聚合物接枝荷电介质的蛋白质吸附和辅助复性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物接枝的离子交换色谱(IEC)介质比传统非接枝介质具有更高的吸附容量(Q)和传质速率(D),但其高容量吸附和快速传质机理还不清楚。本文围绕聚合物接枝的琼脂糖离子交换介质的性能和应用,开展了系统研究。
     首先研究了葡聚糖接枝对γ球蛋白在IEC和混合模式作用色谱(MMC)介质上吸附的影响。结果表明,在IEC中,Q值和D值均随葡聚糖接枝量增加而增加。这是由于带电葡聚糖层提供三维吸附空间有利于蛋白质吸附,葡聚糖层存在静电耦合等作用促进传质。在MMC中,Q值随葡聚糖接枝量增加而降低,而D值与接枝无关。这是由于疏水性较强的葡聚糖链相互结合导致接枝层塌缩,对传质无贡献。而且塌缩的葡聚糖层屏蔽了部分MMC配基,不利于蛋白质吸附。
     针对葡聚糖接枝介质中离子交换配基同时存在于接枝层与基质表面上的问题,本文制备了一系列不同离子交换容量(IC,100–1220mmol/L)的聚乙烯亚胺(PEI)接枝介质,以单独研究接枝层在蛋白质吸附中作用。结果表明,存在一个临界IC(cIC),Q值和D值在IC>cIC时快速增大。IC>cIC时,PEI链以其最少位点与琼脂糖连接,灵活的PEI链向孔内空间伸展,且临近的PEI链间距足够近使之彼此能够通过链振荡发生接触。因此,伸展的PEI链提供三维吸附空间,有利于蛋白质吸附;邻近的PEI链可通过链的摆动传递被吸附蛋白质而促进传质,即发生“链传递”作用。PEI接枝介质的Q值对离子强度(IS)的敏感程度低于传统非接枝介质,这是由于蛋白质可利用的孔体积随着IS增加而增加。PEI接枝介质的D值随IS增加先增加后减小。这是由于“链传递”作为一种表面扩散方式,同时依赖于蛋白质的吸附密度和吸附强度,这两个因素均与IS密切相关。在IC>cIC介质中,D值对IS的敏感程度明显大于在ICcIC介质中的快速传质做出贡献。
     为拓展PEI接枝介质的应用,将PEI接枝介质应用于同电荷溶菌酶的氧化复性。系统研究了介质性质的影响,发现IC是影响介质辅助复性效果的首要因素,介质比表面也对复性收率有一定影响,但配基结构没有影响。在研究中还发现,Sepharose及以Sepharose为基质的阴离子交换色谱介质可微量吸附带正电的蛋白质,吸附容量可达60μg/mL。这种微量吸附是由于琼脂糖基质上残留的微量酸性基团。提高流动相盐浓度和介质电荷密度(如偶联PEI)可减弱这种吸附作用。
     本研究将推动聚合物接枝IEC介质的蛋白质吸附理论发展及其在生物分离中的应用。
Polymer grafted resins for ion exchange chromatography (IEC) have been foundto possess high protein adsorption capacity (Q) as well as very high uptake rate (D),as compared to the traditional IEC resins with ion-exchange groups directly on thematrix surface. However, the mechanism origins of their advantages are not clearlyknown. Herein, we focused on the performance and application of the polymer graftedion exchangers, and the details of this work are summarized as follows.
     Firstly, the roles of the grafted dextran layer on the adsorption of γ globulin toIEC resins and mixed-mode chromatography (MMC) resins were investigated. It isshown that, in IEC, both the Q and D values increased with increasing dextran density.It is considered that the binding volume provided by the charged dextran layerbenefitted protein adsorption and the mechanisms (i.e. electrostatic coupling ofdiffusion fluxes) existed in the dextran layer facilitated mass transfer. However, inMMC, the Q value decreased with increasing dextran density, and the D value wasindependent of the dextran density. It is because that the hydrophobic interactionbetween the dextran chains caused the collapse of the dextran layer, which contributedlittle to mass transfer. Additionally, the collapsed dextran layer shield parts of theMMC ligands, giving rise to fewer available binding sites for protein.
     Considering the ionic groups in dextran-grafted resins existed in both thegrafting layer and on the matrix surface, poly(ethylenimine)(PEI) modifiedSepharose FF of10different ionic capacities (ICs,100–1220mmol/L) were preparedto investigate the role of the grafting layer on protein adsorption independently,excluding the influence of ligand distribution. It is found that there was a critical IC(cIC) or PEI density, above which both the Q and D values increased sharply. AtIC>cIC, the PEI chains were bonded to the gel surface at minimum numbers ofcoupling points and the polymers became extended to the pore space with greatflexibility. In addition, adjacent PEI chains became close enough to each other.Consequently, the extended three-dimensional PEI-layer provided greater accessibilityfor protein binding and the―chain delivery‖effect among the adjacent PEI chains bythe swings of the flexible chains facilitated transport of adsorbed protein molecules.The Q values of the PEI-Sepharose FF resins were less sensitive to salt concentrationthan both the commercial non-grafting resins and dextran-grafted ion exchangersreported in literature. It could be interpreted by the increase of pore accessibility with increasing IS. The D values of the PEI-Sepharose resins increased first and thendecreased with increasing IS. It was attributed to the dependencies of the―chaindelivery‖effect on protein capacity and binding strength, both of which are related toIS. Additionally, the PEI-Sepharose resins of ICs>cIC exhibited drastic changes of Dvalues with increasing IS, while those of ICscIC.
     In order to expand the application of PEI grafted resins, they were used in thefacilitated refolding of like-charged lysozyme. The effects of like-charged solid phaseproperties on refolding were investigated systematically. The results showed thatcharged group density of charged particles played the most important part in theenhancing effect. The higher the charged group density, the less the charged resinswere required to achieve a desired facilitating effect. As compared to charged groupdensity, the effects of particle size and pore size were secondary. At the same chargedensity, the refolding yield was independent of ligand chemistry. Besides, we haveobserved that positively charged proteins (lysozyme and cytochrome C) are adsorbedon Sepharose gel and Sepharose-based anion-exchangers, in a capacity of10–60μg/mL. Because the trace adsorption is usually ignored in IEC practices, it may tosome extent degrade the product purity and/or recovery in large scale processing. Theresults show that the trace adsorption was caused by the residual negatively chargedgroups, most probably sulfate groups, in the agarose material. The undesirable traceadsorption was reduced by increasing NaCl concentration and/or coupling cationgroups (i.e. PEI).
     This work will promote the devolopment of protein adsorption theories andbenefit the potential use of polymer-grated IEC resins in bioseparation processes.
引文
[1]孙彦,生物分离工程(第二版),北京:北京工业出版社,2005
    [2]严希康,生物分离技术(第一版),北京:化学工业出版社,2001
    [3] Follman DK, Fahrner RL. Factorial screening of antibody purificationprocesses using three chromatography steps without protein A. J ChromatogrA,2004,1024(1–2):79–85
    [4] Stanker LH, Vanderlaan M, Juarez-Salinas H. One-step purification of mousemonoclonal antibodies from ascites fluid by hydroxylapatite chromatography.J Immunol Methods,1985,76(1):157–169
    [5] Orskov H, Thomsen HG, Yde H. Wick chromatography for rapid and reliableimmunoassay of insulin, glucagon and growth hormone. Nature,1968,219(5150):193–195
    [6] Guyda HJ, Friesen HG. The separation of monkey prolactin from monkeygrowth hormone by affinity chromatography. Biochem Biophys Res Commun,1971,42(6):1068–1075
    [7] Garman RD, Taku A, Fan DP. Chromatographic separation from knowncytokines of a helper factor necessary for the generation of murine cytolytic Tlymphocytes. J Immunol,1984,132(4):1879–1887
    [8] K ck A, Luger TA. High-performance liquid chromatographic separation ofdistinct epidermal cell-derived cytokines. J Chromatogr A,1985,326(0):129–136
    [9] Karlsson E, Hirsh I. Ion exchange chromatography. in: Janson JC, ProteinPurification: Principles, High Resolution Methods, and Applications. NewJersey: John Wiley&Sons. Inc.,2011,93–94.
    [10] Hjertén S. Some general aspects of hydrophobic interaction chromatography. JChromatogr A,1973,87(2):325–331
    [11] Porath J, Sundberg L, Fornstedt N, et al. Salting-out in amphiphilic gels as anew approach to hydrophobic adsorption. Nature,1973,245(5426):465–466
    [12] Machold C, Deinhofer K, Hahn R, et al. Hydrophobic interactionchromatography of proteins: I. Comparison of selectivity. J Chromatogr A,2002,972(1):3–19
    [13] To BCS, Lenhoff AM. Hydrophobic interaction chromatography of proteins: I.The effects of protein and adsorbent properties on retention and recovery. JChromatogr A,2007,1141(2):191–205
    [14] Cuatrecasas P, Wilchek M, Anfinsen CB. Selective enzyme purification byaffinity chromatography. Proc Natl Acad Sci USA,1968,61(2):636–643
    [15] Schachat F, Garcea RL, Epstein HF. Myosins exist as homodimers of heavychains: Demonstration with specific antibody purified by nematode mutantmyosin affinity chromatography. Cell,1978,15(2):405–411
    [16] Stoeckel K, Gagnon C, Guroff G, et al. Purification of nerve growth factorantibodies by affinity chromatography. J Neurochem,1976,26(6):1207–1211
    [17] Tiselius A, Hjertén S, Levin. Protein chromatography on calcium phosphatecolumns. Arch Biochem Biophys,1956,65(1):132–155
    [18] Urist MR, Huo YK, Brownell AG, et al. Purification of bovine bonemorphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad SciUSA,1984,81(2):371–375
    [19] Fountoulakis M, Takács MF, Berndt P, et al. Enrichment of low abundanceproteins of Escherichia coli by hydroxyapatite chromatography.Electrophoresis,1999,20(11):2181–2195
    [20] Burton SC, Haggarty NW, Harding DRK. One step purification of chymosinby mixed mode chromatography. Biotechnol Bioeng,1997,56(1):45–55
    [21] Burton SC, Harding DRK. High-density ligand attachment to brominated allylmatrices and application to mixed mode chromatography of chymosin. JChromatogr A,1997,775(1–2):39–50
    [22] Burton SC, Harding DRK. Bifunctional etherification of a bead cellulose forligand attachment with allyl bromide and allyl glycidyl ether. J Chromatogr A,1997,775(1–2):29–38
    [23] Gao D, Lin DQ, Yao SJ. Protein adsorption kinetics of mixed-mode adsorbentwith benzylamine as functional ligand. Chem Eng Sci,2006,61(22):7260–7268
    [24] Shi QH, Cheng Z, Sun Y.4-(1H-imidazol-1-yl) aniline: A new ligand ofmixed-mode chromatography for antibody purification. J Chromatogr A,2009,1216(33):6081–6087
    [25] Yon RJ. Chromatography of lipophilic proteins on adsorbents containingmixed hydrophobic and ionic groups. Biochem J,1972,126(3):765–767
    [26] Crowther JB, Hartwick RA. Chemically bonded multifunctional stationaryphases for high-performance liquid chromatography. Chromatographia,1982,16(1):349–353
    [27] Burton SC, Harding DRK. Hydrophobic charge induction chromatography:salt independent protein adsorption and facile elution with aqueous buffers. JChromatogr A,1998,814(1–2):71–81
    [28] Zhao G, Peng G, Li F, et al.5-Aminoindole, a new ligand for hydrophobiccharge induction chromatography. J Chromatogr A,2008,1211(1–2):90–98
    [29] Zhao G, Dong XY, Sun Y. Ligands for mixed-mode protein chromatography:Principles, characteristics and design. J Biotechnol,2009,144(1):3–11
    [30] Yang Y, Geng X. Mixed-mode chromatography and its applications tobiopolymers. J Chromatogr A,2011,1218(49):8813–8825
    [31] Cover TL, Blaser MJ. Purification and characterization of the vacuolatingtoxin from Helicobacter pylori. J Biol Chem,1992,267(15):10570–10575
    [32] Stuehr DJ, Cho HJ, Kwon NS, et al. Purification and characterization of thecytokine-induced macrophage nitric oxide synthase: an FAD-andFMN-containing flavoprotein. Proc Natl Acad Sci USA,1991,88(17):7773–7777
    [33] Dunn BE, Campbell GP, Perez-Perez GI, et al. Purification andcharacterization of urease from Helicobacter pylori. J Biol Chem,1990,265(16):9464–9469
    [34] Hagel L. Gel filtration: Size exclusion chromatography. in: Janson JC, ProteinPurification: Principles, High Resolution Methods, and Applications. NewJersey: John Wiley&Sons, Inc.,2011,51–91.
    [35] Fish WW, Mann KG, Tanford C. The estimation of polypeptide chainmolecular weights by gel filtration in6M guanidine hydrochloride. J BiolChem,1969,244(18):4989–4994
    [36] Hartmann WK, Saptharishi N, Yang XY, et al. Characterization and analysis ofthermal denaturation of antibodies by size exclusion high-performance liquidchromatography with quadruple detection. Anal Biochem,2004,325(2):227–239
    [37] Locascio GA, Tigier HA, Battle Am del C. Estimation of molecular weights ofproteins by agarose gel filtration. J Chromatogr,1969,40(3):453–457
    [38] Nilsoon G, Nilsson K. Molecular-weight distribution determination of clinicaldextran by gel permeation chromatography. J Chromatogr A,1974,101(1):137–153
    [39] Fishman ML, Neucere NJ. Partial characterization of tannin-proteincomplexes in five varieties of grain sorghum by automated gel filtrationchromatography. J Agr Food Chem,1980,28(2):477–480
    [40] Halász I, Martin K. Pore sizes of solids. Angew Chem Int Ed Engl,1978,17(12):901–908
    [41] Knox JH, Ritchie HJ. Determination of pore size distribution curves bysize-exclusion chromatography. J Chromatogr A,1987,387(0):65–84
    [42] Knox JH, Scott HP. Theoretical models for size-exclusion chromatography andcalculation of pore size distribution from size-exclusion chromatography data.J Chromatogr A,1984,316(0):311–332
    [43] Hagel L, stberg M, Andersson T. Apparent pore size distributions ofchromatography media. J Chromatogr A,1996,743(1):33–42
    [44] Hagel L. Pore size distributions. in: Dubin PL, Aqueous size-exclusionchromatography. Amsteredam: Elsevier,1988,119–155.
    [45] Kuga S. Pore size distribution analysis of gel substances by size exclusionchromatography. J Chromatogr A,1981,206(3):449–461
    [46] Mazsaroff I, E. Regnier F. Phase ratio determination in an ion-exchangecolumn having pores partially accessible to proteins. J Chromatogr A,1988,442(0):15–28
    [47] Guan H, Guiochon G. Study of physico-chemical properties of some packingmaterials: I. Measurements of the external porosity of packed columns byinverse size-exclusion chromatography. J Chromatogr A,1996,731(1–2):27–40
    [48] Barth HG, Boyes BE, Jackson C. Size exclusion chromatography and relatedseparation techniques. Anal Chem,1998,70(12):251R–278R
    [49] Barth HG, Boyes BE, Jackson C. Size exclusion chromatography. Anal Chem,1994,66(12):595R–620R
    [50] DePhillips P, Lenhoff AM. Pore size distributions of cation-exchangeadsorbents determined by inverse size-exclusion chromatography. JChromatogr A,2000,883(1–2):39–54
    [51] Ralph Himmelhoch S. Chromatography of proteins on ion-exchangeadsorbents. in: William BJ, Methods Enzymol. San Diego: Academic Press,1971,273–286.
    [52] Carta G, Ubiera AR, Pabst TM. Protein mass transfer kinetics in ion exchangemedia: Measurements and interpretations. Chem Eng Technol,2005,28(11):1252–1264
    [53] Moore S, Stein WH. Chromatography of amino acids on sulfonatedpolystyrene resins. J Biol Chem,1951,192(2):663–81
    [54] Hirs CHW, Moore S, Stein WH. Isolation of amino acids by chromatographyon ion exchange columns; use of volatile buffers. J Biol Chem,1952,195(2):669–696
    [55] Chang SH, Gooding KM, Regnier FE. Use of oxiranes in the preparation ofbonded phase supports. J Chromatogr A,1976,120(2):321–333
    [56] Peterson EA, Sober HA. Chromatography of proteins. I. Celluloseion-exchange adsorbents. J Am Chem Soc,1956,78(4):751–755
    [57] Sober HA, Peterson EA. Protein chromatography on ion exchange cellulose.Fed Proc,1958,17(4):1116–1126
    [58] Yap CF, Tan WS, Sieo CC, et al. Purification of long helical capsid ofnewcastle disease virus from Escherichia coli using anion exchangechromatography. Biotechnol Prog,2013:564–567
    [59] You L, Zhao M, Regenstein JM, et al. Purification and identification ofantioxidative peptides from loach (Misgurnus anguillicaudatus) proteinhydrolysate by consecutive chromatography and electrospray ionization-massspectrometry. Food Res Int,2010,43(4):1167–1173
    [60] Koho T, M ntyl T, Laurinm ki P, et al. Purification of norovirus-like particles(VLPs) by ion exchange chromatography. J Virol Methods,2012,181(1):6–11
    [61] Bonnerjea J, Oh S, Hoare M, et al. Protein purification: The right step at theright time. Nat Biotech,1986,4(11):954–958
    [62] Connell-Crowley L, Nguyen T, Bach J, et al. Cation exchange chromatographyprovides effective retrovirus clearance for antibody purification processes.Biotechnol Bioeng,2012,109(1):157–165
    [63] Wijesekara I, Qian ZJ, Ryu B, et al. Purification and identification ofantihypertensive peptides from seaweed pipefish (Syngnathus schlegeli)muscle protein hydrolysate. Food Res Int,2011,44(3):703–707
    [64] Nordborg A, Zhang B, He XZ, et al. Characterization of monoclonalantibodies using polymeric cation exchange monoliths in combination withsalt and pH gradients. J Sep Sci,2009,32(15–16):2668–2673
    [65] Staby A, Jensen IH, Mollerup I. Comparison of chromatographic ion-exchangeresins: I. Strong anion-exchange resins. J Chromatogr A,2000,897(1–2):99–111
    [66] Staby A, Jensen IH. Comparison of chromatographic ion-exchange resins: II.More strong anion-exchange resins. J Chromatogr A,2001,908(1–2):149–161
    [67] Staby A, Sand MB, Hansen RG, et al. Comparison of chromatographicion-exchange resins: III. Strong cation-exchange resins. J Chromatogr A,2004,1034(1–2):85–97
    [68] Staby A, Sand MB, Hansen RG, et al. Comparison of chromatographicion-exchange resins: IV. Strong and weak cation-exchange resins and heparinresins. J Chromatogr A,2005,1069(1):65–77
    [69] Staby A, Jacobsen JH, Hansen RG, et al. Comparison of chromatographicion-exchange resins: V. Strong and weak cation-exchange resins. J ChromatogrA,2006,1118(2):168–179
    [70] Staby A, Jensen RH, Bensch M, et al. Comparison of chromatographicion-exchange resins: VI. Weak anion-exchange resins. J Chromatogr A,2007,1164(1–2):82–94
    [71]卢佩章,戴朝政,色谱理论基础(第二版),北京:科学出版社,1989
    [72] Langmuir I. The adsorption of gases on plane surface of glass, mica andplatinum. J Am Chem Soc,1918,40(9):1361–1403
    [73] LeVan MD, Vermeulen T. Binary Langmuir and Freundlich isotherms for idealadsorbed solutions. J Phys Chem,1981,85(22):3247–3250
    [74] Li Y, Pinto NG. Model for ion-exchange equilibria of macromolecules inpreparative chromatography. J Chromatogr A,1995,702(1–2):113–123
    [75] Brooks CA, Cramer SM. Steric mass-action ion exchange: Displacementprofiles and induced salt gradients. AIChE Journal,1992,38(12):1969–1978
    [76] Gallant SR, Kundu A, Cramer SM. Modeling non-linear elution of proteins inion-exchange chromatography. J Chromatogr A,1995,702(1–2):125–142
    [77] Shi Q, Zhou Y, Sun Y. Influence of pH and ionic strength on the stericmass-action model parameters around the isoelectric point of protein.Biotechnol Prog,2005,21(2):516–523
    [78] Shen H, Frey DD. Effect of charge regulation on steric mass-actionequilibrium for the ion-exchange adsorption of proteins. J Chromatogr A,2005,1079(1–2):92–104
    [79] Iyer H, Tapper S, Lester P, et al. Use of the steric mass action model inion-exchange chromatographic process development. J Chromatogr A,1999,832(1–2):1–9
    [80] Wright PR, Muzzio FJ, Glasser BJ. Batch uptake of lysozyme: Effect ofsolution viscosity and mass transfer on adsorption. Biotechnol Prog,1998,14(6):913–921
    [81] Pedersen H, Furler L, Venkatasubramanian K, et al. Enzyme adsorption inporous supports: Local thermodynamic equilibrium model. Biotechnol Bioeng,1985,27(7):961–971
    [82] Yoshida H, Yoshikawa M, Kataoka T. Parallel transport of BSA by surface andpore diffusion in strongly basic chitosan. AIChE Journal,1994,40(12):2034–2044
    [83]杨坤,蛋白质离子交换色谱的吸附传质动力学研究:[博士学位论文],天津;天津大学,2007
    [84] Tilton RD, Robertson CR, Gast AP. Lateral diffusion of bovine serum albuminadsorbed at the solid-liquid interface. J Colloid Interface Sci,1990,137(1):192–203
    [85] Tilton RD, Gast AP, Robertson CR. Surface diffusion of interacting proteins.Effect of concentration on the lateral mobility of adsorbed bovine serumalbumin. Biophys J,1990,58(5):1321–1326
    [86] McKay G. Solution to the homogeneous surface diffusion model for batchadsorption systems using orthogonal collocation. Chem Eng J,2001,81(1–3):213–221
    [87] Esteban J, Vazquez J. Homogeneous diffusion in R with power-like nonlineardiffusivity. Arch Ration Mech An,1988,103(1):39–80
    [88] Ma Z, Whitley RD, Wang NHL. Pore and surface diffusion in multicomponentadsorption and liquid chromatography systems. AIChE Journal,1996,42(5):1244–1262
    [89] Yang K, Sun Y. Structured parallel diffusion model for intraparticle masstransport of proteins to porous adsorbent. Biochem Eng J,2007,37(3):298–310
    [90] Chen WD, Dong XY, Sun Y. Analysis of diffusion models for proteinadsorption to porous anion-exchange adsorbent. J Chromatogr A,2002,962(1–2):29–40
    [91] Xue B, Sun Y. Fabrication and characterization of a rigid magnetic matrix forprotein adsorption. J Chromatogr A,2002,947(2):185–193
    [92] Yang K, Shi QH, Sun Y. Modeling and simulation of protein uptake in cationexchanger visualized by confocal laser scanning microscopy. J Chromatogr A,2006,1136(1):19–28
    [93] Costa C, Rodrigues A. Intraparticle diffusion of phenol in macroreticularadsorbents: Modelling and experimental study of batch and CSTR adsorbers.Chem Eng Sci,1985,40(6):983–993
    [94] Shi QH, Jia GD, Sun Y. Dextran-grafted cation exchanger based onsuperporous agarose gel: Adsorption isotherms, uptake kinetics and dynamicprotein adsorption performance. J Chromatogr A,2010,1217(31):5084–5091
    [95] Sun Y, Liu FF, Shi QH. Approaches to high-performance preparativechromatography of proteins. in: Zhong JJ, et al., Biotechnology in China I.Heidelberg: Springer,2009,217–254.
    [96] Araki CH. Some recent studies on the polysaccharides of agarophytes. in:Young EG and Maclachan JL, Proceedings of the5th International SeaweedSymposium London: Pergamon Press,1966,3–17.
    [97] Egorov AM, Vakhabov AK, Chernyak VY. Isolation of agarose andgranulation of agar and agarose gel. J Chromatogr,1970,46(0):143–148
    [98] Duckworth M, Yaphe W. Preparation of agarose by fractionation from thespectrum of polysaccharides in agar. Anal Biochem,1971,44(2):636–641
    [99] Duckworth M, Yaphe W. The structure of agar: Part I. Fractionation of acomplex mixture of polysaccharides. Carbohydr Res,1971,16(1):189–197
    [100] Porath J, Janson JC, L s T. Agar derivatives for chromatography,electrophoresis and gel-bound enzymes. I. Desulphated and reducedcross-linked agar and agarose in spherical bead form. J Chromatogr,1971,60(0):179–184
    [101] L s T. Agar derivatives for chromatography, electrophoresis and gel-boundenzymes: II. Charge-free agar. J Chromatogr,1972,66(2):347–355
    [102] Regnier FE. Perfusion chromatography. Nature,1991,350(6319):634–635
    [103] Afeyan NB, Gordon NF, Mazsaroff I, et al. Flow-through particles for thehigh-performance liquid chromatographic separation of biomolecules:perfusion chromatography. J Chromatogr,1990,519(1):1–29
    [104] Afeyan NB, Fulton SP, Gordon NF, et al. Perfusion chromatography: Anapproach to purifying biomolecules. Nat Biotech,1990,8(3):203–206
    [105] Afeyan NB, Reginier FE, Dean RC, et al., Perfusive chromatography,US5019270-A.
    [106] Gustavsson PE, Larsson PO. Superporous agarose, a new material forchromatography. J Chromatogr A,1996,734(2):231–240
    [107] Gottschalk I, Gustavsson PE, Ersson B, et al. Improved lectin-mediatedimmobilization of human red blood cells in superporous agarose beads. JChromatogr B,2003,784(1):203–208
    [108] Zhang M, Sun Y. Cooperation of solid granule and solvent as porogenic agentsNovel porogenic mode of biporous media for protein chromatography. JChromatogr A,2001,922(1–2):77–86
    [109] Shi Y, Sun Y. Fabrication and characterization of a novel biporous sphericaladsorbent for protein chromatography. Chromatographia,2003,57(1–2):29–35
    [110] Wu L, Bai S, Sun Y. Development of rigid bidisperse porous microspheres forhigh-speed protein chromatography. Biotechnol Prog,2003,19(4):1300–1306
    [111] Shi Y, Dong XY, Sun Y. Development of rigid biporous polymeric adsorbentfor protein chromatography. Chromatographia,2002,55(7–8):405–410
    [112] Du KF, Bai S, Dong XY, et al. Fabrication of superporous agarose beads forprotein adsorption: Effect of CaCO3granules content. J Chromatogr A,2010,1217(37):5808–5816
    [113] Shi QH, Zhou X, Sun Y. A novel superporous agarose medium for high-speedprotein chromatography. Biotechnol Bioeng,2005,92(5):643–651
    [114] Garc a MC, Marina ML, Torre M. Perfusion chromatography: an emergenttechnique for the analysis of food proteins. J Chromatogr A,2000,880(1–2):169–187
    [115] McCarthy E, Vella G, Mhatre R, et al. Rapid purification and monitoring ofimmunoglobulin M from ascites by perfusion ion-exchange chromatography. JChromatogr A,1996,743(1):163–170
    [116] Savary BJ. Perfusion chromatography separation of the tomato fruit-specificpectin methylesterase from a semipurified commercial enzyme preparation.Prep Biochem Biotechnol,2001,31(3):241–258
    [117] Roobol-Bóza M, Shochat S, Tjus S, et al. Perfusion chromatography—a newprocedure for very rapid isolation of integral photosynthetic membraneproteins. Photosynth Res,1995,46(1–2):339–345
    [118] Savary BJ, Hicks KB, O’Connor JV. Hexose oxidase from Chondrus crispus:improved purification using perfusion chromatography. Enzyme MicrobTechnol,2001,29(1):42–51
    [119] Müller E. Properties and characterization of high capacity resins forbiochromatography. Chem Eng Technol,2005,28(11):1295–1305
    [120] Bowes BD, Koku H, Czymmek KJ, et al. Protein adsorption and transport indextran-modified ion-exchange media. I: Adsorption. J Chromatogr A,2009,1216(45):7774–7784
    [121] Müller E. Comparison between mass transfer properties ofweak-anion-exchange resins with graft-functionalized polymer layers andtraditional ungrafted resins. J Chromatogr A,2003,1006(1–2):229–240
    [122] Ubiera AR, Carta G. Radiotracer measurements of protein mass transfer:Kinetics in ion exchange media. Biotechnol J,2006,1(6):665–674
    [123] Stone MC, Carta G. Protein adsorption and transport in agarose anddextran-grafted agarose media for ion exchange chromatography. JChromatogr A,2007,1146(2):202–215
    [124] Tao Y, Carta G. Rapid monoclonal antibody adsorption on dextran-graftedagarose media for ion-exchange chromatography. J Chromatogr A,2008,1211(1–2):70–79
    [125] Stone MC, Tao Y, Carta G. Protein adsorption and transport in agarose anddextran-grafted agarose media for ion exchange chromatography: Effect ofionic strength and protein characteristics. J Chromatogr A,2009,1216(20):4465–4474
    [126] Tao Y, Carta G, Ferreira G, et al. Adsorption of deamidated antibody variantson macroporous and dextran-grafted cation exchangers: I. Adsorptionequilibrium. J Chromatogr A,2011,1218(11):1519–1529
    [127] Tao Y, Carta G, Ferreira G, et al. Adsorption of deamidated antibody variantson macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics.J Chromatogr A,2011,1218(11):1530–1537
    [128] Tao Y, Almodovar EXP, Carta G, et al. Adsorption kinetics of deamidatedantibody variants on macroporous and dextran-grafted cation exchangers. III.Microscopic studies. J Chromatogr A,2011,1218(44):8027–8035
    [129]贾国栋,蛋白质色谱过程强化的应用基础研究:[博士学位论文],天津;天津大学,2009
    [130] Th mmes J. Investigations on protein adsorption to agarose–dextrancomposite media. Biotechnol Bioeng,1999,62(3):358–362
    [131] Lenhoff AM. Protein adsorption and transport in polymer-functionalizedion-exchangers. J Chromatogr A,2011,1218(49):8748–8759
    [132] Harinarayan C, Mueller J, Ljungl f A, et al. An exclusion mechanism in ionexchange chromatography. Biotechnol Bioeng,2006,95(5):775–787
    [133] Ljungl f A, Lacki KM, Mueller J, et al. Ion exchange chromatography ofantibody fragments. Biotechnol Bioeng,2007,96(3):515–524
    [134] Tugcu N, Roush DJ, G klen KE. Maximizing productivity of chromatographysteps for purification of monoclonal antibodies. Biotechnol Bioeng,2008,99(3):599–613
    [135] Pedersen L, Mollerup J, Hansen E, et al. Whey proteins as a model system forchromatographic separation of proteins. J Chromatogr B,2003,790(1–2):161–173
    [136] Jones M, Head MW, Connolly JG, et al. Purification of normal cellular prionprotein from human platelets and the formation of a high molecular weightprion protein complex following platelet activation. Biochem Biophys ResCommun,2005,335(1):48–56
    [137] Sun G, Palmer AF. Preparation of ultrapure bovine and human hemoglobin byanion exchange chromatography. J Chromatogr B,2008,867(1):1–7
    [138] Pabst TM, Buckley JJ, Ramasubramanyan N, et al. Comparison of stronganion-exchangers for the purification of a PEGylated protein. J Chromatogr A,2007,1147(2):172–182
    [139] Suda EJ, Thomas KE, Pabst TM, et al. Comparison of agarose anddextran-grafted agarose strong ion exchangers for the separation of proteinaggregates. J Chromatogr A,2009,1216(27):5256–5264
    [140] De Bernardez Clark E, Hevehan D, Szela S, et al. Oxidative renaturation ofhen egg-white lysozyme. Folding vs aggregation. Biotechnol Prog,1998,14(1):47–54
    [141] Goldberg ME, Rudolph R, Jaenicke R. A kinetic study of the competitionbetween renaturation and aggregation during the refolding ofdenatured-reduced egg white lysozyme. Biochemistry,1991,30(11):2790–2797
    [142] De Bernardez Clark E. Protein refolding for industrial processes. Curr OpinBiotechnol,2001,12(2):202–207
    [143] Middelberg APJ. Preparative protein refolding. Trends Biotechnol,2002,20(10):437–443
    [144] Maeda Y, Koga H, Yamada H, et al. Effective renaturation of reducedlysozyme by gentle removal of urea. Protein Eng,1995,8(2):201–205
    [145] Maeda Y, Yamada H, Ueda T, et al. Effect of additives on the renaturation ofreduced lysozyme in the presence of4M urea. Protein Eng,1996,9(5):461–465
    [146] Hagihara Y, Aimoto S, Fink AL, et al. Guanidine hydrochloride-inducedfolding of proteins. J Mol Biol,1993,231(2):180–184
    [147] Tanford C, Pain RH, Otchin NS. Equilibrium and kinetics of the unfolding oflysozyme (muramidase) by guanidine hydrochloride. J Mol Biol,1966,15(2):489–504
    [148] Arora D, Khanna N. Method for increasing the yield of properly foldedrecombinant human gamma interferon from inclusion bodies. J Biotechnol,1996,52(2):127–133
    [149] Buchner J, Pastan I, Brinkmann U. A method for increasing the yield ofproperly folded recombinant fusion proteins: Single-chain immunotoxins fromrenaturation of bacterial inclusion bodies. Anal Biochem,1992,205(2):263–270
    [150] Rariy RV, Klibanov AM. Correct protein folding in glycerol. Proc Natl AcadSci USA,1997,94(25):13520–13523
    [151] Cleland JL, Builder SE, Swartz JR, et al. Polyethylene glycol enhanced proteinrefolding. Nat Biotech,1992,10(9):1013–1019
    [152] Cleland JL, Randolph TW. Mechanism of polyethylene glycol interaction withthe molten globule folding intermediate of bovine carbonic anhydrase B. JBiol Chem,1992,267(5):3147–3153
    [153] Wallqvist A, Covell DG, Thirumalai D. Hydrophobic interactions in aqueousurea solutions with implications for the mechanism of protein denaturation. JAm Chem Soc,1998,120(2):427–428
    [154] Hevehan DL, De Bernardez Clark E. Oxidative renaturation of lysozyme athigh concentrations. Biotechnol Bioeng,1997,54(3):221–230
    [155] Su Z, Lu D, Liu Z. Refolding of inclusion body proteins from E. coli. in:Janson JC, Protein Purification: Principles, High Resolution Methods, andApplications. Hoboken: John Wiley&Sons, Inc.,2011,319–338.
    [156] Geng X, Wang C. Protein folding liquid chromatography and its recentdevelopments. J Chromatogr B,2007,849(1–2):69–80
    [157] Li M, Su ZG, Janson JC. In vitro protein refolding by chromatographicprocedures. Protein Expres Purif,2004,33(1):1–10
    [158] Gu Z, Su Z, Janson JC. Urea gradient size-exclusion chromatographyenhanced the yield of lysozyme refolding. J Chromatogr A,2001,918(2):311–318
    [159] Chen Y, Leong SSJ. High productivity refolding of an inclusion body proteinusing pulsed-fed size exclusion chromatography. Process Biochem,2010,45(9):1570–1576
    [160] Freydell EJ, van der Wielen LAM, Eppink MHM, et al. Size-exclusionchromatographic protein refolding: Fundamentals, modeling and operation. JChromatogr A,2010,1217(49):7723–7737
    [161] Ding Y, Chuan YP, He L, et al. Dispersive mixing and intraparticle partitioningof protein in size-exclusion chromatographic refolding. J Chromatogr A,2011,1218(47):8503–8510
    [162] Batas B, Chaudhuri JB. Protein refolding at high concentration usingsize-exclusion chromatography. Biotechnol Bioeng,1996,50(1):16–23
    [163] Gu Z, Weidenhaupt M, Ivanova N, et al. Chromatographic methods for theisolation of, and refolding of proteins from, Escherichia coli inclusion bodies.Protein Expres Purif,2002,25(1):174–179
    [164] Schmoeger E, Berger E, Trefilov A, et al. Matrix-assisted refolding ofautoprotease fusion proteins on an ion exchange column. J Chromatogr A,2009,1216(48):8460–8469
    [165] Li M, Su Z. Refolding human lysozyme produced as an inclusion body by ureaconcentration and pH gradient ion exchange chromatography.Chromatographia,2002,56(1):33–38
    [166] Li M, Su ZG. Refolding of superoxide dismutase by ion-exchangechromatography. Biotechnol Lett,2002,24(11):919–923
    [167] Li M, Zhang G, Su Z. Dual gradient ion-exchange chromatography improvedrefolding yield of lysozyme. J Chromatogr A,2002,959(1–2):113–120
    [168] Suttnar J, Dyr JE, HamsíkováE, et al. Procedure for refolding and purificationof recombinant proteins from Escherichia coli inclusion bodies using a stronganion exchanger. J Chromatogr B,1994,656(1):123–126
    [169] Wang F, Liu Y, Li J, et al. On-column refolding of consensus interferon at highconcentration with guanidine-hydrochloride and polyethylene glycol gradients.J Chromatogr A,2006,1115(1–2):72–80
    [170] Li JJ, Liu YD, Wang FW, et al. Hydrophobic interaction chromatographycorrectly refolding proteins assisted by glycerol and urea gradients. JChromatogr A,2004,1061(2):193–199
    [171] Geng X, Chang X. High-performance hydrophobic interactionchromatography as a tool for protein refolding. J Chromatogr A,1992,599(1–2):185–194
    [172] Bai Q, Kong Y, Geng Xd. Studies on renaturation with simultaneousourification of recombinant human proinsulin from E. coli with highperformance hydrophobic interaction chromatography. J Liq Chromatogr RelatTechnol,2003,26(5):683–695
    [173] Hutchinson MH, Chase HA. Adsorptive refolding of histidine-taggedglutathione S-transferase using metal affinity chromatography. J ChromatogrA,2006,1128(1–2):125–132
    [174] Dong XY, Chen LJ, Sun Y. Refolding and purification of histidine-taggedprotein by artificial chaperone-assisted metal affinity chromatography. JChromatogr A,2009,1216(27):5207–5213
    [175] Dong XY, Chen LJ, Sun Y. Effect of operating conditions on the refolding ofhis-tagged enhanced green fluorescent protein by artificial chaperone-assistedmetal affinity chromatography. Biochem Eng J,2009,48(1):65–70
    [176] Woycechowsky KJ, Hook BA, Raines RT. Catalysis of protein folding by animmobilized small-molecule dithiol. Biotechnol Prog,2003,19(4):1307–1314
    [177] Dong XY, Yang H, Sun Y. Lysozyme refolding with immobilized GroELcolumn chromatography. J Chromatogr A,2000,878(2):197–204
    [178] Altamirano MM, Golbik R, Zahn R, et al. Refolding chromatography withimmobilized mini-chaperones. Proc Natl Acad Sci USA,1997,94(8):3576–3578
    [179] Langenhof M, Leong SSJ, Pattenden LK, et al. Controlled oxidative proteinrefolding using an ion-exchange column. J Chromatogr A,2005,1069(2):195–201
    [180]王国珍,新型蛋白质氧化还原折叠助剂的分子设计和复性方法研究:[博士学位论文],天津;天津大学,2011
    [181] Wang GZ, Dong XY, Sun Y. Ion-exchange resins greatly facilitate refolding oflike-charged proteins at high concentrations. Biotechnol Bioeng,2011,108(5):1068–1077
    [182] Hubbuch J, Linden T, Knieps E, et al. Mechanism and kinetics of proteintransport in chromatographic media studied by confocal laser scanningmicroscopy: Part I. The interplay of sorbent structure and fluid phaseconditions. J Chromatogr A,2003,1021(1–2):93–104
    [183] Zhang X, Wang JC, Lacki KM, et al. Construction by molecular dynamicsmodeling and simulations of the porous structures formed by dextran polymerchains attached on the surface of the pores of a base matrix: Characterizationof porous structures. J Phys Chem B,2005,109(44):21028–21039
    [184] Hart DS, Harinarayan C, Malmquist G, et al. Surface extenders and an optimalpore size promote high dynamic binding capacities of antibodies on cationexchange resins. J Chromatogr A,2009,1216(20):4372–4376
    [185] Scoble JA, Scopes RK. Assay for determining the number of reactive groupson gels used in affinity chromatography and its application to the optimisationof the epichlorohydrin and divinylsulfone activation reactions. J Chromatogr A,1996,752(1–2):67–76
    [186] Xu L, Sun Y. Fabrication and characterization of open-tubular CEC modifiedwith tentacle-type metal-chelating polymer chains. Electrophoresis,2007,28(11):1658–1667
    [187] Yao Y, Lenhoff AM. Pore size distributions of ion exchangers and relation toprotein binding capacity. J Chromatogr A,2006,1126(1–2):107–119
    [188] Etzel MR. Layered Stacks. in: Frantisek Svec TBT and Zdenek D, Journal ofChromatography Library. Amersterdam: Elsevier,2003,213–234.
    [189] Jennissen H. Hydrophobic interaction chromatography: the criticalhydrophobicity approach. Int J Bio-Chromatogr,2000,5(2):131–163
    [190] Kondo A, Oku S, Higashitani K. Adsorption of γ-globulin, a model protein forantibody, on colloidal particles. Biotechnol Bioeng,1991,37(6):537–543
    [191] Merritt K, Brown S. Biological Effects of Corrosion Products from Metals. in:A. C. Fraker and Griffin CD, Corrosion and Degradation of Implant Materials:Second Symposium. Louisville: ASTM,1985,195–207.
    [192] Bowes BD, Lenhoff AM. Protein adsorption and transport in dextran-modifiedion-exchange media. II. Intraparticle uptake and column breakthrough. JChromatogr A,2011,1218(29):4698–4708
    [193] Franke A, Forrer N, Butté A, et al. Role of the ligand density in cationexchange materials for the purification of proteins. J Chromatogr A,2010,1217(15):2216–2225
    [194] Wrzosek K, Polakovi M. Effect of pH on protein adsorption capacity ofstrong cation exchangers with grafted layer. J Chromatogr A,2011,1218(39):6987–6994
    [195] Wrzosek K, Grambli ka M, Polakovi M. Influence of ligand density onantibody binding capacity of cation-exchange adsorbents. J Chromatogr A,2009,1216(25):5039–5044
    [196] Wang DM, Sun Y. Fabrication of superporous cellulose beads with graftedanion-exchange polymer chains for protein chromatography. Biochem Eng J,2007,37(3):332–337
    [197] González NP, Strumia MC, Alvarez Igarzabal CI. Macroporous beadmodification with polyethylenimines of different molecular weights aspolycationic ligands. J Appl Polym Sci,2010,116(5):2857–2865
    [198] Dick CR, Ham GE. Characterization of polyethylenimine. J Macromol Sci A,1970,4(6):1301–1314
    [199] Ge J, Min SH, Kim D, et al. Selective gene delivery to cancer cells secretingmatrix metalloproteinases using a gelatin/polyethylenimine/DNA complex.Biotechnol Bioproc E,2012,17(1):160–167
    [200] Zheng M, Zhong Z, Zhou L, et al. Poly(ethylene oxide) grafted with shortpolyethylenimine gives DNA polyplexes with superior colloidal stability, lowcytotoxicity, and potent in vitro gene transfection under serum conditions.Biomacromolecules,2012,13(3):881–888
    [201] Yang T, Hussain A, Bai S, et al. Positively charged polyethylenimines enhancenasal absorption of the negatively charged drug, low molecular weight heparin.J Controlled Release,2006,115(3):289–297
    [202] Hanora A, Plieva FM, Hedstr m M, et al. Capture of bacterial endotoxinsusing a supermacroporous monolithic matrix with immobilizedpolyethyleneimine, lysozyme or polymyxin B. J Biotechnol,2005,118(4):421–433
    [203] Petsch D, Rantze E, Anspach FB. Selective adsorption of endotoxin inside apolycationic network of flat-sheet microfiltration membranes. J Mol Recognit,1998,11(1–6):222–230
    [204] Bolivar JM, Rocha-Martín J, Mateo C, et al. Stabilization of a highly activebut unstable alcohol dehydrogenase from yeast using immobilization andpost-immobilization techniques. Process Biochem,2012,47(5):679–686
    [205] Vieira MF, Vieira AMS, Zanin GM, et al. β-Glucosidase immobilized andstabilized on agarose matrix functionalized with distinct reactive groups. J MolCatal B: enzym,2011,69(1–2):47–53
    [206] Filho M, Pessela BC, Mateo C, et al. Reversible immobilization of ahexameric α-galactosidase from Thermus sp. strain T2on polymeric ionicexchangers. Process Biochem,2008,43(10):1142–1146
    [207] Torres R, Pessela BCC, Mateo C, et al. Reversible immobilization ofglucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine.Biotechnol Prog,2004,20(4):1297–1300
    [208] Torres R, Pessela BCC, Fuentes M, et al. Supports coated with PEI as a newtool in chromatography. Enzyme Microb Technol,2006,39(4):711–716
    [209] Nagaya J, Homma M, Tanioka A, et al. Relationship between protonation andion condensation for branched poly(ethylenimine). Biophys Chem,1996,60(1–2):45–51
    [210] Corbett RJT, Roche RS. Use of high-speed size-exclusion chromatography forthe study of protein folding and stability. Biochemistry,1984,23(8):1888–1894
    [211] Bowes BD, Lenhoff AM. Protein adsorption and transport in dextran-modifiedion-exchange media. III. Effects of resin charge density and dextran content onadsorption and intraparticle uptake. J Chromatogr A,2011,1218(40):7180–7188
    [212] Theodossiou I, Thomas ORT. DNA-induced inter-particle cross-linking duringexpanded bed adsorption chromatography: Impact on future support design. JChromatogr A,2002,971(1–2):73–86
    [213] Chen WD, Dong XY, Bai S, et al. Dependence of pore diffusivity of protein onadsorption density in anion-exchange adsorbent. Biochem Eng J,2003,14(1):45–50
    [214] Thomas H, Storti G, Neuville BCd, et al. Role of tentacles and protein loadingon pore accessibility and mass transfer in cation exchange materials forproteins. J Chromatogr A,2013,(0):48–56
    [215] Lawrence E. Weaver J, Carta G. Protein adsorption on cation exchangers:comparison of macroporous and gel-composite media. Biotechnol Prog,1996,12(3):342–355
    [216] Zydney AL, Harinarayan C, Reis Rv. Modeling electrostatic exclusion effectsduring ion exchange chromatography of monoclonal antibodies. BiotechnolBioeng,2009,102(4):1131–1140
    [217] Bowes BD, Traylor SJ, Timmick SM, et al. Insights into protein sorption anddesorption on dextran-modified ion-exchange media. Chem Eng Technol,2012,35(1):91–101
    [218] Chang C, Lenhoff AM. Comparison of protein adsorption isotherms anduptake rates in preparative cation-exchange materials. J Chromatogr A,1998,827(2):281–293
    [219] Dziennik SR, Belcher EB, Barker GA, et al. Nondiffusive mechanismsenhance protein uptake rates in ion exchange particles. Proc Natl Acad SciUSA,2003,100(2):420–425
    [220] Dziennik SR, Belcher EB, Barker GA, et al. Effects of ionic strength onlysozyme uptake rates in cation exchangers. I: Uptake in SP Sepharose FF.Biotechnol Bioeng,2005,91(2):139–153
    [221] De Bernardez Clark E, Schwarz E, Rudolph R. Inhibition of aggregation sidereactions during in vitro protein folding. Methods Enzymol,1999,309:217–236
    [222] De Bernardez Clark E. Refolding of recombinant proteins. Curr OpinBiotechnol,1998,9(2):157–163
    [223] Van den Berg B, Chung EW, Robinson CV, et al. Characterisation of thedominant oxidative folding intermediate of hen lysozyme. J Mol Biol,1999,290(3):781–796
    [224] Shugar D. The measurement of lysozyme activity and the ultra-violetinactivation of lysozyme. Biochim Biophys Acta,1952,8:302–309
    [225] Stellan H. A new method for preparation of agarose for gel electrophoresis.Biochim Biophys Acta,1962,62(3):445–449
    [226] Diogo MM, Queiroz JA, Prazeres DMF. Chromatography of plasmid DNA. JChromatogr A,2005,1069(1):3–22
    [227] To BCS, Lenhoff AM. Hydrophobic interaction chromatography of proteins:III. Transport and kinetic parameters in isocratic elution. J Chromatogr A,2008,1205(1–2):46–59
    [228] Jiang C, Liu J, Rubacha M, et al. A mechanistic study of Protein Achromatography resin lifetime. J Chromatogr A,2009,1216(31):5849–5855
    [229] Wetlaufer DB, Saxena VP. Formation of three-dimensional structure inproteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry,1970,9(25):5015–5023
    [230] Van Gelder BF, Slater EC. The extinction coefficient of cytochrome c.Biochim Biophys Acta,1962,58(3):593–595
    [231] Lee YJ, Notides AC, Tsay YG, et al. Coumestrol, NBD-norhexestrol, anddansyl-norhexestrol, fluorescent probes of estrogen-binding proteins.Biochemistry,1977,16(13):2896–2901
    [232] Tanford C, Roxby R. Interpretation of protein titration curves. Application tolysozyme. Biochemistry,1972,11(11):2192–2198
    [233] Theorell H, kesson. Studies on cytochrome c. III. Titration curves. J AmChem Soc,1941,63(7):1818–1820
    [234] Chen J, Sun Y. Modeling of the salt effects on hydrophobic adsorptionequilibrium of protein. J Chromatogr A,2003,992(1–2):29–40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700