结肠癌肝转移相关蛋白的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞转移是恶性肿瘤的重要特征。肝脏是大肠癌转移最常见的器官。几十年来,关于结肠癌肝转移的临床诊治及基础研究做了大量工作,但其总体预后并未得到显著改善,难以早期诊断而失去手术时机是重要原因之一。血液组分变化可充分反映机体生理、病理过程,容易获取并易于监测,故一直是筛选疾病诊断标志物的最佳研究对象。目前常用的结肠癌肝转移血清标志物尚不能完全满足临床需求,因此,从血清中筛选新的结肠癌肝转移标志物受到医学研究人员和临床医生的高度关注。
     目前蛋白质组学(Proteomics)已成为后基因时代生命科学研究新的热点,其定义为:研究一个细胞、组织或完整机体在某个特定时空条件下全部蛋白质的表达、功能及其相互作用方式。其特点是以系统生物学的研究思路,采用高分辨率的蛋白分离手段和高通量的蛋白鉴定技术,全景式地研究各种特定情况下的蛋白表达谱。不断发展、完善的蛋白质组学研究策略与技术正成为现代生物医学研究新的强有力工具。
     从血液中寻找特异性生物标志物用于结肠癌肝转移等诊断是目前临床急需解决的难题,本研究使用差异蛋白质组技术包括双向凝胶电泳(Two-dimensional polyacrylamide gel electrophoresis,2-DE)、基质辅助激光解吸离子化飞行时间质谱( Matrix-assisted laser desorption/ionization mass spectrometry-time of flight, MALDI-TOF)技术对结肠癌肝转移患者和结肠癌患者血清蛋白进行分析,获得了一些可能与结肠癌肝转移相关的标志蛋白质,推测其差异蛋白质的功能,并从蛋白质整体水平上探讨这些差异候选蛋白质是否与结肠癌可能的发生或转移机制相关,并为开展临床早期诊断、寻找治疗靶点等方面提供有价值的理论依据。
     第一部分结肠癌和结肠癌肝转移患者血清样品的处理
     目的:纯化血清蛋白质,减少高丰度蛋白对电泳的干扰。
     方法:参照人类蛋白质组研究组织(Human Proteomo Organization, HUPO)的血清蛋白质组计划(Plasma Protemo Project,PPP)所推荐的方法采集血液标本,利用PPP推荐使用的多种蛋白质亲和清楚系统(Multiple Affinity Removal System,MARS)同时去除血液中的多种高丰度蛋白质,并通过蛋白电泳图谱比较前后的血清蛋白分离情况。
     结果:使用了蛋白清楚系统去除血清高丰度蛋白后,血清蛋白点数由530个增加到810个,建立了稳定的血清白蛋白和IgG去除方法。
     结论:多种蛋白质亲和清楚系统能有效去除血清中的高丰度蛋白,减少了高丰度蛋白对其的干扰。
     第二部分
     结肠癌肝转移患者血清双向电泳图谱的建立及优化
     目的:建立并优化血清蛋白质组双向电泳分离技术。
     方法:对2-DE的各种条件进行调整、优化,通过双向电泳图谱比较各种方法对血清蛋白的分离效果。
     结果:采用pH4-7胶条,含尿素9M、硫脲2M的上样缓冲液,12.5%的SDS-PAGE胶提高了血清蛋白的分离效果。
     结论:血液中高丰度蛋白质的去除能提高了2-DE图谱的斑点数和分辨率。成功建立了血清蛋白质的纯化技术,为寻找疾病的血清学标志物的研究奠定基础。
     第三部分
     结肠癌肝转移相关蛋白质的鉴定
     目的:分析结肠癌和结肠癌肝转移血清的蛋白质表达差异。获取两者蛋白表达差异。
     方法:使用基质辅助激光解吸/电离飞行时间质谱对结肠癌和结肠癌肝转移患者血清的双向电泳图谱中的差异蛋白质点进行鉴定。
     结果:成功鉴定出TGF-β1、Geranylgeranyl transferase type-1等6个蛋白在结肠癌肝转移组血清中表达上调,Protein kinase C等4个蛋白在对照组血清中表达上调的蛋白质。
     结论:结果表明在结肠癌肝转移患者和结肠癌患者中存在差异表达蛋白质,利用蛋白质组学这一高通量的筛查技术可望从中发现与结肠癌肝转移相关的标志物。
Cell metastasis is the most important character of malignant tumor. The carcinomatous metastasis of colon cancer usually happen on liver. Despite substantial progresses made in colon carcinoma hepatic metastasis clinical and basic research, the overall prognosis of colon carcinoma remains dismal because of the late diagnosis and low resection rate. Although CEA can be an biomarker, the specificity and sensitivity of which are still not satisfied. Therefore, screening novel colon carcinoma hepatic metastasis biomarkers are still needed.
     Proteomics is becoming the hot field of biological study in the functional genomic era. The scope of proteomics is to study the expression profile, function and cross reactivity of all cell, tissue or organism proteins under specific circumstances. Because of the high throughput and resolving power, proteomics techniques are becoming strong tools for contemporary medical research.
     The challenge of clinical proteomic studies is to link protein expression profiles to specific disease phenotypes and to find out relevant biomarkers in order to develop diagnostic tools. Two-dimensional electrophoresis (2-DE) is a highly resolving technique for arraying proteins by isoelectric point and molecular mass. To contribute to the development and improvement of molecular markers for diagnostics and prognostics and of therapeutic targets for the disease, we have largely expanded the currently available colon carcinoma hepatic metastasis serum. Protein identification was done by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI -TOF-MS).
     PART I
     SAMPLE HANDING OF SERUM OF COLON CARCINOMA HEPATIC METASTASIS
     Objective:To establish and evaluate the method of removing albumin and IgG in serum proteomics by Two-dimensional electrophoresis(2-DE).
     Methods: The blood samples were collected in accordance with Human Proteome Organization Plasma Proteome Project. After depleting of the six plasma proteins of highest abundance by the MARS, the remaining low- and medium-abundance serum proteins were isolated and concentrated.
     Results: The method of removing serum albumin and IgG and 2-DE was established stably, increasing sharpness of separation of low-abundance proteins and decreasing the disturbing of high abundance proteins in 2-DE.
     Conclusion: The Multiple Affinity Removal System can depleting of the six serum proteins of highest abundance.
     PART II
     ESTABLISHMENT OF SCREENING SERUM BIOMARKERS BY TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS
     Objective:To establish a two-dimensional polyacrylamide gel electro- phoresis(2-DE)technique for serum proteomics.
     Methods: Various conditions of serum proteomic 2-DE were adjusted and optimized.
     Results: A steady 2-DE technique was established.
     Conclusion: The established method of purifying serum proteins may be foundation in searching serology marker of diseases.
     PART III
     IDENTIFICATION OF SERUM PROTEINS RELATED TO COLON CARCINOMA HEPATIC METASTASIS
     Objective:To analyze the 2-DE protein separation and identification by PMF in colon carcinoma and colon carcinoma hepatic metastasis.
     Methods: We used 2-DE and MALDI-TOF based proteomics to compare the protein profiles between colon carcinoma and colon carcinoma hepatic metastasis.
     Results: 14 protein spots were discovered differently and 10 were identified by PMF,including 6 proteins as TGF-β1、Geranylgeranyl transferase type-1 were up-regulated and 4 proteins as Protein kinase C were down-regulated in colon carcinoma hepatic metastasis.
     Conclusion: 2-D gel images of colon carcinoma and colon carcinoma hepatic metastasis showed different protein expression. The variety of proteins may be concerned with metastatic mechanism of colon carcinoma hepatic metastasis possibly.
引文
[1] Cromheecke M, De Jong KP, Hockstra HJ. Current treat ment for colorsetal cancer metastatic to the liver. Eur J Surg Oncol, 2001, 25, 451-463.
    [2] Fider IJ,Kripke ML.Metastasis results from preexisting variant cells within a malignant tumour.Science.1977,197:893-895
    [3] Cheng L,Nagabhushan M,Pretlow T, et al. Expression of E-cadherin in primary and metastastic prostate cancer. Am J pathol. 1996,148:1375- 1378
    [4] Kimm DL,sinard JH,Morrow JS. Reduced β-canetin and E-cadherin expression in breast cancer.Lab Invest.1995,72:506-509
    [5] Krause T,Turner GA.Are selections involved in metastasis.Clin and Exp Metastasis.1999,17:183-192
    [6] Wang Y.The role and regulation of urokiase-type plasminogen activator receptor gene expression in cancer invasion and metastasis.Med Res Rev.2001,21:146-170
    [7] Frandsen TL,Holst-Hansen C,Nielsen BS,et al.Direct evidence of the importance of stromal urokinase plasminogen activator(uPA) in the growth of an experimental human breast cancer using a combined uPA gene-disrupted and immunodeficient xenograft model.Cancer Res.2001, 61:532-537
    [8] Belkin AM,Akima SS,Zaritskaya LS,et al.Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion.J Biol Chem.2001,papers in press.
    [9] Aaltomas S,lipponen P,Ala-Opas M,et al.Expression and prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer.Eur Urol. 2001, 39(2):1438-1446
    [10] Asao T, Nakamura J,Shitara Y,et al.Loss of standard type of CD44 expression invaded area as a good indicator of lymph-node metastasis in colorectal carcinoma. Dis Colon Retum.2000,43:1250-1254
    [11] Verkaik NS,Van Steenbrugge GJ,Van weirder WM,et al.Silencing of CD44expression in prostate cancer by hypermethylation of the CD44 promoter region.Lab Invest.2000, 80:1291-1298
    [12] Cai Z, Chiu JF, He QY. Application of Proteomics in the Study of Tumor Metastasis. Geno Prot Bioinfo. 2004,3(2):152-164
    [13] Kim J, Kim SH,Lee SU. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ ionization-mass spectrometry for identification of disease-related proteins.2002, 23:4142-4156
    [14] Chen G,Gharib TG,Huang CC, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors.Clin Cancer Res.2002,8:2298-2305
    [15] Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate. 2002,50:54-63
    [16] Wulfkuhle JD, Sgroi DC, Krutzsch H.et al. Proteomics of human breast ductal carcinoma in situ.Cancer Res,2002,62:6740-6749
    [17] Klade CS, Voss T, Krystek E,et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics.2001,1:890-898
    [18] Moreira JM, Gromov P, Celis JE. Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol Cell Proteomics. 2004, 3: 410–419
    [19] Srisomsap C, Sawangareetrakul P, Subhasitanont P, et al, Proteomic analysis of cholangio- carcinoma cell line. Proteomics. 2004, 4: 1135–1144.
    [20] Hansh SM, Teichroew D. Mining the human protemo: experience with the human lymphoid protein database. Electrophoresis. 1998,19(11):2004-9
    [21] Celis JE, Ostergaard M,Rasmussen HH, et al. A comprehensive protein resource for the study of bladder cancer: http://biobase.dk/cgi-bin/celis. Electrophoresis. 1999, 20(2): 300-9
    [22] Simpson RJ , Connonlly LM, Eddes JS,et al .Proteomic analysis of the human colon carcinoma cell line (LIM 1215):development of a membrane protein database. Electrophoresis. 2000,21(9):1707-32
    [23] Le Nanour F.Contribution of proteomics to tumor immunology. Proteomics.2001, 1(10):1295- 302
    [24] Jungblut PR,Zimny-Arndt U,Zeindl-Eberhart E, et al.Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification . Electrophoresis. 1999,20(10):2100-10
    [25] Christian M,Gunther E, Bettina S,et al.A Technical Triad for Proteomic Identification and Characterization of Cancer Biomarkers. Cancer Research.2004,64(6):4099-4104
    [1] Omenn GS, States DJ, Adamski M , et a1.Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly available database. Proteomics, 2005, 5:3226-3245.
    [2] Cho SY, Lee EY, Lee JS, et a1. Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map.Proteomics, 2005, 5:3386-3396.
    [3] Pieper R, Gatlin CL, Makusky AJ, et a1. The human serum proteome:display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics, 2003, 3: l345-1364.
    [4] Granger J, Siddiqui J, Copeland S, et a1. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics, 2005, 5: 4713- 4718.
    [5] Bonetta L. Protein purification: Target identification. Nature, 2006, 439(7079): 1021.
    [6] Huang L, Harvie G, Feitelson JS, et a1. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics, 2005, 5: 3314-3328.
    [7] Wang YY, Cheng P, Chan DW. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics, 2003, 3: 243-248.
    [8] Adkins JN, Vamum SM, Auberry KJ, et a1. Toward a human blood serum proteome: analysis bymulti2 dimensional separation coupled with mass spectrometry. Mol Cell Proteomics, 2002,1: 947-955.
    [9] Pieper R, Su Q, Gatlin CL, et a1. Component immunoaffinity subtraction chromatography: an inno vative step towards a comprehensive survey of the human plasma proteome. Proteomics, 2003, 3: 422-432.
    [10] Harper RG, Workman SR, Schuetzner S, et a1. Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis, 2004, 25: 1299-1306.
    [1] O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem.1975,250:4007–4021.
    [2] Guo H, Li R, Zucker S, Toole BP. EMMPRIN(CD147), an inclucer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell major receptors for human tumor necrosis factor (TNFα) [J]. Biol chem, 1989, 264, 14927-14934
    [3] Corbett JM, Dunn MJ, Posch A, Gorg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis. 1994 Aug-Sep;15(8-9):1205-11.
    [4] Chevallet M, Diemer H, Luche S, et al. Improved mass spectrometry compatibility is afforded by ammoniacal silver staining[J]. Proteomics, 2006, 6(8): 2350-2354
    [1] Wijgerde M, Gribnau J, Trimbom T, et a1. The role of EKLF in human beta-globin gene competition. Gebes Dev,1996,10:2894-2902.
    [2] Mckerrow JH,Bhargava V,Hansell E,et a1.A functional proteomics screen of proteases in colorecta1 carcinoma. Mol Med,2000,6:450-460
    [3] Fukuchi M,MASUDA N, MIYAZAKI T,et al.Decreased Smad4 expression in the transforming growth factor-beta signaling pathway during ptogression of esophageal cell carcinoma[J].Cancer,2002,95(4):737-743
    [4] Miyazono K, Suzuki H, Imamura T. Regulation of TGF-βsignaling and its roles in progression of tumors[J].Cancer Sci,2003;94(3):230
    [5] Narai S, Watanabe M, Hasegawa Hi, et a1. Significance of transforming growth factor beta1 as a new tumor marker for colorectal cancer[J].Int J Cancer,2002, 97(4):508-511
    [6] Lee MS, Kim TY, Kim YB,et a1.The signaling network of trails-forming growth factorβ1,protein kinase C, and integrin underlies the spreading and invasiveness of gastric carcinoma cells[J]. Mol Cell Biol.2005,25(16):6921-6936.
    [7] Clark AS, West KA, Blumberg PM, et a1.Altered protein kinase C (PKC) isoforms in non-small cell lung cancer ceils;PKC delta promotes cellular survival and chemotherapeutic resistance[J].Cancer Res,2003,63(4):780-786
    [8] 陈宏,陈宇英,张振书,等。蛋白激酶C对大肠癌细胞转移特性调控的实验研究[J]。中国现代实用医学杂志,2004,3(7):1-3
    [9] Garber K. Debate rages over proteomic patterns. J Natl Cancer Inst,2004,96:816-8l8.
    1 Cromheecke M, De Jong KP, Hoekstra HJ. Current treatment for colorectal cancer metastatic to the liver. Eur J Surg Oncol, 2001, 25:451-463.
    2 An P, Yu B, Li SY, et a1. Proteome study of eolorecta1 cancer genesis and hepatic metastasis. Chin J Surg, 2004, 42(11): 668-671.
    3 Bank RE, Dum MJ, Hochstrasser DF, et a1. Proteomics: new perspectives, new biomedical opportunities. Lancet, 2003, 356:l749-l756.
    4 Stulik J, Koupilova K, Osteareicher J, et a1. Protein abundance alterations in matched sets of rnacroseopically normal colon mucosa and olorectal carcinoma .Electrophoreais,2001, 20:3638-3846.
    5 Jungblut PR, Zirrmy-Amdt U, Zeindl-Eberhart E, et a1. Proteomics in human disease:cancer, heart and infectious diseases. Electrophoresis, 1999, 20(10):2100-2110.
    6 Stierum R, Gaspari M, Dommds Y, et a1. Proteome analysis reveals nove1 proteins associated with poliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim Biophys Acta, 2003, 1605(12):73-91.
    7 Chaurand P, DaGue BB, Peareall RS, et a1. Profiling protein from azoxymethane- induced colortumors at the molecular 1evel by matrix-assisted laser desorption/ ionization mass spectrometry. Proteomics, 2001, 1(10):1320-1326.
    8 Bryumor W , Robert S, Shannon B, et a1. Detection of early-stage cancer by serum protein analysis. Am Lab, 2001, 33(9):32-36.
    9 Lawrie LC, Dundas SR, Curran S, et a1. Br J Cabcer, 2004, 90:1955-1960.
    10 Watkins B, Szaro R, Ball S, et a1. Detection of early-stage cancer by serum protein analysis. American Laboratory Ⅲ NF, 2001, 7001:32-36.
    11 Roboz J, Ma L, Sung M, et a1. Protein profiles in colon cancer by SELDI-TOF mass spectrometry. Proc AACR, 2002, 43:37.
    12 Shiwa M, Nishimura Y, Wakatable R, et a1. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI Proteinchip platform. Biochem Biophys Res Commun, 2003, 309:18-25.
    13 Vermz M, Wright GL Jr, Hanash SM, et a1. Proteomic approaches within the NCI early detection research net work for the discovery and identification of cancer biomarkers. Ann N Y Acad Sci, 2001, 945:103-115.
    14 Mckerrow JH, Bhargava V, Hansell E, et a1. A functional proteomics screen of proteases in colorecta1 carcinoma. Mol Med, 2000, 6: 450-460.
    15 Wijgerde M, Gribnau J, Trimbom T, et a1. The role of EKLF in human beta-globin gene competition. Gebes Dev, 1996, 10:2894-2902.
    16 Hashimoto T,Kusakabe T,Sugino T,et a1. Expression of heart-type fatty acid- binding protein in human gastric carcinoma and its association with tumor aggressive- ness,metastasis and poor prognosis.Pathobiology, 2004, 7l: 267-273.
    17 Yamazaki r, Kanda T , Sakai Y, et al. Liver fatty acid-binding protein is a new prognostic factor for hepatic resection of colorectal cancel metastases. J Surg nco1. 1999, 72: 83-87.
    18 Emoto K , Yamada Y, Sawada H, et a1. Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer, 2001, 92: l4l9-1426.
    19 Ding L, Zheng S. Molecular markers study of colorectal cancer hepatic metastasis. J Prac Oncol, 2003, 2(18):88-90.
    20 Issaq HJ. The role of cepataion science in proteomics research. Electrophoresis, 2001, 22(17): 3629- 3638.
    21 Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics, 2002, 2(1):310.
    22 Shen Y, Tolic N, Zhao R, et a1. High-throughtput proteomics using high-efficiency multiple-capillary liquid chromatography with on1ine high performance ESI FTICE mass spectromertry. Anal Chem, 2001, 73(13): 3011-3021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700