干湿交替下表层混凝土中水分与离子传输过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干湿交替是对混凝土耐久性最不利的环境之一,而干湿交替下混凝土内水分与离子传输机理比单调干燥或湿润条件下更为复杂。本文对混凝土微结构和水分传输的关系进行了深入讨论,指出毛细孔端部水分供给流量差异导致了液态水在不同尺寸孔隙中流动优先权的不同,并在宏观上表现为干燥、湿润过程中水分传输速率的差异。通过试验,对干湿交替下混凝土内部相对湿度和电导率的变化进行了研究。提出用扩散方程的形式描述水分传输的总效果,并对干燥、湿润过程采用不同的扩散系数。利用“预估-校正”隐式有限差格式求解偏微分方程。提出了干湿平衡时间的概念,并利用该概念将干湿交替下混凝土内水分传输过程分为:均衡、湿润主导和干燥主导过程。计算表明,湿润主导和干燥主导过程的影响深度分别由干燥时间和湿润时间决定。
     对混凝土和环境之间的水分交换进行了深入分析,并通过边界层理论进行了近似计算。通过试验,测定了混凝土近表面层内大气的温、湿度变化特征。利用有限元程序,求解了一维“混凝土-环境”传输模型。研究表明,混凝土表面与大气环境之间存在着厚度为几厘米的温、湿度变化明显的过渡区。在确定混凝土传热传湿的边界条件时需考虑该过渡区的影响,而在近表面现象不明显的情况下可采用第一类边界条件。
     将干湿交替下混凝土内水分传输模型并入氯离子传输模型,并考虑了离子浓度对水分传输的影响。利用上游加权“预估-校正”有限差分格式求解对流占优的氯离子对流-扩散问题。计算结果和4个月干湿交替试验实测的氯离子含量分布吻合较好,证明了本文模型的正确性。研究表明,由于混凝土对氯离子的强吸附性,氯离子在混凝土中的入侵深度落后于水分传输。
     连续2年记录北京典型气候下混凝土内湿度变化,结果表明降雨事件可使混凝土内部孔隙相对湿度迅速恢复至100%,混凝土中水分传输的影响深度约为15mm。最后还就定量计算在实际工程耐久性评估中的应用进行了案例分析。
Drying-wetting cycles are identified as one of the most serious environmentalconditions for the durability of concrete structures. The involved moisture and ionictransport processes are more complicated than those in monotonic drying or wetting.The in?uence of the morphology of material pore structure on the moisture transportwas investigated in depth and it was pointed out that di?erent water supply rates atcapillary openings cause the di?erence of transport priorities of liquid water in capil-laries of di?erent sizes thus result in di?erent macroscopic transport rates during dryingand wetting. The evolution of relative humidity and electrical conductivity was inves-tigated experimentally for concrete specimens subjected to drying-wetting cycles. Itwas proposed that the di?usion equation can be adopted to describe the total moisturetransport in concrete subjected to drying-wetting cycles but di?erent di?usion coef-ficients were assigned to drying and wetting phases. The partial deferential equationswere solved by finite di?erence method with the“predictor-corrector”implicit scheme.The concept of equilibrium time ratio between drying and wetting was introduced tocharacterize the moisture transport, by which drying-wetting cycles can be classifiedinto drying-dominated, wetting-dominated as well as equilibrium ones. It was foundthat for drying-dominated cases the moisture in?uential depth is determined by wettingtime and by drying time for wetting-dominated cases.
     The moisture exchange between concrete surface and environment was investi-gated through experiments, boundary layer theory as well as numerical simulations.Experiments were performed to study the relative humidity and temperature distribu-tion and evolution in the near surface region of concrete. The involved“concrete-environment”moisture transport problem was solved by finite element method for onedimension case. A transition layer with a thickness of several centimeters was identi-fied between concrete and air where the relative humidity and temperature vary consid-erably. The existence of this layer necessitates the consideration of near surface e?ect in defining boundary conditions for hydrothermal transport in concrete. The Dirichletcondition can be used as the layer becomes thin enough.
     The model of moisture transport during drying-wetting cycles was integrated intothe ionic transport model in concrete, in which the in?uence of ion concentration onmoisture transport was taken into account. This convection-dominated convection-di?usion problem was solved by finite di?erence method using the“predictor-corrector”implicit upwind scheme. The calculated chloride distributions in concretewere in good agreement with the chloride profiles from 4-months drying-wetting ex-periments. Due to the chloride binding capacity of concrete the penetration process ofchloride is considerably retarded compared to the moisture transport.
     Relative humidity in concrete specimen situated in typical climate of Beijing areawas recorded for 2 years. From the recording, it was found that by natural precipi-tation concrete internal humidity resumed to 100% in several hours and the moisturein?uential depth into concrete is about 15mm.At the end, the above transport modelsare applied to the durability design and assessment of a large-scale transport hub and asea-crossing bridge.
引文
[1] Mainguy M, Coussy O, Baroghel-Bouny V. The role of air pressure in the drying of weaklypermeable materials. Journal of Engineering Mechanics ASCE, 2001, 127(6):582–592.
    [2] Janssen H, Blocken B, Carmeliet J. Conservative modelling of the moisture and heat transferin building components under atmospheric excitation. International Journal of Heat andMass Transfer, 2007, 50(5-6):1128–1140.
    [3] Cerny R, Rovnanikova P. Transport processes in concrete. London and New York: SponPress, 2002.
    [4] Torrenti J M, Granger L, Diruy M, et al. Modeling concrete shrinkage under variable ambientconditions. ACI Materials Journal, 1999, 96(1):35–39.
    [5] Bazant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete. Materials andStructures/Mat′eriaux et Constructions, 1972, 5(25):3–20.
    [6] Comit′e Euro-International du B′eton . CEB-FIP Model Code 1990: Design Code. London:Thomas Telford, 1993.
    [7] Basheer P A M, Chidiac S E, Long A E. Predictive models for deterioration of concretestructures. Construction and Building Materials, 1996, 10(1):27–37.
    [8] Mainguy M. Mod′elisation des transferts hydriques isothermes en milieu poreux Applicationau s′echage des mat′eriaux `a base de ciment [D]. Paris: Ecole Nationale des Ponts etChauss′es, 1999.
    [9] Thiery M, Baroghel-Bouny V, Bourneton N, et al. Mod′elisation du s′echage des b′etons:Analyse des diff′erents modes de transfert hydrique. Revue Europ′eenne de G′enie Civil,2007, 11(5):541–578.
    [10] Coussy O. Poromechanics. New York: John Wiley & Sons, 2004.
    [11] Gummerson R, Hall C, Hoff W. Unsaturated water flow within porous materials observedby NMR imaging. Nature, 1979, 281:56–57.
    [12] Hall C. Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research,1989, 41(147):51–61.
    [13] Leech C, Lockington D, Dux P. Unsaturated diffusivity functions for concrete derived fromNMR images. Materials and Structures/Mat′eriaux et Constructions, 2003, 36(6):413–418.
    [14] Leech C, Lockington D, Hooton R D, et al. Validation of Mualem’s conductivity modeland prediction of saturated permeability from sorptivity. ACI Materials Journal, 2008,105(1):44–51.
    [15] McCarter W J, Watson D W, Chrisp T M. Surface zone concrete: drying, absorption, andmoisture distribution. Journal of Materials in Civil Engineering ASCE, 2001, 13(1):49–57.
    [16] Meijers S J H, Bijen J M J M, De Borst R, et al. Computational results of a model forchloride ingress in concrete including convection, drying-wetting cycles and carbonation.Materials and Structures/Mat′eriaux et Constructions, 2005, 38(276):145–154.
    [17] Cunningham M J. Effective penetration depth and effective resistance in moisture transfer.Building and Environment, 1992, 27(3):379–386.
    [18] Nguyen T Q. Mod′elisations physico-chimiques de la p′en′etration des ions chlorures dansles mat′eriaux cimentaires[D]. Paris: Laboratoire Central des Ponts et Chauss′ees, 2007.
    [19] Krus M. Moisture transport and storage coefficients of porous mineral building materials.Theoretical principles and new test methods. Stuttgart: Fraunhofer IRB Verlag, 1996.
    [20] Arfvidsson J. A new algorithm to calculate the isothermal moisture penetration for periodicallyvarying relative humidity at the boundary. Nordic Journal of Building Physics, 1992,2:http://www.byv.kth.se/avd/byte/bphys/.
    [21] Cunningham M J. Moisture diffusion due to periodic moisture and temperature boundaryconditions-An approximate steady analytical solution with non-constant diffusion coefficients.Building and Environment, 1992, 27(3):367–377.
    [22] Ababneh A, Benboudjema F, Xi Y. Chloride penetration in non-saturated concrete. Journalof Materials in Civil Engineering ASCE, 2003, 15(2):183–191.
    [23] Saetta A, Scotta R, Vitaliani R. Analysis of chloride diffusion into partially saturated concrete.ACI Materials Journal, 1993, 90(5):441–451.
    [24] Akita H, Fujiwara T, Ozaka Y. Practical procedure for the analysis of moisture transferwithin concrete due to drying. Magazine of Concrete Research, 1997, 49(179):129–137.
    [25] Wong S F, Wee T H, Swaddiwudhipong S, et al. Study of water movement in concrete.Magazine of Concrete Research, 2001, 53(3):205–220.
    [26] Rohsenow W M, Choi H Y. Heat, mass, and momentum transfer. Englewood Cliffs, N.J.:Prentice-Hall, 1961.
    [27] DuraCrete . Probabilistic performance based durability design of concrete structures: Modelsfor environmental actions on concrete structures, DuraCrete Project Document BE95-1347/R3. The Netherlands, 1998.
    [28]张寅平,张立志,刘晓华,等.建筑环境传质学.北京:中国建筑工业出版社, 2006.
    [29]刘念雄,秦佑国.建筑热环境.北京:清华大学出版社, 2005.
    [30] Yiotis A G, Tsimpanogiannis I N, Stubos A K, et al. Coupling between external and internalmass transfer during drying of a porous medium. Water Resources Research, 2007,43(6):W06403.
    [31] Erriguible A, Bernada P, Couture F, et al. Simulation of convective drying of a porousmedium with boundary conditions provided by CFD. Chemical Engineering Research andDesign, 2006, 84(2A):113–123.
    [32] Mehta P, Manmohan C. Pore size distribution and permeability of hardened cement paste.Proceedings of 7th International Congress on the Chemistry of Cement, Paris, France, 1980.1-5.
    [33] Aligizaki K K. Pore structure of cement-based materials: testing, interpretation and re-quirements. London and New York: Taylor & Francis, 2006.
    [34] Feldman R, Sereda P. A new model for hydrated Portland cement and its practical implica-tions. Engineering Journal of Canada, 1970, 53(8/9):53–59.
    [35] Mehta P K, Monteiro P J M. Concrete: structure, properties and materials. New Jersey:Prentice-Hall, 1986.
    [36] Jennings H. A model for the microstructure of calcium silicate hydrate in cement paste.Cement Concrete Research, 2000, 30(1):101–116.
    [37] Seishi G, Roy D M. The e?ect of W/C ratio and curing temperature on the permeability ofhardened cement paste. Cement Concrete Research, 1981, 11(4):575–579.
    [38] Garboczi E J, Bentz D P. Modelling of the microstructure and transport properties of con-crete. Construction and Building Materials, 1995, 10(5):293–300.
    [39] Parrott L J. Variations of water absorption rate and porosity with depth from an exposedconcrete surface: E?ects of exposure conditions and cement type. Cement and ConcreteResearch, 1992, 22(6):1077–1088.
    [40] Diamond S. Mercury porosimetry An inappropriate method for measurement of pore sizedistributions in cement-based materials. Cement and Concrete Research, 2000, 30(2):1517–1525.
    [41] Cui Lu , Cahyadi J H. Permeability and pore structure of OPC paste. Cement ConcreteResearch, 2001, 31(2):277–282.
    [42] Lydon F D. E?ect of coarse aggregate and water/cement ratio on intrinsic permeability ofconcrete subject drying. Cement Concrete Research, 1995, 25(8):1737–1746.
    [43] Winslow D N, Cohen M D, Bentz D P, et al. Percolation and pore structure in mortars andconcrete. Cement and Concrete Research, 1994, 22(1):25?37.
    [44] Bentz D P, Stutzman P E, Garboczi E J. Experimental and Simulation Studies of the Inter-facial Zone in Concrete. Cement Concrete Research, 1992, 22(5):891–902.
    [45] Nataliya H. E?ect of shrinkage and load-induced cracking on water permeability of con-crete. ACI Materials Journal, 1999, 96(2):234–241.
    [46] Powers T C. Physical properties of cement paste. Proceedings of the 4th InternationalSymposium on the Chemistry of Cement, Washington DC, 1962. 577-613.
    [47] Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradients.Transactions of the American Geophysical Union, 1957, 38(2):222–232.
    [48] Rose D. Water movement in unsaturated porous materials. Rilem Bulletin, 1965, (29):119–124.
    [49]朱文涛.物理化学.北京:清华大学出版社, 1995.
    [50] Bernadiner M G. A capillary microstructure of the wetting front. Transport in PorousMedia, 1998, (30):251–265.
    [51] Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media.Dordrecht, Boston and London: Kluwer Academic Publishers, 1990.
    [52]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社, 1986.
    [53]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1988.
    [54] Krus M, Kie l K. Determination of the moisture storage characteristics of porous capillaryactive materials. Materials and Structures/Mat′eriaux et Constructions, 1998, 31(8):522–529.
    [55] Dullien F A L. Porous media : fluid transport and pore structure. San Diego: AcademicPress, 1992.
    [56] Ishida T, Kishi T, Maekawa K. Enhanced modeling of moisture equilibrium and transportin cementitious materials under arbitrary temperature and relative humidity history. CementConcrete Research, 2007, 37(2):565–578.
    [57] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils. Soil Science Society of American Journal, 1980, 44(5):892–898.
    [58] Milly P C D. The coupled transport of water and heat in a vertical soil column underatmospheric excitation[M]. Massachusetts Institute of Technology, June, 1980.
    [59] Millington R J. Gas diffusion in porous media. Science, 1959, 130:100–102.
    [60] Sercombe J, Vidal R, Gall′e C, et al. Experimental study of gas diffusion in cement paste.Cement and Concrete Research, 2007, 37(4):579–588.
    [61] Gall′e C. Effect of drying on cement-based materials pore structure as identified by mercuryintrusion porosimetry. A comparative study between oven-, vacuum-, and freeze-drying.Cement and Concrete Research, 2001, 31(10):1467–1477.
    [62] De Vries D A, Kruger A J. On the value of the diffusion coefficient of water vapor inair. Proceedings of Colloque International du CNRS 160: Ph′enom`enes de Transport avecChangement de Phase dans les Milieux Poreux ou Collo¨?daux, 1966. 61-72.
    [63] Lage J L. The fundamental theory of flow through permeable media from Darcy to turbulence.In: Ingham D B, Pop I, (eds.). Proceedings of Transport Phenomena in PorousMedia. Oxford: Pergamon, 1998: 1–30.
    [64] Savage B M, Janssen D J. Soil physics principles validated for use in predicting unsaturatedmoisture movement in portland cement concrete. ACI Materials Journal, 1997, 94(1):63–70.
    [65] Elrick D E, Bowrnan D H. Note on an improved apparatus for soi l moisuture ?ow mea-surements. Soil Science Society Proceedings, 1964, 28:450–453.
    [66] Baroghel-Bouny V. Caracte′risation des pates de ciment et de be′tons. Me′thodes, Analyse,Interpre′tations. Paris: LCPC, 1994.
    [67] Baroghel-Bouny V. Water vapour sorption experiments on hardened cementitious materials.Part II: Essential tool for assessment of transport properties and for durability prediction.Cement and Concrete Research, 2007, 37(3):438–454.
    [68] Yiotis A G, Boudouvis A G, Stubos A K, et al. E?ect of liquid films on the drying of porousmedia. AIChE Journal, 2004, 50(11):2721–2737.
    [69] Wang Zhi , Feyen J, Nielsen D R, et al. Two-phase ?ow infiltration equations accountingfor air entrapment e?ects. Water Resources Research, 1997, 33(12):2759–2767.
    [70] Wang Zhi , Feyen J, Genuchten M T, et al. Air entrapment e?ects on infiltration rate and?ow instability. Water Resources Research, 1998, 34(2):213–222.
    [71] Hall C, Ho? W D, Skeldon M. The sorptivity of brick: dependence on the initial watercontent. Journal of Physics-D: Applied Physics, 1983, 16(10):1875?1880.
    [72] Nokken M R, Hooton R D. Dependence of rate of absorption on degree of saturation ofconcrete. Cement, Concrete and Aggregates, 2002, 24(1):20–24.
    [73] Hazrati K, Pel L, Marchand J, et al. Determination of isothermal unsaturated capillary ?owin high performance cement mortars by NMR imaging. Materials and Structures/Mate′riauxet Constructions, 2002, 35(254):614–622.
    [74] Perrin B, Baroghel-Bouny V, Chemloul L. Me′thodes de de′termination de la di?usivite′hydrique de pates de ciments durcies. Materials and Structures/Me′teriaux et Constructions,1998, 31(208):235–241.
    [75] Baroghel-Bouny V, Perrin B, Chemloul L. De′termination expe′rimentale des proprie′te′shydriques des pates de ciment durcies - Mise en e′vidence des phe′nomYnes d’hyste′re′sis.Materials and Structures/Mate′riaux et Constructions, 1997, 30(200):340–348.
    [76] Daian J. Condensation and isothermal water transfer in cement mortar: Part II-transientcondensation of water vapor. Transport in Porous Media, 1989, 4(1):1–19.
    [77] Daian J. Condensation and isothermal water transfer in cement mortar. Part I: Pore sizedistribution, equilibrium water condensation and inhibition. Transport in Porous Media,1988, 3(6):563–589.
    [78] Espinosa R M, Franke L. Inkbottle pore-method: prediction of hygroscopic water contentin hardened cement paste at variable climatic conditions. Cement Concrete Research, 2006,36(10):1954–1968.
    [79] Pradhan B, Nagesh M, Bhattacharjee B. Prediction of the hydraulic diffusivity from poresize distribution of concrete. Cement and Concrete Research, 2005, 35(9):1724–1733.
    [80] Chatzis I, Dullien F A L. Dynamic immiscible displacement mechanisms in poredoublet: Theory versus Experiment. Journal of Colloid and Interface Science, 1983,91(1):199–222.
    [81] Sorbie K S, Wu Y Z, McDougall S R. The extended Washburn equation and its applicationto the oil/water pore doublet problem. Journal of Colloid and Interface Science, 1995,174(2):289–301.
    [82] Szekely J, Neumann A W, Chuang Y K. Rate of capillary penetration and applicability ofWashburn equation. Journal of Colloid and Interface Science, 1971, 35(2):273–278.
    [83] Fisher L R, Lark P D. An experimental study of the Washburn equation for liquid flow invery fine capillaries. Journal of Colloid and Interface Science, 1979, 69(3):486–492.
    [84] Eching S O, Hopmans J W. Unsaturated Hydraulic Conductivity from Transient MultistepOutflow and Soil Water Pressure Data. Soil Science Society of America Journal, 1994,58:687–695.
    [85] Milly P C D. Moisture and heat transport in hysteretic, inhomogeneous porous media: amatric head-based formulation and a numerical model. Water Resources Research, 1982,18(3):489–498.
    [86]蒋正武,孙振平,王培铭.高性能混凝土自身相对湿度变化的研究.硅酸盐学报,2003, 31(8):770–773.
    [87]陆金甫,顾丽珍,陈景良.偏微分方程差分方法.北京:高等教育出版社, 1988.
    [88]蔡大用,白峰杉.高等数值分析.北京:清华大学出版社, 2000.
    [89] Espinosa R M, Franke L. Influence of the age and drying process on pore structureand sorption isotherms of hardened cement paste. Cement and Concrete Research, 2006,36(10):1969–1984.
    [90] Martys N S, Ferraris C F. Capillary transport in mortars and concrete. Cement and ConcreteResearch, 1997, 27(5):747–760.
    [91] Picandet V. Influence d’un endommagement m′ecanique sur la perm′eabilit′e et sur la diffusivit′e hydrique des b′etons[D]. Saint-Nazaire: Ecole Centrale de Nantes, 2001.
    [92] Lockington D, Parlange J, Dux P. Sorptivity and the estimation of water penetration into unsaturatedconcrete. Materials and Structures/Mat′eriaux et Constructions, 1999, 32(5):342–347.
    [93] Victor L S, BenjaminW, KeithWB. Fluid mechanics. Beijing: Tsinghua University Press,2003.
    [94] Boukadida N, Nasrallahb S B. Mass and heat transfer during water evaporation in laminarflow inside a rectangular channel- validity of heat and mass transfer analogy. InternationalJournal of Thermal Sciences, 2001, 40(1):67–81.
    [95] De Groot S R, Mazur P. Non-equilibrium thermodynamics. New York: Dover Publications,1984.
    [96] F′ed′eration International du B′eton . Model Code for Service Life Design, FIB Bulletin 34.Lausanne: FIB, 2006.
    [97] Climent M A, De Vera G, Lopez J F, et al. A test method for measuring chloride diffusioncoefficients through nonsaturated concrete Part I. The instantaneous plane source diffusioncase. Cement and Concrete Research, 2002, 32(7):1113–1123.
    [98] De Vera G, Climent M A, Viqueira E, et al. A test method for measuring chloride diffusioncoefficients through partially saturated concrete. Part II: The instantaneous plane sourcediffusion case with chloride binding consideration. Cement and Concrete Research, 2007,37(5):714–724.
    [99] Cerny R, Pavlik Z, Rovnanikova P. Experimental analysis of coupled water and chloridetransport in cement mortar. Cement & Concrete Composites, 2004, 26(6):705–715.
    [100]颜肖慈,罗明道.界面化学.北京:化学工业出版社, 2005.
    [101] Atkins P. Physical chemistry. Oxford: Oxford University Press, 1998.
    [102] Lin H, Lee L. Estimations of activity coefficients of constituent ions in aqueous electrolytesolutions with the two-ionic-parameter approach. Fluid Phase Equilibria, 2005, 237(1-2):1–8.
    [103] Lin Chenglong , Lee L. A two-ionic-parameter approach for ion activity coefficients ofaqueous electrolyte solutions. Fluid Phase Equilibria, 2003, 205(1):69–88.
    [104] Lide D R. CRC handbook of chemistry and physics. 84th ed., Boca Raton: CRC Press,2003.
    [105]王洪涛.多孔介质污染物迁移动力学.北京:高等教育出版社, 2008.
    [106] Wang H Q, Lacroix M. Optimal weighting in the finite difference solution of the convectiondispersionequation. Journal of Hydrology, 1997, 200(1-4):228–242.
    [107] Tang Luping , Nillson L O. Chloride binding capacity and binding isotherm of OPC pastesand mortars. Cement and Concrete Research, 1993, 23(2):247–253.
    [108] American Society for Testing and Materials . Standard Test Method for Acid-Soluble Chloridein Mortar and Concrete, ASTM C1152/ C1152M-04. Philadelphia: ASTM, 2004.
    [109]范宏,赵铁军,徐红波.码头混凝土中的氯离子侵入研究.水运工程, 2006, (4):49–53.
    [110] American Concrete Institute Committee . Corrosion of metals in concrete, ACI 222R-01.Farmington Hill: ACI, 2001.
    [111]中国土木工程学会.混凝土结构的耐久性设计与施工指南(CCES01-2004).北京:中国建筑工业出版社, 2004.
    [112] Li Chunqiu , Li Kefei , Chen Zhaoyuan . Service life prediction of underground structures:A case study on the transport hub of Tianjin station. Proceedings of InternationalConference on Durability of Concrete Structures, Hangzhou, 2008. 985-991.
    [113]中国工程院土木水利与建筑工程学部.土建工程的使用寿命与耐久性设计标准. 2007.
    [114] Frederiksen J M. Chloride threshold values for service life design. Proceedings of SecondInternational RILEM Workshop on Testing and Modelling the Chloride Ingress intoConcrete, Paris, 2000. 397-409.
    [115] Lu Xinyin . Application of Nernst-Einstein equation to concrete. Cement and ConcreteResearch, 1997, 27(2):293–302.
    [116] Miki F. Predicting corrosion-free service life of a concrete structure in a chloride environment.ACI Materials Journal, 1990, 87(6):581–587.
    [117] Liu T, Weyers R. Modelling the dynamic corrosion process in chloride contaminated steelin concrete structures. Cement and Concrete Research, 1998, 28(3):365–379.
    [118] DuraCrete . General Guidelines for Durability Design and Redesign, The European Union-Brite EuRam III, Document BE95-1347 /R 15. Gouda: CUR, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700