大气压介质阻挡放电中的时间非线性行为与空间演化特性模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压介质阻挡放电中存在着非常复杂的时间非线性行为,如倍周期分岔与混沌。在这些行为中,放电电流每多个电压周期重复一次或者随外加电压随机振荡。它们对放电参数比较敏感,与放电的稳定性密切相关,直接影响到大气压介质阻挡放电的应用。研究这些行为对如何获得稳定的放电有着非常重要的指导意义,因而近些年来,受到了较为广泛的关注。
     在本论文中,先后采用一维和二维的流体力学模型,对大气压介质阻挡放电中的时间非线性行为与空间演化特性进行了研究。具体分为以下五个部分:(a)同轴电极介质阻挡放电的特性与时间非线性行为研究;(b)平行板电极介质阻挡多峰放电中的时间非线性行为研究;(c)对称的单周期放电转变到二倍周期放电的机理研究;(d)二倍周期放电的物理机制及其空间演化特性研究;(e)脉冲介质阻挡放电中两次放电的空间演化特性研究。
     第二章,采用一维流体模型模拟研究了同轴电极结构中介质阻挡放电的特性与时间非线性行为。研究发现:在通常的单周期放电内正负半周期的放电电流是不对称的,放电的不对称程度主要由两个电极的半径比决定。在一定的条件下,放电随着频率或气体间隙的变化会呈现出倍周期分岔、二次分岔、混沌等复杂的时间非线性行为。
     第三章,深入研究了大气压平板电极结构中介质阻挡放电的时间非线性行为。模拟发现:与单峰放电相似,多峰放电中也存在倍周期分岔以及混沌等时间非线性现象。然而在多峰倍周期分岔序列中,多峰只出现在半个电压周期内(或电压的正半周期或电压的负半周期)。当正负半周期的放电不对称时,放电对参数十分敏感,很容易过渡到其他放电状态。反之,放电相对稳定。对于稳定的倍周期状态,改变参数可使半个电压周期内的放电次数增加而不改变其周期态。
     第四章,模拟研究了单周期放电分岔进入倍周期放电的转换机制。结果显示:在一个对称的单周期放电进入倍周期放电前,它总是先偏离其正常的对称放电模式而进入一个正负半周放电不对称的单倍周期放电状态。然后,随着参数的变化,不对称放电中较弱的放电将逐渐变强,直到这个放电削弱下一次放电并导致放电发生分岔进入倍周期放电状态。在整个转换过程中,每次放电前电子密度、离子密度和电场强度的空间分布状态起到了决定性的作用。
     第五章,采用二维流体模型对二倍周期放电形成的物理机制及其空间演化特性进行了研究。结果表明,放电空间局部高的电子密度区域的产生是形成二倍周期放电的主要原因。当局部高电子密度区域出现在瞬时阳极附近时,它对接下来的放电影响很小。相反,当局部高电子密度区域出现在瞬时阴极附近时,它将限制放电空间场强的增长,从而导致接下来的放电变小。这种局部高电子密度区域每两个电压周期重一次,从而导致放电呈现出二倍周期放电。在二倍周期放电中,四次放电都有着各自不同的空间演化行为。由非均匀的介质表面电荷引起的径向非均匀场强是导致这些空间演化的主要原因。
     第六章,模拟研究了脉冲介质阻挡放电中两次放电的空间演化特性。结果发现:脉冲放电中的两次放电既能处于沿径向均匀的放电模式,又能处于沿径向不均匀的放电模式。放电的均匀性主要由前次放电的性质以及前次放电与本次放电之间的时间间隔决定。如果前一次放电结束时,电子密度沿径向是均匀分布的,两次放电之间的时间间隔越短,接下来的放电就越均匀。两次放电的时间间隔主要取决于电压脉冲频率和脉冲宽度,相对而言,脉冲频率越高,主放电越均匀;而脉冲宽度越小,次放电越均匀。
Atmospheric-pressure dielectric-barrier discharges (DBDs) possesse complex temporal nonlinear behaviors, such as period-doubling bifurcation and chaos. In these nonlinear behaviors, the discharge current pulses repeat at multiple applied voltage cycles or fluctuate stochastically. These behaviors are sensitive to discharge parameters and closely related to the discharge stability, which affect directly the applications of the atmospheric-pressure DBDs. The studies of these nonlinear behaviors can provide important references for realizing stable discharge. Hence, in recent years the complex temporal nonlinear behaviors of atmospheric-pressure DBDs have received considerable attentions.
     In this paper, the temporal nonlinear behaviors and characteristics of spatial evolution in atmospheric-pressure DBDs are investigated using one-dimensional or two-dimensional fluid models. The finished studies include the following sections:(a) the characteristics and temporal nonlinear behaviors of DBD between two coaxial electrodes;(b) the temporal nonlinear behaviors of DBD with multiple current pulses per half voltage period between two parallel planar electrodes;(c) the transition mechanisms from a symmetric single period discharge to a period-doubling discharge;(d) the mechanisms and spatial evolutions of the period-two discharge;(e) the spatial evolutions of two discharges in pulsed DBD.
     In chapter2, based on a one-dimensional fluid model, the discharge behaviors and spatial evolutions of atmospheric-pressure DBD between two coaxial electrodes are studied. It is found that the discharge currents are always asymmetrical during the positive cycle and negative cycle of the applied voltage and this asymmetry is mainly decided by the ratio of two electrode radii. Under certain conditions, with the variation of the frequency or gas gap the discharges can assume complex nonlinear behaviors including period-doubling bifurcation, secondary bifurcation and chaos.
     In chapter3, the temporal nonlinear behaviors of the atmospheric-pressure DBD between two parallel planar electrodes are investigated. The results show that complex nonlinear behaviors such as period-doubling bifurcation and chaos can also be observed in the DBD with multiple current pulses per half voltage period. In the sequence of the multi-pulse period-doubling bifurcation, the multiple current pulses appear only in the half voltage cycle (in positive or negative half cycle). When the discharge becomes asymmetrical it is sensitive to the discharge parameters, and can be easily changed into other discharge states. Othervise, the discharge is relatively stable, and can sustain over a broad parameter range. In a certain range, changing parameters will result in the increase of the number of current pulses while not change its periodic state.
     In chapter4, the transition mechanism from a symmetric single period discharge to period-doubling discharge are studied. The simulation results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. After that, the weaker discharge in the asymmetric discharge will be enhanced gradually with the changing of the parameters until it weakens the following discharge and results in the discharge entering a period-doubling discharge state. In the whole transition process, the distributions of the electron density, ion density and electric field before the discharge starts play a definitive role.
     In chapter5, the mechanisms of period-two discharge and its spatial evolutions are studied using a two-dimensional fluid model. The results suggest that the production of the local high electron density region in discharge space is the main reason for the formation of the period-two discharge. When the local high electron density region appears near the momentary anode, it barely affects the subsequent discharge. In contrast, when the high electron density region appears in the vicinity of the cathode, it reduces the subsequent discharge current greatly. If the local high electron density region repeats every two voltage cycles, the discharge will assume period-two state. The four discharges in a period-two discharge have different spatial behaviors. Non-uniform electric field along the radial direction induced by non-uniform surface charge densities are the main reason causing these spatial behaviors.
     In chapter6, a two-dimensional fluid model is developed to study the spatial evolutions of the two discharges in pulsed DBD. The results show that the two discharges ignited during one voltage pulse can operate in either radially uniform or radially nonuniform manner. This is mainly determined by the previous discharge characteristics and the time intervals between this discharge and its previous discharge. If the electron density distribution is radially uniform at the end of the previous discharge, the shorter the time interval between two discharges, the more homogenous the subsequent discharge. In pulsed discharge, the time intervals between two discharges are mainly determined by the duration and repetition frequency of applied voltage pulse. The higher the repetition frequency is, the more uniform the primary discharge is. The shorter the duration is, the more uniform the secondary discharge is.
引文
[1]Tonks L, Langmuir I. Oscillations in ionized gas [J]. Phys. Rev.,1929,33(2): 195-210.
    [2]马腾才,胡希伟,陈银华.等离子体物理原理[M].合肥:中国科学技术大学出版社,2012.
    [3]刘万东.等离子体物理及其应用领域.合肥:中国科学技术大学近代物理系讲义,2002.
    [4]自然科学学科发展战略研究报告之十四[J]:等离子体物理学.科技导报.1994.
    [5]徐学基,诸定吕.气体放电物理[M].上海:复旦大学出版社,1996.
    [6]武古成,张希军,胡有志编著.气体放电[M].北京:国防工业出版社,2010.
    [7]赵青,刘述章,童洪辉编著.等离子体技术及应[M].北京:国防工业出版社,2007.
    [8]Bogaerts A, Neyts E, Gi jbels R, et al. Gas discharge plasmas and their applications [J]. Spectrochim. Acta B,2002,57(4):609-658.
    [9]Raizer Y P. Gas discharge physics [M]. Berlin, Germany:Springer Pr.,1991.
    [10]Ramakrishnan S, Rogozinski M W. Properties of electric arc plasma for metal cutting [J]. J. Phys. D:Appl. Phys.,1997,30(4):636-644.
    [11]Beck M, Berger P, Hugel H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers [J]. J. Phys. D:Appl. Phys.,1995,28(12): 2430-2442.
    [12]Mildren R P, Carman R J. Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation [J]. J. Phys. D:Appl. Phys.,2001,34(1):L1-L6.
    [13]Eliasson B, Kogelschatz U. Nonequilibrium volume plasma chemical-processing [J]. IEEE Trans. Plasma Sci.,1991,19(6):1063-1077.
    [14]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1994,27(9): 1985-1987.
    [15]Heberlein J, Murphy A B. Thermal plasma waste treatment [J]. J. Phys. D:Appl. Phys.,2008,41(5):053001.
    [16]Graves D B. Plasma processing in microelectronics manufacturing [J]. Aiche J., 1989,35(1):1-29.
    [17]Sugawara M. Generation of a highly uniform and large area corona discharge source adaptable to surface treatment [J]. Surface and Coating Technology,2001,142: 290-292.
    [18]Massines F, Gherardi N, Fornelli A, et al. Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge [J]. Surface and Coating Technology,2005,200(5-6):1855-1861.
    [19]Robertson J. Ultrathin carbon coatings for magnetic storage technology [J]. Thin Solid Films,2001,383(1-2):81-88.
    [20]Borg G G, Harris J H, Miljak D G, et al. Application of plasma columns to radiofrequency antennas [J]. Appl. Phys. Lett.,1999,74(22):3272-3274.
    [21]Ma L X, Zhang H, Zhang C X. Analysis on the reflection characteristic of electromagnetic wave incidence in closed non-magnetized plasma [J]. J. Electromagnet. Wave,2008,22(17-18):2285-2296.
    [22]Boeuf J P, Garrigues L. Low frequency oscillations in a stationary plasma thruster [J]. J.Appl. Phys.,1998,84(7):3541-3554.
    [23]Booske J H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J]. Phys. Plasmas,2008,15(5):055502.
    [24]Kodama R, Neely D, Kato Y, et al. Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target [J]. Phys. Rev. Lett.,1994,73(24): 3215-3218.
    [25]XuXJ. Dielectric barrier discharge-properties and applications [J]. Thin Solid Films,2001,390(1-2):237-242.
    [26]Sira M, Trunec D, St'ahel P, et al. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge [J]. J. Phys. D:Appl. Phys.,2008, 41(1):015205.
    [27]Yi C H, Lee Y H, Yeom G Y. The study of atmospheric pressure plasma for surface cleaning [J]. Surface and Coating Technology,2003,171(1-3):237-240.
    [28]Chapman B. Glow discharge processes:sputtering and plasma etching, Wiley, New York 1980.
    [29]Foest R, Adler F, Sigeneger F, et al. Study of an atmospheric pressure glow discharge (APG) for thin film deposition [J]. Surface and Coating Technology,2003, 163:323-330.
    [30]Rauf S, Kushner M J. Dynamics of a coplanar-electrode plasma display panel cell. I.Basic operation [J]. J. Appl. Phys.,1999,85(7):3460-3469.
    [31]Kogelschatz U. Dielectric-barrier discharges:their history, discharge physics, and industrial applications [J]. Plasma Chem. Plasma Process.,2003,23(1):1-46.
    [32]Siemens W. Ueber die elektrostatische induction und die verzogerung des stroms in flaschendrhten [J]. Ann. Phys.,1857,178(9):66-122.
    [33]Andrews T, Tait P G. On the volumetric relations of ozone, and the action of the electrical discharge on oxygen and other gases [J]. Phil. Trans. Roy. Soc.,1860, 150:113-131.
    [34]Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges [J]. IEEE Trans. Plasma Sci.,2002,30(4):1400-1408.
    [35]Pal U N, Sharma A K, Soni J S, et al. Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon [J]. J. Phys. D:Appl. Phys.,2009, 42(4):045213.
    [36]Liu S H, Neiger M. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses [J]. J. Phys. D:Appl. Phys.,2001,34(11):1632-1638.
    [37]Laroussi M, Lu X P, Kolobov V, et al. Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure [J]. J. Appl. Phys.,2004,96(5): 3028-3030.
    [38]Shao T, Long K H, Zhang Ch, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2008,41(21):215203.
    [39]Buss K. Die elektrodenlose entladung nach messung mit dem kathodenoszillographen [J]. Arch. Elektrotechnol.,1932,26(4):261-265.
    [40]Raether H. Die entwicklung der elektronenlawine in den funkenkanal [J]. Z. Phys. 1939,112(7):464-489.
    [41]Leob L B, Meek J M. The mechanism of spark discharge in air at atmospheric-pressure Ⅰ [J]. J. Appl. Phys.,1940,11(6):438-442.
    [42]Leob L B, Meek J M. The mechanism of spark discharge in air at atmospheric-pressure Ⅱ [J]. J. Appl. Phys.,1940,11(7):459-474.
    [43]Kanzawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric-pressure [J]. J. Phys. D:Appl. Phys.,1988,21(5):838-840.
    [44]Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen [J]. J. Phys. D:Appl. Phys.,2002,35(8):751-761.
    [45]Kunhardt E E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas [J]. IEEE Trans. Plasma Sci.,2000,28(1):189-200.
    [46]Massines F, Gherardi N, Naude N, et al. Recent advances in the understanding of homogeneous dielectric barrier discharges [J]. Eur. J. Phys.-Appl. Phys.,2009, 47(2):22805.
    [47]Massines F, Gherardi N, Naude N, et al. Glow and Townsend dielectric barrier discharge in various atmosphere [J]. Plasma Phys. Control. Fusion.,2005,47: B577-B588.
    [48]Wang Y H, Wang D Z. Influence of impurities on the uniform atmospheric-pressure discharge in helium [J]. Phys. Plasmas,2005,12(2):023503.
    [49]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J]. J. Appl. Phys.,1998,83(6):2950-2957.
    [50]Duan X X, He F, Ouyang J T. Prediction of atmospheric pressure glow discharge in dielectric-barrier system [J]. Appl. Phys. Lett.,2010,96(23):231502.
    [51]Wang Y H, Wang D Z. Modes of homogeneous barrier discharge at atmospheric pressure in helium [J]. Chin. Phys. Lett.,2004,21(11):2234-2237.
    [52]Brandenburg R, Navratil Z, Jansky J, et al. The transition between different modes of barrier discharges at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2009, 42(8):085208.
    [53]Martens T, Bogaerts A, Brok W J M, et al. The influence of impurities on the performance of the dielectric barrier discharge [J]. Appl. Phys. Lett.,2010,96(9): 091501.
    [54]Luo H Y, Liang Zh, Lv B, et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure [J]. Appl. Phys. Lett.,2007,91(22):221504.
    [55]Yokoyama T, Kogoma M, Moriwaki T, et al. The mechanism of the stabilization of glow plasma at atmospheric-pressure [J]. J. Phys. D:Appl. Phys.,1990,23(8): 1125-1128.
    [56]Massines F, Segur P, Gherardi N, et al. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure:diagnostics and modelling [J]. Surface and Coating Technology,2003,174:8-14.
    [57]Naude N, Massines F. Influence of the surface conductivity on the stability of a glow dielectric-barrier discharge [J]. IEEE Trans. Plasma Sci.,2008,36(4): 1322-1323.
    [58]Kelly-Wintenberg K, Montie T C, Brickman C, et al. Room temperature sterilization of surfaces and fabrics with a One Atmosphere Uniform Glow Discharge Plasma [J]. J. Ind. Microbiol. Biotechnol.,1998,20(1):69-74.
    [59]Roth J R. Prospective industrial applications of the one atmosphere uniform glow discharge plasma [J]. Conf. Rec. IEEE IAS Annu.Meeting,2004,1:216-223.
    [60]Roth J R, Nourgostar S, Bonds T A. The one atmosphere uniform glow discharge plasma (oaugdp)-a platform technology for the 21st century [J]. IEEE Trans. Plasma Sci., 2007,35(2):233-250.
    [61]Golubovskii Y B, Maiorov V A, Behnke J, et al. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2003, 36(1):39-49.
    [62]Shi J J, Kong M G. Mechanisms of the alpha and gamma modes in radio-frequency atmospheric glow discharges [J]. J. Appl. Phys.,2005,97(2):023306.
    [63]Shi J J, Kong M G. Mode characteristics of radio-frequency atmospheric glow discharges [J]. IEEE Trans. Plasma Sci.,2005,33(2):624-630.
    [64]Laimer J, Puchhammer A, Stori H. Plasma sheath dynamics in dielectric barrier-free atmospheric pressure radio-frequency glow discharges [J]. Plasma Process. Polym., 2009,6:S253-S257.
    [65]Yang X, Moravej M, Nowling G R, et al. Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes [J]. Plasma Sources Sci. Technol.,2005,14(2):314-320.
    [66]Shi J J, Liu D W, Kong M G. Plasma stability control using dielectric barriers in radio-frequency atmospheric pressure glow discharges [J]. Appl. Phys. Lett., 2006,89(8):081502.
    [67]Li B, Chen Q, Liu Z W. A large gap of radio frequency dielectric barrier atmospheric pressure glow discharge [J]. Appl. Phys. Lett.,2010,96(4):041502.
    [68]Shi J J, Kong M G. Mode transition in radio-frequency atmospheric argon discharges with and without dielectric barriers [J]. Appl. Phys. Lett.,2007,90(10):101502.
    [69]Shi J J, Kong M G. Radio-frequency dielectric-barrier glow discharges in atmospheric argon [J]. Appl. Phys. Lett.,2007,90(11):111502.
    [70]Shi J J, Liu D W, Kong M G. Mitigating plasma constriction using dielectric barriers in radio-frequency atmospheric pressure glow discharges [J]. Appl. Phys. Lett.,2007,90(3):031505.
    [71]Shi J J, Deng X T, Hall R, et al. Three modes in a radio frequency atmospheric pressure glow discharge [J]. J. Appl. Phys.,2003,94(10):6303-6310.
    [72]Ayan H, Fridman G, Gutsol A F, et al. Nanosecond-pulsed uniform dielectric-barrier discharge [J]. IEEE Trans. Plasma Sci.,2008,36(2):504-508.
    [73]Shao T, Yu Y, Zhang Ch, et al. Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator [J]. IEEE Trans. Dielectr. Elect. Insul.,2010,17(6):1830-1837.
    [74]Lu X P, Laroussi M. Temporal and spatial emission behaviour of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses [J]. J. Phys. D:Appl. Phys.,2006,39(6):1127-1131.
    [75]Leiweke R J, Ganguly B N. Effects of pulsed-excitation applied voltage rise time on argon metastable production efficiency in a high pressure dielectric barrier discharge [J]. Appl. Phys. Lett.,2007,90(24):241501.
    [76]Lu X P, Xiong Q, Xiong Z L, et al. Effect of nano-to millisecond pulse on dielectric barrier discharges [J]. IEEE Trans. Plasma Sci.,2009,37(5):647-652.
    [77]Panousis E, Merbahi N, Clement F, et al. Analysis of dielectric barrier discharges under unipolar and bipolar pulsed excitation [J]. IEEE Trans. Dielectr. Electr. Insul.,2009,16(3):734-741.
    [78]Huang X J, Sun L Q, Liu X K, et al. Discharge dynamics and characteristics of atmospheric glow discharge excited by sub-microsecond high voltage pulses [J]. Thin Solid Films,2011,519(20):7036-7041.
    [79]Kirpichnikov A A, Starikovskii A Y. Nanosecond pulsed discharge-Always uniform? [J]. IEEE Trans. Plasma Sci.,2008,36(4):898-899.
    [80]Lu X, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses [J]. J. Appl. Phys.,2006,100(6):063302.
    [81]Lu X P, Laroussi M. Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer [J]. Appl. Phys. Lett.,2008, 92(5):051501.
    [82]卢新培,严萍,任春生,等.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学力学天文学,2011,41(7):801-815.
    [83]欧阳颀.反应扩散系统中的斑图动力学[M].上海:上海科技教育出版社,2000.
    [84]Guikema J, Miller N, Niehof J, et al. Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system [J]. Phys. Rev. Lett.,2000,85(18):3817-3820.
    [85]Gurevich E L, Zanin A L, Moskalenko A S, et al. Concentric-ring patterns in a dielectric barrier discharge system [J]. Phys. Rev. Lett.,2003,91(15):154501.
    [86]Zanin A L, Gurevich E L, Moskalenko A S, et al. Rotating hexagonal pattern in a dielectric barrier discharge system [J]. Phys. Rev. E,2004,70:036202.
    [87]Shirafuji T, Kitagawa T, Wakai T, et al. Observation of self-organized filaments in a dielectric barrier discharge of Ar gas [J]. Appl. Phys. Lett.,2003,83(12): 2309-2311.
    [88]Dong L F, Liu F Ch, Liu S H, et al. Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure [J]. Phys. Rev. E,2005,72(4):046215.
    [89]Muller I, Punset C, Ammelt E, et al. Self-organized filaments in dielectric barrier glow discharges [J]. IEEE Trans. Plasma Sci.,1999,27(1):20-21.
    [90]Brauer I, Punset C, Purwins H G, et al. Simulations of self-organized filaments in a dielectric barrier glow discharge plasma [J]. J. Appl. Phys.,1999,85(11): 7569-7572.
    [91]Stollenwerk L, Amiranashvili S, Boeuf J P, et al. Measurement and 3D simulation of self-organized filaments in a barrier discharge [J]. Phys. Rev. Lett.,2006, 96(25):255001.
    [92]Duan X X, Ouyang J T, Zhao X F, et al. Pattern formation and boundary effect in dielectric barrier glow discharge [J]. Phys. Rev. E,2009,80(1):016202.
    [93]Nie Q Y, Ren Ch S, Wang D Z, et al. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration [J]. Appl. Phys. Lett.,2007,90(22):221504.
    [94]Feng Y, Ren Ch S, Nie Q Y, et al. Study on the self-organized pattern in an atmospheric pressure dielectric barrier discharge plasma jet [J]. IEEE Trans. Plasma Sci.,2010,38(5):1061-1065.
    [95]贺亚峰,董丽芳,刘富成,等.介质阻挡放电斑图动力学研究进展[J].自然科学进展.2007,17(5):561-567.
    [96]Purwins H G, Bodeker H U, Liehr A W. Pattern formation in planar gas-discharge systems [J]. Experimental Chaos,2004,742:289-294.
    [97]Stollenwerk L, Amiranashvili Sh, Boeuf J P, et al. Formation and stabilisation of single current filaments in planar dielectric barrier discharge [J]. Eur. Phys. J. D,2007,44(1):133-139.
    [98]卢侃,孙建华编译.混沌学传奇[M].上海:上海翻泽出版公司,1991.
    [99]张世远.物理(一)走进混沌[M].南京:江苏科学技术出版社,2000.
    [100]Lorenz E N. Deterministic nonperiodic flow [J]. J. Atmos. Sci.,1963,20(2): 130-141.
    [101]Ruelle D, Takens F. On the nature of turbulence [J]. Commun. Math. Phys.,1971, 20(3):167-192.
    [102]Li T Y, Yorke J A. Period three implies chaos [J]. Am. Math. Monthly,1975,82(10): 985-992.
    [103]May R M. Simple mathematical-models with very complicated dynamics [J]. Nature, 1976,261(5560):459-467.
    [104]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. J. Stat. Phys.,1978,19(1):25-52.
    [105]Ott E, Grebogi C, Yorke J A. Control 1 ing chaos [J]. Phys. Rev. Lett.,1990,64(11): 1196-1199.
    [106]Pecora L M, Carroll TL. Synchronization in chaotic systems [J]. Phys. Rev. Lett. 1990,64(8):821-824.
    [107]Cheung P Y, Wong A Y. Chaotic behavior and period doubling in plasmas [J]. Phys. Rev. Lett.,1987,59(5):551-554.
    [108]Cheung P Y, Donovan S, Wong A Y. Obsevations of intermitent chaos in plasmas [J]. Phys. Rev. Lett.,1988,61(12):1360-1363.
    [109]Qin J, Wang L, Yuan D P, et al. Chaos and bifurcations in periodic windows observed in plasmas [J]. Phys. Rev. Lett.,1989,63(2):163-166.
    [110]Strohlein G, Piel A. Experimental evidence of a low-dimensional attractor in the coupling of drift-sound and ion-sound waves [J]. Phys fluids B,1989,1(6): 1168-1173.
    [111]Fan S H, Yang S Z, Dai J H, et al. Observations of quasi-periodic chaos in plasmas [J]. Phys. Lett. A,1992,164(3-4):295-298.
    [112]Greiner F, Klinger T, Klostermann H, et al. Experiments and particle-in-cell simulation on self-oscillations and period-doubling in thermionic discharges at low-pressure [J]. Phys. Rev. Lett.,1993,70(20):3071-3074.
    [113]Ding W X, Wei H, Wang X D, et al. Quasi-periodic transition to chaos in a plasma [J]. Phys. Rev. Lett.,1993,70(2):170-173.
    [114]Ding W X, She H Q, Huang W, et al. Controlling chaos in a discharge plasma [J]. Phys. Rev. Lett.,1994,72(1):96-99.
    [115]Feng D L, Zheng J, Huang W, et al. Type-I-like intermittent chaos in multicomponent plasmas with negative ions [J]. Phys. Rev. E,1996,54(3):2839-2843.
    [116]Klinger T, Schroder C, Block D, et al. Chaos control and taming of turbulence in plasma devices [J]. Phys. Plasmas,2001,8(5):1961-1968.
    [117]Sijacic D D, Ebert U, Rafatov I. Period doubling cascade in glow discharges:Local versus global differential conductivity [J]. Phys. Rev. E,2004,70(5):056220.
    [118]Zhang Y T, Wang D Z, Kong M G. Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges [J]. J. Appl. Phys.,2006,100(6): 063304.
    [119]Wang Y H, Zhang Y T, Wang D Z, et al. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges [J]. Appl. Phys. Lett.,2007, 90(7):071501.
    [120]Qi B, Huang J J, Zhang Zh H, et al. Observation of periodic multiplication and chaotic phenomena in atmospheric cold plasma jets [J]. Chin. Phys. Lett.,2008, 25(9):3323-3325.
    [121]Shi H, Wang Y, Wang D. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges [J]. Phys. Plasmas,2008,15(12):122306.
    [122]Wang Y H, Shi H, Sun J Zh, et al. Period-two discharge characteristics in argon atmospheric dielectric-barrier discharges [J]. Phys. Plasmas,2009,16(6):063507.
    [123]Zhang J, Wang Y H, Wang D Z. Numerical study of period multiplication and chaotic phenomena in an atmospheric radio-frequency discharge [J]. Phys. Plasmas,2010, 17(4):043507.
    [124]Zhang J, Wang Y H, Wang D Z. Nonlinear behaviors in a pulsed dielectric barrier discharge at atmospheric pressure [J]. Thin Solid Films,2011,519(20):7020-4.
    [125]Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet [J]. J. Phys. D:Appl. Phys.,2010,43(7):075201.
    [126]Liu J J, Kong M G. Sub-60 degrees C atmospheric helium-water plasma jets:modes, electron heating and downstream reaction chemistry [J]. J. Phys. D:Appl. Phys. 2011,44(34):345203.
    [127]Walsh J L, Iza F, Janson N B, et al. Chaos in atmospheric-pressure plasma jets [J]. Plasma Sources Sci. Technol.,2012,21(3):034008.
    [128]王敩青,戴栋,郝艳捧,等.大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证[J].物理学报,2012,61(23):230504.
    [129]Steinle G, Neundorf D, Hiller W, et al. Two-dimensional simulation of filaments in barrier discharges [J]. J. Phys. D:Appl. Phys.,1999,32(12):1350-1356.
    [130]Kulikovsky A A. The structure of streamers in N2. I:fast method of space-charge dominated plasma simulation [J]. J. Phys. D:Appl. Phys.,1994,27(12):2556-2563.
    [131]Boris J P, Book D L. Flux-corrected transport. I. Shasta, a fluid transport algorithm that works [J]. J. Comput. Phys.,1973,11(1):38-69.
    [132]Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator [J]. IEEE Trans. Electron Devices,1969,16(1):64-77.
    [133]Richards A D, Thompson B E, Sawin H H. Continuum modeling of argon radiofrequency glow discharges [J]. Appl. Phys. Lett.,1987,50(9):492-494.
    [134]Ward A L. Calculations of cathode-fall characteristics [J]. J. Appl. Phys.,1962, 33(9):2789-2794.
    [135]Moravej M, Yang X, Barankin M, et al. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma [J]. Plasma Sources Sci. Technol.,2006, 15(2):204-210.
    [136]王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300.
    [137]Zhang P, Kortshagen U. Two-dimensional numerical study of atmospheric pressure glows in helium with impurities [J]. J. Phys. D:Appl. Phys.,2006,39(1):153-163.
    [138]Li X Ch, Zhao N, Fang T Zh, et al. Characteristics of an atmospheric pressure argon glow discharge in a coaxial electrode geometry [J]. Plasma Sources Sci. Technol.,2008,17(1):015017.
    [139]Dai D, Hou H X, Hao Y P. Influence of gap width on discharge asymmetry in atmospheric pressure glow dielectric barrier discharges [J]. Appl. Phys. Lett. 2011,98(13):131503.
    [140]Ha Y, Wang H J, Wang X F. Modeling of asymmetric pulsed phenomena in dielectric barrier atmospheric-pressure glow discharges [J]. Phys. Plasmas,2012,19(1): 012308.
    [141]Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature [J]. Phys. Rev. A,1976,13(3):1140-1176.
    [142]Mangolini L, Orlov K, Kortshagen U, et al. Radial structure of a low-frequency atmospheric-pressure glow discharge in helium [J]. Appl. Phys. Lett.,2002,80(10): 1722-1724.
    [143]Zhang Y T, Wang D Z, Kong M G. Two-dimensional simulation of a low-current dielectric barrier discharge in atmospheric helium [J]. J. Appl. Phys.,2005, 98(11):113308.
    [144]Zhang Y T, Wang D Z, Wang Y H, et al. Radial evolution of the atmospheric pressure glow discharge in helium controlled by dielectric barrier [J]. Chin. Phys. Lett. 2005,22(1):171-174.
    [145]Walsh J L, Shi J J, Kong M G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets [J]. Appl. Phys. Lett.,2006,88(17):171501.
    [146]Kong M G, Deng X T. Electrically efficient production of a diffuse nonthermal atmospheric plasma [J]. IEEE Trans. Plasma Sci.,2003,31(1):7-18.
    [147]Williamson J M, Trump D D, Bletzinger P, et al. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge [J]. J. Phys. D: Appl. Phys.,2006,39(20):4400-4406.
    [148]Shao T, Zhang C, Long K, et al. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air [J]. Appl. Surf. Sci.,2010, 256(12):3888-3894.
    [149]Liu S H, Neiger M. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps [J]. J. Phys. D:Appl. Phys.,2003,36(13):1565-1572.
    [150]Chiper A S, Cazan R, Popa G. On the secondary discharge of an atmospheric-pressure pulsed DBD in He with impurities [J]. IEEE Trans. Plasma Sci.,2008,36(5): 2824-2830.
    [151]Stewart R A, Lieberman M A. Model of plasma immersion ion-implantation for voltage pulses with finite rise and fall times [J]. J. Appl. Phys.,1991,70(7):3481-3487.
    [152]Shon J W, Kushner M J. Excitation mechanisms and gain modeling of the high-pressure atomic Ar laser in He/Ar mixtures [J]. J. Appl. Phys.,1994,75(4):1883-1890.
    [153]Stevefelt J, Pouvesle J M, Bouchoule A. Reaction-kinetics of a high-pressure helium fast discharge afterglow [J]. J. Chem. Phys.,1982,76(8):4006-4015.
    [154]Pouvesle J M, Bouchoule A, Stevefelt J. Modeling of the charge-transfer afterglow excited by intense electrical discharges in high-pressure helium nitrogen mixtures [J]. J. Chem. Phys.,1982,77(2):817-825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700