损伤胰腺提取液在促进BMSCs分化为胰岛素分泌细胞的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:损伤胰腺组织提取液对大鼠BMSCs转分化为胰岛素分泌细胞的影响
     目的:
     在大鼠损伤胰腺组织提取液促进BMSCs转分化为胰岛素分泌细胞过程中,动态检测转分化的胰岛素分泌细胞胰腺发育相关基因、蛋白、以及细胞形态的变化,探讨损伤胰腺组织提取液对BMSCs转分化为胰岛素分泌细胞的效果和机制。方法:
     将SD大鼠胰腺切除90%,两天后处死大鼠取剩余胰腺组织匀浆,提取组织液。在大鼠BMSCs培养过程中加入损伤胰腺组织提取液,培养14天,动态检测大鼠BMSCs是否有胰腺发育相关基因和蛋白的表达,以及细胞形态学改变,对转分化的胰岛素分泌细胞检测胰岛素阳性细胞效率,葡萄糖刺激实验评价转分化的胰岛素分泌细胞分泌胰岛素的水平。
     结果:
     损伤胰腺组织提取液可以诱导大鼠BMSCs转分化为胰岛素分泌细胞,在转分化过程中依次表达与胰腺发育密切相关的基因,如PDX-1,NKX6.1,GLUT2,PC2,C肽等;也表达成熟胰腺表达的蛋白,如:C肽,Insulin,Nkx6.1等;分泌胰岛素的细胞占13.3±1.8%,胰岛素分泌水平为天然胰岛的1/20-1/50。
     结论:
     胰腺损伤后,损伤胰腺组织分泌富含胰腺修复和发育分化的相关蛋白,这些蛋白可以促进大鼠BMSCs向胰岛素分泌细胞分化。
     第二部分应用飞行时间质谱技术筛选损伤胰腺组织提取液中促进转分化的相关蛋白
     目的:
     损伤胰腺组织提取液富含促进BMSCs转分化为胰岛素分泌细胞的相关蛋白,应用飞行时间质谱技术,对损伤胰腺蛋白提取液和正常胰腺蛋白提取液进行差异性蛋白筛选,寻找能高效定向诱导BMSCs分化为胰岛素分泌细胞的特异性可溶性蛋白。方法:
     采用二维凝胶电泳(2-DE)分离和分析损伤胰腺组织提取液和正常胰腺组织提取液的蛋白差异,凝胶用硝酸银染色扫描,ImagemasterZDv5.0软件分析,筛选差异性蛋白位点,考马斯亮兰染色后切下差异蛋白位点,酶解消化后获得多肽,利用基质辅助激光解吸离子化飞行时间质谱(MALDI-TOF/TOF (MS/MS)对差异蛋白质进行鉴定,Western blot分析蛋白质cofilin-1, NDPKA, PRDX6和丝氨酸蛋白酶HTRA2在大鼠损伤胰腺组织提取液中的表达,以验证2-DE的结果。
     结果:
     2-DE显示损伤胰腺组织提取液与正常胰腺组织提取液平均蛋白质位点分别为1227±17个和1507±29个,其中共有50个蛋白质点出现2倍以上的表达差异。所有差异蛋白质点经MS鉴定出20种蛋白,其中表达上调者7个(编号为:7,15,16,23,34,35,42);表达下调者13个。其中骨架蛋白的调节蛋白(cofilin-1),二磷酸核昔酸激酶A(NDPKA),组氨酸三聚体核苷结合蛋白1 (HINT1),肽基脯氨酰顺反异构酶(PPIB),过氧化物酶6 (PRDX6)和丝氨酸蛋白酶HTRA2 (serine protease HTRA2)与细胞分化和增殖有关,这些蛋白质经Western blot验证在损伤胰腺提取液中均有表达。
     结论:
     损伤胰腺组织提取液中存在促进胰腺发育分化的相关蛋白,应用飞行时间质谱技术筛选出cofilin-1, NDPKA, HINT1, PPIB, PRDX6和丝氨酸蛋白酶HTRA2,这些蛋白可能具有促进BMSCs转分化为胰岛素分泌细胞的作用,为干细胞高效定向分化为胰岛素分泌细胞提供了新的转分化因子。
Part I:
     The effect of the injured rat pancreatic extract on transdifferentiation of BMSCs into insulin-secreting cells
     Objective:To explore the effect and the mechanism of injured pancreatic extract from Sprague-Dawley rats on induction of pancreatic differentiation of BMSCs through continuous dynamic monitoring of gene, protein, cell morphological changes.
     Methods:About 90% partial pancreatectomy was performed with six-week-old rats. injured pancreatic extract derived from the remnant pancreas after 48 h. After the BMSCs were induced with injured pancreatic extract for 14 days in vitro, morphological changes of the induced cells were observed. Immunocytochemical staining were used to examine pancreatic developmental protein. RT-PCR and real-time PCR were conducted to detect the expression of pancreatic endocrine gene, and Flow cytometry was used to detect the efficiency of transdifferentiation. ELISA were performed to evaluate the function of the IPCs.
     Results:Insulin-secreting cells can be transdifferentiated from BMSCs by the inducement of injured pancreatic extract. during the process of induction, BMSCs can express a series of genes closely related to pancreatic development, such as PDX-1, NKX6.1, GLUT2, PC2, C-peptide, etc. and also express the protein expression of mature pancreas, such as:C-peptide, Insulin, Nkx6.1 etc. the differentiated BMSCs cells obtained nearly 13.3±1.8% insulin-positive cells by flow cytometry analysis and released 1/20-1/50 insulin in response to glucose stimuli comparable to that of natual islets.
     Conclusion:affter pancreatic injured,injured pancreatic extract is rich in pancreatic development associated protein,which can induce transdifferentiation of BMSCs to insulin-secreting cells.
     Part II:
     Screening the related protein induced differentiation from injured pancreatic extract by mass spectrometry
     Objective:Injured pancreatic extract contain associated protein which can induced transdifferentiation of BMSCs into insulin-secreting cells.by using mass spectrometry. To filter out soluble proteins from injured rats pancreatic extract and normal rats pancreatic extract that can highly efficiently induced BMSCs to differentiate into insulin-secreting cells in vitro.
     Methods:differential protein profile betwent injured rats pancreatic extract and normal rats pancreatic extract were analyed by using two-dimensional gel electrophoresis (2-DE). The gels were visualized by silver staining and analysed with Image Master 2D Elite software.The protein spots with signifieant changes were visualized by Coomassie blue staining for further identifieation. Afterwards, the differential proteins were identified via in-gel digestion combined with MALDI-TOF-TOF-MS. Cofilin-1,NDPKA,PRDX6 and HTRA2 were analyzed in rat injured pancreatic extract with Western blot to confirm the resμlts of 2-DE.
     Resμlts:The average spots in gels for injured rats pancreatic extract and normal rats pancreatic extract were 1227±17 and1507±29, respectively.50 spots displayed at least 2-fold of differential expression. and 20 proteins were successfμlly identified by MS,7 spots(7,15,16,23,34,35,42) were up-regμlated, and 13 spots were down-regμlated. cofilin-1,NDPKA,HINT1,PPIB,PRDX6 and HTRA2 are associated with cells differentiation and proliferation. These protein were detected from injured rats pancreatic extract by Western blot.
     Conclusions:Injured rats pancreatic extract contain pancreatic development associated protein. By MS,we found injured rats pancreatic extract contains cofilin-1,NDPKA,HINT1,PPIB,PRDX6 and HTRA2 which can promote transdifferentiation of BMSCs to insulin-secreting cells. They can provide new factor to highly efficiently induced cell differentiation.
引文
[1]Virally M, Blickle JF, Girard J, et al. Type 2 diabetes mellitus:epidemiology, pathophysiology, unmet needs and therapeutical perspectives. Diabetes Metab,2007,33(4):231-244.
    [2]Choudhury A. The pancreas as a transplantable organ. Ann R Coll Surg Engl,1973,53(4):218-236.
    [3]Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med,2006,355(13):1318-1330.
    [4]Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes,2005, 54(7):2060-2069.
    [5]Matsumoto S. Islet cell transplantation for Type 1 diabetes. J Diabetes,2010,2(1):16-22.
    [6]Hogan A, Pileggi A.Ricordi C. Transplantation:current developments and future directions; the future of clinical islet transplantation as a cure for diabetes. Front Biosci,2008,13:1192-1205.
    [7]Engberg N, Hansson M.Madsen OD. [From stem cells to functional beta cells in type 1 diabetes]. Ugeskr Laeger, 2010,172(38):2608-2612.
    [8]Jiang J, Au M, Lu K, et al. Generation of insμlin-producing islet-like clusters from human embryonic stem cells. Stem Cells,2007,25(8):1940-1953.
    [9]Jiang W, Shi Y, Zhao D, et al. In vitro derivation of functional insμlin-producing cells from human embryonic stem cells. Cell Res,2007,17(4):333-344.
    [10]Phillips BW, Hentze H, Rust WL, et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev,2007,16(4):561-578.
    [11]Shim JH, Kim SE, Woo DH, et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia,2007,50(6):1228-1238.
    [12]Chen S, Borowiak M, Fox JL, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol,2009,5(4):258-265.
    [13]Takahashi K.Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006,126(4):663-676.
    [14]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007,131(5):861-872.
    [15]Takahashi K, Okita K, Nakagawa M.Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc,2007,2(12):3081-3089.
    [16]Stadtfeld M, Brennand K.Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol,2008,18(12):890-894.
    [17]Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A,2009,106(37):15768-15773.
    [18]Alipio Z, Liao W, Roemer EJ, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A,2010,107(30): 13426-13431.
    [19]Tateishi K, He J, Taranova O, et al. Generation of insμlin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem,2008,283(46):31601-31607.
    [20]Sun N, Panetta NJ, Gupta DM, et al. Feeder-free derivation of induced pluripotent stem cells from adμlt human adipose stem cells. Proc Natl Acad Sci U S A,2009,106(37):15720-15725.
    [21]Okita K, Ichisaka T.Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007,448(7151):313-317.
    [22]Furth ME.Atala A. Stem cell sources to treat diabetes. J Cell Biochem,2009,106(4):507-511.
    [23]Neshati Z, Matin MM, Bahrami AR.Moghimi A. Differentiation of mesenchymal stem cells to insμlin-producing cells and their impact on type 1 diabetic rats. J Physiol Biochem,2010,66(2):181-187.
    [24]Zhang X, Jiao C.Zhao S. Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Rev,2009,5(4):402-409.
    [25]Ding Y, Bushell A.Wood KJ. Mesenchymal stem-cell immunosuppressive capabilities:therapeutic implications in islet transplantation. Transplantation,2010,89(3):270-273.
    [26]Karnieli O, Izhar-Prato Y, Bulvik S.Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells,2007,25(11):2837-2844.
    [27]Moriscot C, de Fraipont F, Richard MJ, et al. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells,2005,23(4):594-603.
    [28]Li Y, Zhang R, Qiao H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol,2007,211(1):36-44.
    [29]Yuan H, Li J, Xin N, et al. Expression of Pdxl mediates differentiation from mesenchymal stem cells into insμlin-producing cells. Mol Biol Rep,2010.
    [30]Li L, Li F, Qi H, et al. Coexpression of Pdxl and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev, 2008,17(4):815-823.
    [31]Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adμlt pancreatic exocrine cells to beta-cells. Nature,2008,455(7213):627-U630.
    [32]Parnaud G, Bosco D, Berney T, et al. Proliferation of sorted human and rat beta cells. Diabetologia,2008,51(1): 91-100.
    [33]Li L, Lili R, Hui Q, et al. Combination of GLP-1 and sodium butyrate promote differentiation of pancreatic progenitor cells into insulin-producing cells. Tissue Cell,2008,40(6):437-445.
    [34]Bernal-Mizrachi E, Cras-Meneur C, Ye BR, et al. Transgenic overexpression of active calcineurin in beta-cells results in decreased beta-cell mass and hyperglycemia. PLoS One,2010,5(8):e11969.
    [35]Kabelitz D, Geissler EK, Soria B, et al. Toward cell-based therapy of type I diabetes. Trends Immunol,2008, 29(2):68-74.
    [36]Gao F, Wu DQ, Hu YH, et al. In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Translational Research,2008,151(6):293-302.
    [37]Zhang YH, Wang HF, Liu W, et al. Insulin-producing cells derived from rat bone marrow and their autologous transplantation in the duodenal wall for treating diabetes. Anat Rec (Hoboken),2009,292(5):728-735.
    [38]Segev H, Fishman B, Ziskind A, et al. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells,2004,22(3):265-274.
    [39]Ianus A, Holz GG, Theise ND.Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest,2003,111(6):843-850.
    [40]chang, d.niu, h.zhou, et al. mesenchymal stem cells contribute to insulin-producing cells upon microenvironmental manipμlation in vitro. transplantation proceedings,2007:3363-3368.
    [41]Sumi S, Gu Y, Hiura A.Inoue K. Stem cells and regenerative medicine for diabetes mellitus. Pancreas,2004, 29(3):e85-89.
    [42]Hisanaga E, Park KY, Yamada S, et al. A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellμlin-delta4. Endocr J,2008,55(3): 535-543.
    [43]Chang CF, Hsu KH, Chiou SH, et al. Fibronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells. Journal of Biomedical Materials Research Part A,2008, 86A(4):1097-1105.
    [44]Tayaramma T, Ma B, Rohde M.Mayer H. Chromatin-remodeling factors allow differentiation of bone marrow cells into insμlin-producing cells. Stem Cells,2006,24(12):2858-2867.
    [45]Gao F, Wu DQ, Hu YH.Jin GX. Extracellμlar matrix gel is necessary for in vitro cμltivation of insμlin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J (Engl),2008,121(9): 811-818.
    [46]Taneera J, Rosengren A, Renstrom E, et al. Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic β-Cell Fate,Diabetes,2006,55:290-296.
    [47]Limbert C, Path G, Jakob F.Seufert J. Beta-cell replacement and regeneration:Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Res Clin Pract,2008,79(3):389-399.
    [48]Kojima I. [Organogenesis and regeneration of pancreas]. Tanpakushitsu Kakusan Koso,2000,45(13 Suppl): 2243-2249.
    [49]Hammerman MR. Organogenesis of the endocrine pancreas. Kidney Int,2005,68(5):1953-1955.
    [50]Pan FC.Wright C. Pancreas organogenesis:from bud to plexus to gland. Dev Dyn,2011,240(3):530-565.
    [51]Kaneto H, Miyatsuka T, Shiraiwa T, et al. Crucial role of PDX-1 in pancreas development, beta-cell differentiation, and induction of surrogate beta-cells. Curr Med Chem,2007,14(16):1745-1752.
    [52]Kaneto H, Miyatsuka T, Fujitani Y, et al. Role of PDX-1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract,2007,77 Suppl 1:S127-137.
    [53]Kaneto H, Miyatsuka T, Kawamori D, et al. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J,2008,55(2):235-252.
    [54]Rukstalis JM.Habener JF. Neurogenin3:a master regulator of pancreatic islet differentiation and regeneration. Islets,2009,1(3):177-184.
    [55]Mwangi SM, Usta Y, Raja SM, et al. Glial cell line-derived neurotrophic factor enhances neurogenin3 gene expression and beta-cell proliferation in the developing mouse pancreas. Am J Physiol Gastrointest Liver Physiol, 2010,299(1):G283-292.
    [56]Gouzi M, Kim YH, Katsumoto K, et al. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn,2011,240(3):589-604.
    [57]Aramata S, Han SI.Kataoka K. Roles and regulation of transcription factor MafA in islet beta-cells. Endocr J, 2007,54(5):659-666.
    [58]Benkhelifa S, Provot S, Lecoq O, et al. mafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells. Oncogene,1998,17(2):247-254.
    [59]Matsuoka TA, Kaneto H, Stein R, et al. MafA regμlates expression of genes important to islet beta-cell function. Mol Endocrinol,2007,21(11):2764-2774.
    [60]Kaneto H, Matsuoka TA, Kawashima S, et al. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev,2009, 61(7-8):489-496.
    [61]Kaneto H, Nakatani Y, Miyatsuka T, et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insμlin gene transcription and ameliorates glucose tolerance. Diabetes,2005,54(4):1009-1022.
    [62]Li J, Wang Y, Yu X, et al. Islet neogenesis-associated protein-related pentadecapeptide enhances the differentiation of islet-like clusters from human pancreatic duct cells. Peptides,2009,30(12):2242-2249.
    [63]Noguchi H, Kaneto H, Weir GC.Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes,2003,52(7):1732-1737.
    [64]Koya V, Lu S, Sun YP, et al. Reversal of streptozotocin-induced diabetes in mice by cellμlar transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1:a novel protein transduction domain-based therapy. Diabetes,2008,57(3):757-769.
    [65]卢大儒,李戈,毋慧玲.神经元素3蛋白(Ngn3)诱导大鼠骨髓间充质干细胞向胰岛素表达细胞分化的初步研究 复旦学报(自然科学版),2008.
    [66]Choi KS, Shin JS, Lee JJ, et al. In vitro trans-differentiation of rat mesenchymal cells into insμlin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun,2005,330(4):1299-1305.
    [67]Lee J, Han DJ.Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract, Biochem Biophys Res Commun,2008,375(4):547-551.
    [68]Sasaki M, Abe R, Fujita Y, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into mμltiple skin cell type. J Immunol,2008,180(4):2581-2587.
    [69]Bianco P, Robey PGSimmons PJ. Mesenchymal stem cells:revisiting history, concepts, and assays. Cell Stem Cell,2008,2(4):313-319.
    [70]Liu M.Han ZC. Mesenchymal stem cells:biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med,2008,12(4):1155-1168.
    [71]Chang C, Wang X, Niu D, et al. Mesenchymal stem cells adopt beta-cell fate upon diabetic pancreatic microenvironment. Pancreas,2009,38(3):275-281.
    [72]Hardikar AA, Karandikar MS.Bhonde RR. Effect of partial pancreatectomy on diabetic status in BALB/c mice. J Endocrinol,1999,162(2):189-195.
    [73]Hardikar AA.Bhonde RR. Modμlating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas. Diabetes Res Clin Pract,1999,46(3):203-211.
    [74]Kanitkar M.Bhonde R. Existence of islet regenerating factors within the pancreas. Rev Diabet Stud,2004,1(4): 185-192.
    [75]黄盛.不同微环境对骨髓间充质干细胞分化为产胰岛素细胞的影响.中华实验外科杂志,2008,25(3).
    [76]Xu YX, Chen L, Hou WK, et al. Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant Proc,2009,41(5):1878-1884.
    [77]Chausmer AB. Zinc, insμlin and diabetes. J Am Coll Nutr,1998,17(2):109-115.
    [78]Shiroi A, Yoshikawa M, Yokota H, et al. Identification of insμlin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells,2002,20(4):284-292.
    [79]Lukowiak B, Vandewalle B, Riachy R, et al. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem,2001,49(4):519-528.
    [80]Gradwohl G, Dierich A, LeMeur M.Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A,2000,97(4):1607-1611.
    [81]Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insμlin-producing cells. Cell Res,2009,19(4):429-438.
    [82]Wu XH, Liu CP, Xu KF, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol,2007,13(24): 3342-3349.
    [83]Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insμlin-secreting structures similar to pancreatic islets. Science,2001,292(5520):1389-1394.
    [84]Kim JH, Park SN.Suh H. Generation of insμlin-producing human mesenchymal stem cells using recombinant adeno-associated virus. Yonsei Med J,2007,48(1):109-119.
    [85]Aldibbiat A, Marriott CE, Scougall KT, et al. Inability to process and store proinsμlin in transdifferentiated pancreatic acinar cells lacking the regμlated secretory pathway. J Endocrinol,2008,196(1):33-43.
    [86]Quinn D, Orci L, Ravazzola M.Moore HP. Intracellμlar transport and sorting of mutant human proinsμlins that fail to form hexamers. J Cell Biol,1991,113(5):987-996.
    [87]Galloway JA, Hooper SA, Spradlin CT, et al. Biosynthetic human proinsμlin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical trial experience. Diabetes Care,1992, 15(5):666-692.
    [88]Pfaendtner J, De La Cruz EM.Voth GA. Actin filament remodeling by actin depolymerization factor/cofilin. Proc Natl Acad Sci U S A,2010,107(16):7299-7304.
    [89]Nakashima S, Matsuda H, Kurume A, et al. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorg Med Chem Lett,2010,20(9):2994-2997.
    [90]陈天宇,余元龙.胡泽民.Cofilin的表达对人肝细胞增殖和抗损伤能力的影响.实用医学杂志,2007(09).
    [91]汪引芳,王凤杰,王念.刘永明.高糖对ECV304细胞中Cofilin-1表达及PKC活性的影响.武汉大学学报(医学版),2008(03).
    [92]Narayanan R.Ramaswami M. Regulation of dynamin by nucleoside diphosphate kinase. J Bioenerg Biomembr, 2003,35(1):49-55.
    [93]邱亚.杨湛.肿瘤转移抑制基因nm23/NDPK的结构与功能.西部医学,2006(05).
    [94]Salerno M, Palmieri D, Bouadis A, et al. Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Rasl (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol,2005,25(4):1379-1388.
    [95]Bieganowski P, Garrison PN, Hodawadekar SC, et al. Adenosine monophosphoramidase activity of Hint and Hntl supports function of Kin28, Cell, and Tfb3. J Biol Chem,2002,277(13):10852-10860.
    [96]Blume-Jensen P.Hunter T. Oncogenic kinase signalling. Nature,2001,411(6835):355-365.
    [97]Hegde R, Srinivasμla SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem,2002,277(1):432-438.
    [98]Kiang JGTsokos GC. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacol Ther,1998,80(2):183-201.
    [99]Leiper J, Murray-Rust J, McDonald N.Vallance P. S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity:further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci U S A,2002,99(21):13527-13532.
    [1]Chang Caihong,Zhou Hanxin, Li Furong, et al. Mesenchymal stem cells contribute to insμlin producing cells upon microenvironmental manipμlation in vitro[J]. Transplant Proc,2007,39(10):3363-3368.
    [2]SasakiM, Inokuma D, Shimizu H, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into mμltiple skin cell type[J]. J Immunol,2008,180 (4): 2581-2587.
    [3]Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells:revisiting history, concepts, and assays [J]. Cell Stem Cell,2008,2 (4):313-319.
    [4]Liu Meng, Han Zhongchao. Mesenchymal stem cells:biology and clinical potential in type 1 diabetes therapy[J]. J CellMolMed,2008,12 (4):1155-1168.
    [5]Wu Xiaohong,Liu Cui ping, Xu Kuanfeng, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells [J]. World J Gastroenter ol,2007,13 (24):3342-3349.
    [6]Ianus A, Holz GG, Theise ND, et al. In vivo derivation of glucose competent pancreatic endocrine cells from bone marrow without evidence of cell fusion[J]. J Clin I nvest,2003,111 (6):843-850.
    [7]Li L isa,L i Furong,Qi Hui, et al. Coexpression of Pdxl and betacellulin in mesenchymal stem cells could promote the differentiation of nestin positive epithelium-like progenitors and pancreatic islet-likes pheroids [J]. Stem Cells Dev,2008,17 (4):815-823.
    [8]Chang Chingfang, Hsu Kehsun, Chiou Shihhwa, et al. Fbronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells[J]. J Biomed Mater ResA,2008, 86 (4):1097-1105.
    [9]Terada N, Hamazaki T,O'kaM, et al.Bone marr ow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature,2002,416 (6880):542-545.
    [10]Wang Xiaojun, L i Qingping. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases[J]. Biochem Biophys Res Commun,2007,359 (2):189-193.
    [11]Sager R, Kovac P. Preadipocyte determination either by insulin or by 5-azacytidine[J]. Proc NatlAcad SciUS A,1982,79 (2):480-484.
    [12]Dansranjavin T, Krehl S,Mueller T, et al. The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation [J]. Cell Cycle,2009,8 (6):916-924.
    [13]Yeo S, Jeong S, Ki m J, et al. Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells[J]. Biochem Biophys Res Commun,2007,359 (3):536-542.
    [14]Ezura Y, Sekiya I, Koga H, et al. Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium derived mesenchymal stem cells[J]. Arthritis Rheum,2009, 60(5):1416-1426.
    [15]Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxiaon gene expression of bone marrow derived mesenchymal stem cells and mononuclear cells[J]. Stem Cells,2007,25 (5):1166-1177.
    [16]Sadat S, Gehmert S, Song YH, et al. The cardio protective effect of mesenchymal stem cells ismediated by IGF-Ⅰ and VEGF[J]. Biochem Biophys Res Commun,2007,363(3):674-679.
    [17]Zhao Hui, Yeo KS, Low TY, et al. Elucidating the secretion proteome of human embryonic stem cell derived mesenchymal stem cells [J]. Mol Cell Proteomics,2007,6(10):1680-1689.
    [18]Boumaza I, Srinivasan S,Witt WT, et al. Autologous bone marrow derived rat mesenchymal stem cells promote PDX1 and insμlin expression in the islets, alter T cell cytokine pattern and preserve regμlatory T cells in the periphery and induce sustained normoglycemia [J]. J Autoimmun,2009,32 (1):33-42.
    [19]Xu Xiaobo,D'Hoker J,Stange G, et al.Beta cells can be generated from endogenous progenitors in injured adμlt mouse pancreas[J]. Cell,2008,132 (2):197-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700