ZnO/CuSCN异质结的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用连续离子层吸附与反应法(SILAR)制备Al掺杂ZnO薄膜,研究掺杂浓度及退火处理对薄膜结晶性能的影响;两步法化学浴沉积(CBD)制备ZnO柱状多晶薄膜,研究不同种子层数以及不同Al掺杂浓度种子层对ZnO柱状阵列薄膜的影响;SILAR制备薄膜型ZnO/CuSCN异质结,研究异质结的电学特性;CBD制备ZnO柱状阵列薄膜和SILAR制备CuSCN薄膜构成柱状异质结,研究异质结的电学特性。结果表明:
     SILAR制备ZnO具有c轴择优取向性,结晶性好,薄膜由31.3nm的晶粒聚集成的长约1μm的大颗粒组成,颗粒呈长楔形状,薄膜表面粗糙,均匀性差;铝掺杂后c轴择优取向性变差,晶粒尺寸随掺杂浓度的增加而增大,颗粒呈球状,尺寸变小,薄膜表面均匀平整。掺杂浓度为2%的薄膜表面最平整,颗粒最小,直径约200nm。退火处理减弱c轴择优取向性,晶粒尺寸变大,晶格常数更接近于标准。
     CBD制备ZnO柱状多晶薄膜结晶性良好,有较强的(002)择优取向性,晶格常数a=3.249(?),c=5.207(?)。薄膜由柱状ZnO晶体竖向排列而成,直径约500nm。随着种子层沉积次数的增加, ZnO柱状阵列越来越密集。种子层为40次时,ZnO柱状晶体连在一起,薄膜片状生长。种子层掺铝后生长的ZnO柱状晶体排列致密,大小均匀一致,直径约300nm。2%掺杂种子层上制得的柱状阵列薄膜最均匀,表面最平整。
     薄膜型ZnO/CuSCN异质结,XRD表征薄膜分别为纤锌矿ZnO和(?)-CuSCN。形貌表征ZnO多晶颗粒呈球状,大小约300nm,CuSCN多晶颗粒呈片状,大小约2μm。电学表征异质结具有明显的整流特性,±4V时整流比为47.0,饱和电流密度Js=9.94×10~(-8)A/cm~2,二极管理想因子n=4.61,缺陷辅助隧穿为主要电流输运机制,在(0.4V~2V,I-V特性受陷阱辅助空间电荷限制电流(SCLC)机制影响,I∝V~(3.4)。
     柱状阵列ZnO/CuSCN异质结,XRD表征薄膜分别为纤锌矿ZnO和(?)-CuSCN,ZnO的结晶性优良,具有明显的(002)择优取向性。形貌表征分析ZnO呈柱状晶体竖向致密排列,直径约1μm,CuSCN为片状多晶交织排列,大小约3μm。电学表征异质结具有良好的整流特性,±3V时整流比为48.3。电压从小至大电流传输特性分别由缺陷和界面态的复合、缺陷辅助隧穿、陷阱辅助空间电荷限制电流决定。柱状阵列ZnO/CuSCN异质结比薄膜型异质结的整流比、电流密度、二极管区域范围都大,电学性能更好。
This paper, Al-doped ZnO thin films were grown by successive ionic layer adsorption and reaction (SILAR) method, the effects of doping concentration and annealing were studied; Columnar array polycrystalline ZnO films were deposited by a two-step chemical bath deposition (CBD), the influences of different seed layers and different doping concentration of Al-doped ZnO seed layer were studied; Thin films ZnO/CuSCN heterojunction was prepared by SILAR, columnar array ZnO/CuSCN heterojunction was constituded by CBD-deposited rod array ZnO films and SILAR-deposited CuSCN thin films, both electrical properties had been Analysized. The results showed that:
     ZnO thin films grown by SILAR, were oriented along (002) with hexagonal phase, were composed of wedge-shaped clusters with size about 1μm. Doping by Al made c-axis orientation became lower, clusters’shape became spherical, and the surface became smoother. When doping to 2%, the films became the most compact and uniform. Annealing treatment can promote crystallized, simultaneously reduce ZnO thin films’c-axis orientation.
     Columnar array ZnO films showed excellently crystallization with highly (002) oriented growth. The films were composed by columnar ZnO crystals vertical to the substrate with diameter of 500nm. The greater the number of seed layer deposition was, the more compact films were. Films covering on Al-doped ZnO seed layer were more compact and uniform, When doping concentration was 2%, the films had the most uniform and smooth surface.
     Thin films ZnO/CuSCN heterojunction showed ZnO was wurtzite with spherical clusters and CuSCN was (?)-phase. The heterojunction showed a good rectifying behavior with a rectification ratio of 47.0 at±4V. The current transport mechanism was dominated by trap-assisted tunneling at low forward bias voltages and by the trap-assisted space-charge limited current (SCLC) conduction at higher forward bias voltages.
     Columnar array ZnO/CuSCN heterojunction was composed of excellently crystallized ZnO with columnar shape and (?)-CuCSN with sheet shape. The heterojunction had a rectification ratio of 48.3 at±3V. The current transport mechanism was dominated by the recombination and trap-assisted tunneling at low forward bias voltages and by SCLC conduction at higher forward bias voltages. Compared to thin films heterojunction, the columnar array one had better electrical properties.
引文
[1] Lu Zhong-Lin, Zou Wen-Qin, Xu Ming-Xiang, et al. Structural and electrical properties of single crystalline and bi-crystalline ZnO thin films grown by molecular beam epitaxy [J]. Chin. Phys. B, 2010, 19(7): 076101
    [2] Hwang Dae-Kue, Oh Min-Suk, Lim Jae-Hong, et al. ZnO thin films and light-emitting diodes [J]. J. Phys. D: Appl. Phys., 2007, 40: R387–R412
    [3] Ma Xiangyang, Chen Peiliang, Li Dongsheng, et al. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate [J]. Appl. Phys. Lett., 2007, 91: 251109
    [4] Zhang T. C., Guo Y., Mei Z. X., et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si [J]. Appl. Phys. Lett., 2009, 94: 113508
    [5] Dai L. P., Deng H., Mao F. Y., et al. The recent advances of research on p-type ZnO thin film [J]. J. Mater. Sci.: Mater. Electron, 2008, 19: 727–734
    [6] Gao Xiang-Dong, Li Xiao-Min, Yu Wei-Dong, et al. Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method [J]. Thin Solid Films, 2008, 517: 554–559
    [7] Dittrich T., Kieven D., Rusu M., et al. Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3/CuSCN [J]. Appl. Phys. Lett., 2008, 93: 053113
    [8] Tena-Zaera R., Katty A., Bastide S., et al. ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell [J]. Thin Solid Films, 2005, 483: 372–377
    [9] Jaffe John E., Kaspar Tiffany C., Droubay Timothy C., et al. Electronic and Defect Structures of CuSCN [J]. J. Phys. Chem. C, 2010, 114: 9111–9117
    [10] ?zgürü., Alivov Ya. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98: 041301
    [11] Perera V. P. S., Senevirathna M. K. I., Pitigala P. K. D. D. P., et al. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells [J]. Sol. Energy Mater. Sol. Cells, 2005, 86: 443–450
    [12] O’Regan Brian, Lenzmann Frank, Muis Ruud, et al. A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics [J]. Chem. Mater., 2002, 14: 5023-5029
    [13] O'Regan Brian, Schwartz Daniel T., Zakeeruddin S. Mohammed. Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics [J].Adv. Mater., 2000, 12(17): 1263–1267
    [14] Kim Dong Chan, Han Won Suk, Cho Hyung Koun, et al. Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si [J]. Appl. Phys. Lett., 2007, 91: 231901
    [15] Zhao Jun-Liang, Li Xiao-Min, Bian Ji-Ming, et al. Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD) [J]. J. Cryst. Growth, 2005, 276: 507–512
    [16] Yun Dong-Jin, Rhee Shi-Woo. Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor [J]. Thin Solid Films, 2009, 517(16): 4644–4649
    [17] Lin Keh-moh, Tsai Paijay. Growth mechanism and characterization of ZnO:Al multi-layered thin films by sol–gel technique [J]. Thin Solid Films, 2007, 515: 8601–8604
    [18] Kumar P. Suresh, Raj A. Dhayal, Mangalaraj D., et al. Growth and characterization of ZnO nanostructured thin films by a two step chemical method [J]. Appl. Surf. Sci., 2008, 255: 2382–2387
    [19] Chu Dewei, Hamada Takahiro, Kato Kazumi, et al. Growth and electrical properties of ZnO films prepared by chemical bath deposition method [J]. Phys. Status Solidi A, 2009, 206(4): 718–723
    [20] Gao X. D., Li X. M., Yu W. D.. Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method [J]. Appl. Surf. Sci., 2004, 229: 275–281
    [21] Gao Xiang-Dong, Li Xiao-Min, Yu Wei-Dong, et al. Low-temperature deposition of transparent ZnO films by the ultrasonic-mediated stepwise method [J]. Sol. Energy Mater. Sol. Cells, 2007, 91: 467–473
    [22] Alivov Ya. I., Van Nostrand J. E., Look D. C., et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(14): 2943–2945
    [23] Yuen Clement, Yu S. F., Lau S. P., et al. Fabrication of n-ZnO:Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique [J]. Appl. Phys. Lett., 2005, 86: 241111
    [24] Ling B., Sun X. W., Zhao J. L., et al. Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode [J]. Physica E, 2009, 41: 635–639
    [25] Xi Y. Y., Hsu Y. F., Djuri?i? A. B., et al. NiO/ZnO light emitting diodes bysolution-based growth [J]. Appl. Phys. Lett., 2008, 92: 113505
    [26] Ohta Hiromichi, Orita Masahiro, Hirano Masahiro, et al. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO [J]. J. Appl. Phys., 2001, 89(10): 5270–5275
    [27] Clement Claude Levy, Zaera Pamon Tena, Ryan Margaret A., et al. CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterjunctions [J]. Adv. Mater., 2005, 17: 1512–1515
    [28] Larramona Gerardo, ChonéChristophe, Jacob Alain, et al. Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency [J]. Chem. Mater., 2006, 18: 1688–1696
    [29] Kieven D., Dittrich T., Belaidi A., et al. Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber [J]. Appl. Phys. Lett., 2008, 92: 153107
    [30] Ni Yong, Jin Zhengguo, Yu Ke, et al. Electrochemical deposition characteristics of p-CuSCN on n-ZnO rod arrays films [J]. Electrochim. Acta, 2008, 53: 6048–6054
    [31] Wu Weibing, Cui Shougang, Yang Changhong, et al. Electrochemically superfilling of n-type ZnO nanorod arrays with p-type CuSCN semiconductor [J]. Electrochem. Commun., 2009, 11: 1736–1739
    [32] AéL., Chen Jie, Lux-Steiner M. Ch.. Hybrid flexible vertical nanoscale diodes prepared at low temperature in large area [J]. Nanotechnology, 2008, 19: 475201
    [33] Zhang Qiaobao, Guo Honghui, Feng Zengfang, et al. n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method [J]. Electrochim. Acta, 2010, 55: 4889–4894
    [34] Zhong Wen-Wu, Liu Fa-Min, Cai Lu-Gang, et al. Structure distortion, optical and electrical properties of ZnO thin films co-doped with Al and Sb by sol-gel spin coating [J]. Chin. Phys. B, 2010, 19(10): 107306
    [35] Rakhshani A. E.. Thin ZnO films prepared by chemical solution deposition on glass and flexible conducting substrate [J]. Appl. Phys. A, 2005, 81: 1497–1502
    [36] Rakhshani A. E., Al-Azab A. S.. Structure and morphology of chemical bath-deposited CdS films and clusters [J]. Appl. Phys. A, 2001, 73: 631–636
    [37] Wang Zhiguang, Wang Minqiang, Lin Zhonghai, et al. Growth and interconversion of ZnO nanostructure films on different substrates [J]. Appl. Surf. Sci., 2009, 255: 4705–4710
    [38] Wang Z. L., Kong X. Y., Ding Y., et al. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces [J]. Adv. Funct. Mater., 2004, 14(10):943–956
    [39] Sankapal B. R., Goncalves E., Ennaoui A., et al. Wide band gap p-type windows by CBD and SILAR methods [J]. Thin Solid Films, 2004, 451–452: 128–132
    [40] Dutta M., Basak D.. p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism [J]. Appl. Phys. Lett., 2008, 92: 212112
    [41] Tan Jin-Hui, Anderson W. A.. Current transport in copper indium gallium diselenide solar cells comparing mesa diodes to the full cell [J]. Sol. Energy Mater. Sol. Cells, 2003, 77: 283–292
    [42] Mridha S., Basak D.. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction [J]. J. Appl. Phys., 2007, 101(8): 083102
    [43] Marsal L. F., Martin I., Pallares J., et al. Annealing effects on the conduction mechanisms of p+-amorphous-Si0.8C0.2:H/n-crystalline-Si diodes [J]. J. Appl. Phys., 2003, 94(4): 2622–2626
    [44] Majumdar S., Banerji P.. Temperature dependent electrical transport in p-ZnO/n-Si heterojunction formed by pulsed laser deposition [J]. J. Appl. Phys., 2009, 105(4): 043704
    [45] Tennakone K., Kumara G. R. R. A., Kottegoda I. R. M., et al. Nanoporous n-TiO2/selenium/p-CuCNS photovoltaic cell [J]. J. Phys. D: Appl. Phys., 1998, 31: 2326–2330
    [46] Chen Peiliang, Ma Xiangyang, Yang Deren. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions [J]. J. Appl. Phys., 2007, 101(5): 053103
    [47] Zhang Yang, Xu Jin, Lin Bixia, et al. Fabrication and electrical characterization of nanocrystalline ZnO/Si heterojunctions [J]. Appl. Surf. Sci., 2006, 252: 3449–3453
    [48] Hamada Takahiro, Ito Akihiro, Fujii Eiji, et al. Preparation of single-crystalline ZnO films on ZnO-buffered a-plane sapphire by chemical bath deposition [J]. J. Cryst. Growth, 2009, 311: 3687–3691

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700