treatment of landfill leaehate[J].Water Research,1995,29(2):671-678.
    [37]Vlyssides A G,Loizidou M,Karlis P K,et al.Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J].Journal of Hazardous Materials,1999,70(1-2):41-52.
    [38]Ran N N,Somasekhar K M,Kaul S N,et al.Eletrochemical oxidation of tannery wastewater[J].Journal of Chemical Technology and Biotechnology,2001,76:1124-1131.
    [39]Brillas E,Mur E,Sauleda R,Sànchez L,et al.Aniline mineralization by AOP's:anodic oxidation,photocatalysis,electro-Fenton and photoeletro-Fenton processes[J].Applied Catalysis,1998,16:31-42.(4):289-291.
    [40]李小明,王 敏,矫志奎,等.电解氧化处理垃圾渗滤液研究[J].中国给水排水,2001,17(8):
    [41]王 鹏,刘伟藻,方汉平.垃圾渗滤液中氨氮的电化学氧化[J].中国环境科学,2000,20 14-17.
    [42]Marincic L,Leitz F B.Eletro-oxidation of ammonia in waste water[J].Journal of Applied Electrochemistry,1978,8:333-345.
    [43]林海波,徐 红,杨喜波,等.在流动式电解槽中氨氮废水的间接电氧化[J].环境化学 2005,24(2):146-149.
    [44]Panizza M,Cerisola G.Eletrochemical oxidation as a final treatment of synthetic tannery wastewater[J].Environmental Science and Technology,2004,38:5470-5475.
    [45]褚衍洋,徐迪民.垃圾渗滤液电化学催化氧化法深度处理研究[J].上海环境科学2003,22(11):822-824.
    [46]王 鹏,刘伟藻,方汉平.电化学氧化与厌氧技术联用处理垃圾渗沥水[J].环境科学2001,22(5):70-73.
    [47]Moraes P B,Bertazzoli R.Eletrodegradation of landfill leachate in a flow electrochemical reactor[J].Chemosphere,2005,58:41-46.
    [48]Vlyssides A G,Karlis P K,Mahnken G.Influence of various parameters on the electrochemical treatment of landfill leachate[J].Journal of Applied Electrochemistry,2003,33:155-159.
    [49]李庭刚,陈 坚,张国平.电化学法处理高浓度垃圾渗滤液的研究[J].上海环境科学2003,22(12):892-897.
    [50]Vlyssides A G,Karlis P K,Rori N,et al.Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J].Journal of Hazardous Materials,2002, 95(1-2):215-226.
    [51]Vlyssides A G,Israides C J.Detoxification of tannery waste liquors with an electrolysis system[J].Environmental Pollution,1997,(1-2):147-152.
    [52]Hege K V,Verhaege M,Verstraete W.Eletro-oxidative abatement of low-salinity reverse osmosis membrane concentrates[J].Water Research,2004,38:1550-1558.
    [53]Alafara C G,Kawamori T,Nomura N,et al.Electrolytic removal of ammonia from brine wastewater:scale-up,operation and pilot-scale evaluation[J].Journal of Chemical Technology and Biotechnology,2004,79:291-298.
    [54]Athanasopoulos N S.Use of various processes for pilot plant treatment of wastewater from a wood- processing factory[J].Journal of Chemical Technology and Biotechnology,2001,76:245-250.
    [55]Vanlangendonck Y,Corbisier D,Lierde A V.Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants(ELONITA~(TM)technique)[J].Water Research,2005,39:3028- 3034.
    [56]Haag W R,Hoigné J,Bader H.Improved ammonia oxidation by ozone in the present of bromide ion during water treatment[J].Water Research,1984,18(9):1125-1128.
    [57]Wang P,Lau I W C,Fang H H P.Electrochemical oxidation of leachate pretreated in an upflow anaerobic sludge blanket reactor[J].Environmental Technology,2001,22:373-381.
    [58]Benefield L D,Judkins J F,Weand B L.Process chemistry for water and wastewater treatment[M].New Jersey:Prentice-hall,Englewood cliffs,1982.
    [59]Lin S H,Wu C L.Electrochemical removal of nitrite and ammonia for aquaculture[J].Water Research,1996,30(3):715-721.
    [60]张招贤.钛电极工学[M].北京:冶金工业出版社,2003.
    [61]麦穗海,吴志超,陈绍伟.沸石强化生物脱氮工艺研究.上海环境科学,2002,21(10):640-645.
    [62]罗鹏安,吴志超.沸石联合生物作用处理焦化废水的研究.工业水处理,2004,24(5):21-24.
    [63]Jung J.Y.,Chung Y.C.,Shin H.S.,Son D.H.Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonia exchange of zeolite in modifies SBRprocess.Wat.Res.,2004,38:247-254.
    [64]张曦,吴为中,温东辉,李文奇,唐孝炎.氨氮在天然沸石上的吸附及解吸.环境化学,2003,22(3):166-171.
    [65]赵丹,王曙光,栾兆坤.改性斜发沸石吸附水中氨氮的研究.环境化学,2003,22(1):59-63.
    [66]赵雅萍,金伟,曹达文,高廷耀,陆奇斌.钙型沸石对生活污水中氨氮去除的研究.离子交换与吸附,2004,20(5):458-463.
    [67]胡曰利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响.中南林学院学报,2004,24(1):30-33.
    [68]聂发辉.系统评价天然蛭石吸附氨氮的效果.四川环境,2004,23(4):15-19.
    [69]薛玉,李广贺.沸石结构对氨氮吸附性能的影响.环境污染与防治,2003,25(4):209-239.
    [70]陈方明,陆琦,曹李靖,于吉顺.天然沸石的加工技术以及在水处理中的应用.安全与环境工程,2004,11(1):19-22.
    [71]刘玉亮,罗固源,阙添进,罗富金.斜发沸石对氨氮吸附性能的试验分析.重庆大学学报,2004,27(1):62-65.
    [72]国家环境保护总局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.
    [73]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [74]任南琪,王爱杰.厌氧生物技术的原理与应用[M].北京:化学工业出版社,2004.
    [75]Carlos S.Anaerobic treatment of domestic sewage:Established technologies and per-spectives [J].Water Sci.Tech,2002,45(10):181-186.
    [76]Tran T,Warounsak L and Ajit P.A.Lead removal through biological sulfate reduction process[J].Bioresource Technology,2007,98(13):2538-2548.
    [77]张旭栋,刘 燕,邓丛蕊.常温下膨胀颗粒污泥床(EGSB)反应器处理城市污水[J].复旦学报(自然科学版),2006,45(3):85-90.
    [78]克 舍 H.金属腐蚀[M].北京:化学工业出版社,1984.
    [79]徐文英,周荣丰,高廷耀.催化铁内电解法处理难降解有机废水[J].上海环境科学,2003,22(61:402-405.
    [80]Xu L C,Fang H H P,and Chan K Y.Atomic Force Microscopy Study of Microbiologically Influenced Corrosion of Mild Steel[J],Journal of The Electrochemical Society,1999,146(12):4455-4460.
    [81]Fang H H P,Chan K Y,Xu L C.Quantification of bacterial adhesion forces using atomic force microscopy(AFM)[J],Journal of Microbiological Methods,2000,40:89-97.
    [82]Joek S J,Kim H S,Lee Y W.Effect of iron media on the treatment of domestic wastewater to enhance nutrient removal efficiency[J].Process Biochemistry.2003,38:1767-1773.
    [83]刘福兴,李义久.电化学催化氧化降解有机物的机理及研究进展[J].四川环境, 2005,24(1):52-56.
    [84]杨爽,吴志超.水质和搅拌速率对天然沸石铵离子交换平衡的影响.水处理技术,2005,31(9):29-32.
    [85]Booker N.A.,Cooney E.L.,Priestley A.J.Ammonia removal from sewage using natural Australian zeolite.Wat.Sci.Tech.,1996,34(9):17-24.
    [86]王德华,费维扬.钠改性天然斜发沸石对铵离子的交换性能.离子交换与吸附,2002,18(2):144-149.
    [87]杜冬云,王伟利,于凤娥,揭武.沸石处理氨氮废水的研究.河南化工,2003(9):15-17.
    [88]何杰,刘玉林.动态法研究天然沸石去除氨氮效果.水处理技术,1999,25(6):358-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700