TSP50及TMEM16A在胃癌中的表达及TMEM16A与胃癌转移关系的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分子生物学与免疫学的迅速发展,肿瘤的免疫治疗逐渐成为继手术、化疗和放疗之后的肿瘤治疗新模式。但是,因为实用的特异性肿瘤抗原较少、肿瘤抗原的免疫原性比较低,难以完成抗原的有效递呈,所以,在大多数的肿瘤治疗中,免疫治疗只起到了辅助治疗的作用。因此,寻找特异性的肿瘤抗原并将其作为免疫治疗的潜在靶标成为肿瘤免疫治疗的核心问题。
     近些年来,胃癌的死亡率虽然在全球呈现一个下降的趋势,但其死亡率仍排在恶性肿瘤的第二位。我国是胃癌的高发区,胃癌的死亡率居于首位。大多数患者诊断时已经处于疾病的晚期,失去手术根治的机会,即使根治性切除术后患者仍有约一半的患者面临肿瘤复发。对于晚期及复发转移的患者,目前常规治疗是放化疗,但是效果并不是很理想。因此,检测肿瘤组织或细胞的特异性分子表达,并以此作为靶点,但同时也不损伤人体正常细胞的肿瘤分子靶向治疗在当今肿瘤治疗领域中的地位越来越重要。肿瘤-睾丸抗原是一类肿瘤抗原,其表达具有高度的组织限制性,一般只表达在正常睾丸和肿瘤组织中。由于生殖细胞不表达人白细胞抗原分子以及血睾屏障的存在,所以肿瘤睾丸抗原在产生抗肿瘤免疫的同时不会对正常组织及生殖细胞产生危害。
     越来越多的研究发现肿瘤睾丸抗原在各种肿瘤组织中特异性的表达,并且在肿瘤细胞发生、发展、预后等方面发挥重要作用。睾丸特异性蛋白质50是应用甲基敏感差异分析技术从人正常睾丸组织和乳腺癌组织中分离出来的的低甲转移,诱导肿瘤细胞凋亡,甚至可以增强肿瘤细胞对抗肿瘤药物的敏感性。TSP50在胃癌中的表达也有报道,但是其样本量较少,同时关于TSP50与临床病理特征及预后的关系目前未见到报道。
     方法
     1.收集手术切除的胃癌病例蜡块334例及对应的癌旁组织蜡块20例,共制成6个组织芯片蜡块,每个蜡块包括一定数量的胃癌组织及癌旁组织。
     2.免疫组化染检测TSP50蛋白在胃癌组织及癌旁组织中表达。
     3.单因素Kaplan-Meier分析组织学类型、TNM分期、淋巴结转移、TSP50蛋白表达均与胃癌的预后关系。
     4.多因素Cox回归模型分析组织学类型、TNM分期、淋巴结转移、TSP50蛋白表达与胃癌预后的关系。
     5.利用Western blot分析比较TSP50在3例胃癌患者的癌组织及其癌旁组织中的表达差异。
     结果
     1.TSP50在胃癌组织、癌旁组织的表达。
     免疫组化染检测TSP50蛋白在胃癌中表达的中位分值为8,我们设定分分值≥18为高表达,<8为低表达。以此标准,TSP50蛋白在191例胃癌中呈高表达(191/334,57.2%),余下的143例中呈低表达,在20例癌旁组织中均呈低表达。
     2.单因素Kaplan-Meier分析组织学类型、TNM分期、淋巴结转移、TSP50蛋白表达均与胃癌的预后相关
     弥漫型胃癌、较晚的TNM分期、有淋巴结转移、高表达TSP50蛋白的胃癌预后明显差于肠型胃癌、较早的TNM分期、无淋巴结转移、低表达TSP50蛋白的病例(P值分别为0.006,0.000,0.003,0.021)。高表达TSP50蛋白病例中位生存年龄为38.02个月,而低表达TSP50组为30.21个月。
     3.多因素Cox回归模型分析组织学类型、TNM分期、淋巴结转移、TSP50蛋白表达的关系
     组织学类型、TNM分期、淋巴结转移、TSP50蛋白表达均是胃癌的独立预后因素(组织学类型,P值0.048,95%置信区间为1.078-2.172;TNM分期,P值0.000,95%置信区间为1.348-2.573;淋巴结转移,P值0.001,95%置信区间为0.139-0.590;TSP50蛋白表达,P值0.017,95%置信区间为1.078-2.172)。
     4. Western blot分析比较TSP50在3例胃癌患者的癌组织及其癌旁组织中的表达差异
     在3例胃癌患者的癌组织及其癌旁组织,胃癌组织中TSP50表达高于癌旁。
     结论
     1.高通量组织芯片是高效、简便和标准化的研究技术,可用于大样本的肿瘤学研究。组织芯片技术稳定,结果可靠,结合临床随访数据可以对患者生存预后进行回顾性分析。
     2.TSP50蛋白在约57.2%的胃癌组织中呈高表达,且其表达与较年轻的发病年龄、较晚的TNM分期、有淋巴结转移高度相关。
     3.TSP50蛋白表达可作为胃癌的一项独立预后指标。
     胃癌是消化系统常见肿瘤,虽然近年来胃癌在发达国家发病率有所下降,但在我国农村情况则仍然严峻,胃癌的死亡率仍然位居恶性肿瘤死亡率的第一位[35],是威胁我国人民健康的主要恶性肿瘤之一。尽管近年来检测方法及治疗手段的得到了长足的发展,但是多年来胃癌治疗后的五年生存率一直低于25%[36,37]。大多数胃癌患者就诊时已达Ⅲ或Ⅳ期,而淋巴结转移率高达50-70%。临床流行病学研究发现,导致胃癌高死亡率的重要原因是胃癌的侵袭转移。因此,寻找和研究胃癌侵袭转移的相关分子和功能性基因,从而获得能用于靶向治疗转移性胃癌及胃癌复发转移的分子靶标的功能性基因。同时也望能获得检测预示胃癌复发转移及预后的分子标志物,为胃癌的临床个体化治疗提供科学依据。
     研究表明,离子通道在和胞内Ca2+内稳态失衡与肿瘤增殖、凋亡、迁移有密切关系,但其具体机制尚不明晰。钙激活氯通道是由细胞内Ca2+激活的氯离子通道,广泛表达于上皮细胞并参与细胞分泌以及容量性调节,从而维持细胞在增殖、凋亡、迁移等生理过程中的离子平衡。TMEM16A是最近被证实为钙激活氯通道,虽然TMEM16A对细胞内钙离子浓度的依赖性,但是在TMEM16A的基因序列中找不到与钙离子直接结合的结构域或与钙调蛋白结合的结构,那么TMEM16A通道与钙离子的关系是直接结合还是通过某些中间传导通路的介导,目前TMEM16A通道是如何被钙离子激活的分子机制尚未研究清楚。TMEM16A定位于人染色体11q13区域,此区域很多基因在上皮类癌症如乳腺癌、膀胱癌、肺癌、头颈部肿瘤中扩增并表达,并且在肿瘤发生发展过程中均发挥重要作用,这提示我们TMEM16A可能在肿瘤发生发展过程中有一定的作用。同时,Ca2+是细胞增殖、凋亡、及细胞运动不可缺少的因子基础因子,但是其具体机制尚不清楚。TMEM16A是细胞内钙激活的氯离子通道,它极有可能是Ca2+发挥作用的下游分子基础。因此提示TMEM16A在肿瘤的发生发展中可能发挥调节作用,本研究探讨了钙激活氯通道TMEM16A在胃癌发生和发展过程中的作用。本研究首先证实,免疫组化及westernblot实验证实TMEM16A在人胃癌组织、胃癌细胞株中高表达而在人胃癌癌旁组织中低表达或无表达,且其表达与较晚TNM分期、有淋巴结转移高度相关。为了进一步证实TMEM16A与胃癌的关系,我们采用人TMEM16A特异性双链shRNA慢病毒重组载体转染AGS细胞,shRNA被酶切形成siRNA,再与mRNA结合降解后即达到靶基因沉默,抑制AGS细胞内TMEM16A的表达,获得TMEM16A稳定消减的细胞株。最后,通过增殖、划痕以及Transwell小室等实验手段进一步证实,沉默TMEM16A可以明显抑制AGS胃癌细胞迁移和侵袭的能力。
     方法
     1.收集手术切除标本制作成组织芯片,共包括367例胃癌病例,其中胃癌病例蜡块367例及对应的癌旁组织蜡块20例,淋巴结转移性胃癌30例。另外制作5例胃癌组织大切片,在同一蜡块上包括癌,癌旁组织及远处正常组织(距癌的距离大于3cm)。
     2.应用免疫组化检测TMEM16A在胃癌组织、癌旁组织及淋巴结转移性胃癌的表达。
     3.应用westernblot实验检测TMEM16A在新鲜胃癌组织、癌旁组织。
     4.采用人TMEM16A特异性双链shRNA慢病毒重组载体转染AGS细胞,shRNA被酶切形成siRNA,再与mRNA结合降解后即达到靶基因沉默,抑制AGS细胞内TMEM16A的表达,获得TMEM16A稳定消减的细胞株。然后,通过增殖、划痕以及Transwell小室等实验手段,沉默TMEM16A后胃癌细胞株增殖、迁移、侵袭能力的变化。
     5.单因素Kaplan-Meier分析MEM16A蛋白表达与预后的关系;多因素Cox回归模型分析,结果显示肿瘤位位置、组织类型、TNM分期、淋巴结转移、TEME16A蛋白表达与预后的关系。
     结果
     1. TMEM16A在胃癌组织、癌旁组织及淋巴结转移性胃癌的表达。
     通过SPSS19.0分析软件分析训练集(training set)中TMEM16A免疫组化分值,得出ROC曲线坐标表,根据表中数据计算出约登指数,其对应的分值即为免疫组化计分分值最佳临界点。约登指数最大值为0.137,其对应的分值为8.5,即为最佳临界点。根据免疫组化分值的实际值,我们设定大于8为高表达,低于或等于8为低表达。通过在同一组数据分析中,训练集(training set)用来训练模型或确定模型参数,测试集(testing set)则是根据在训练集中所确定的模型参数来进行统计学估算。在训练集中,TMEM16A蛋白在75例胃癌中呈高表达(75/113,66.4%),余下的38例中呈低表达(38/113,33.6%)。在测试集中,TMEM16A蛋白在179例胃癌中呈高表达(179/254,70.4%),余下的57例中呈低表达(75/254,29.6%)。在20例癌旁组织中均呈低表达,在22例淋巴结转移癌中高表达(22/30,73.3%)。在训练集及测试集中,TMEM16A蛋白表达与胃癌的TNM分期、淋巴结转移明显相关,较晚TNM分期及有淋巴结转移的胃癌病例中TMEM16A呈高表达水平(P值分别为:训练集0.007,0.000;测试集0.033,0.001)。5例胃癌组织大切片(同一切片包括胃癌、癌旁及远处正常组织)的免免疫组化也显示由胃癌到远处正常组织的TMEM16A蛋白的染色强度变。
     2. Westernblot实验检测TMEM16A在新鲜胃癌组织、癌旁组织表达。
     Westernblot分析显示在12例手术切除的新鲜胃癌标本中,TMEM16A蛋白在胃癌组织中的表达明显高于在癌旁组织的表达。
     3. TMEM16A与胃癌预后的关系
     单因素Kaplan-Mete分析分别分析测试集及所有病例中TMEM16A蛋白表达与预后的关系,结果显示高表达TMEM16A蛋白的胃癌病例的预后明显差于低表达的病例(P值分别为:测试集,0.022;所有病例,0.018)。
     多因素Cox回归模型分别对测试集及所有病例时进行分析,结果显示肿瘤位于全胃、弥漫类型、较晚TNM分期、有淋巴结转移、高TEME16A蛋白表达均分别提示较差的预后,上述因素均可做为胃癌的独立预后因素(肿瘤位置:测试集P值0.019,95%置信区间为1.073-2.193;所有病例,P值0.014,95%置信区间为1.076-1.904。组织学类型:测试集P值0.014,95%置信区间为1.122-2.733;所有病例,P值0.001,95%置信区间为1.303-2.699。TNM分期:测试集P值0.000,95%置信区间为1.581-3.334;所有病例,P值0.000,95%置信区间为1.572-2.933。淋巴结转移:测试集P值0.027,95%置信区间为0.192-0.905;所有病例,P值0.021,95%置信区间为0.246-0.891。TMEM16A蛋白:测试集P值0.026,95%置信区间为0.381-0.942;所有病例,P值0.010,95%置信区间为0.428-0.890)。
     5.沉默TMEM16A后胃癌细胞株增殖、迁移、侵袭能力的变化
     用Westernblot检测沉默后的AGS细胞株TMEM16A蛋白的表达,TMEM16A shRNA/AGS组TMEM16A蛋白的表达低于scrambled shRNA/AGS、AGS组,TMEM16A被显著抑制。
     通过BrdU掺入实验、划痕实验、transwell小室侵袭及迁移实验,提示沉默TMEM16A可降低AGS迁移侵袭能力,但对增殖能力无明显影响。
     结论
     1.钙激活氯通道TMEM16A在人胃癌组织中高表达而在胃癌癌旁组织中低表达或无表达,且其表达与较晚TNM分期、有淋巴结转移高度相关。
     2.抑制钙激活氯通道TMEM16A的表达可抑制AGS胃癌细胞系体外迁移、侵袭能力;
     3.膜蛋白TMEM16A也许可作为胃癌治疗的潜在靶点和生物标志物。
     恶性肿瘤最重要的特性就是能够发生侵袭和转移,大部分的恶性肿瘤死亡是肿瘤转移引起的,因此肿瘤侵袭转移也是肿瘤学研究的热点。上皮一间质转化(epithelial mesenchymal transitions, EMT)是指上皮细胞在一定条件下向间质细胞表型转化的过程,使具有极性的上皮细胞转换成具有活动能力、能够在细胞基质问自由移动的间质细胞的过程。EMT是一种基本的生理病理现象,参与胚胎的形成、发育、组织重建和伤口修复,近些年来越来越多的研究表明EMT在肿瘤侵袭和转移中也起着重要用。而E-钙粘素的减少或者丢失是上皮一间质转化过程中最重要的标志性变化。有很多研究表明E-钙粘素的减少或者丢失是胃癌发生侵袭转移的重要因子之一,而在我们前期实验中我们发现TMEM16A与胃癌侵袭和转移密切相关,由此我们推想,TMEM16A与E-钙蛋白表达是否相关呢?
     方法
     1.收集手术切除标本制作成组织芯片,共包括367例胃癌病例,其中胃癌病例蜡块367例及对应的癌旁组织蜡块20例,淋巴结转移性胃癌30例。
     2.免疫组化染检测E-钙粘素在胃癌组织、癌旁组织及转移性淋巴结中表达。
     3. Phi and Cramers V相关分析在胃癌组织、转移性淋巴结、癌旁组织中E-钙粘粘素与TMEM16A的相关性。
     4.采用人TMEM16A特异性双链shRNA慢病毒重组载体转染AGS细胞,shRNA被酶切形成siRNA,再与mRNA结合降解后即达到靶基因沉默,抑制AGS细胞内TMEM16A的表达,获得TMEM16A稳定消减的细胞株。然后,比较TMEM16A沉默前后E-钙粘粘素表达情况。
     结果
     1.TSP50在胃癌组织、癌旁组织、转移性淋巴结的表达。
     免疫组化染检测34.1%患者E-钙蛋白在胃癌组织中高表达。
     2. Phi and Cramers V相关分析在胃癌组织、转移性淋巴结、癌旁组织中E-钙粘粘素与TMEM16A的相关性。Phi and Cramers V相关分析发现在胃癌组织中两者表达呈负相关(r=-0.161,P=0.002),在转移性淋巴结及癌旁病灶两者的表达也是负相关。
     3.比较TMEM16A沉默前后E-钙粘粘素表达情况。沉默TMEM16A胃癌细胞表达E-钙粘素表达明显下降。结论
     胃癌组织中TMEM16A与E-钙蛋白表达呈负相关(r=-0.161,P=0.002),在转移性淋巴结及癌旁病灶两者的表达也是负相关。在体外实验,沉默胃癌细胞TMEM16A表达可以使E-钙粘素表达明显下降。本学位论文的第三部分得出如下结论:钙激活氯通道TMEM16A与E-钙粘素表达负相关,其促进侵袭转移的机制可能通过上皮-间质转化完成的。
With development of society and economy,morbidity and mortality of malignant tumor increase.Surgery,chemotherapy and radiotherapy are conventional reatments,which can not cure the most cancers,not mention to advanced stage of caners.The effects of conventional treatments are disappointed,and can not meet the needs of patients. Immunotherapy is the most possible to cure the tumors,especially advanced malignant tumor. Nowadays, Immunotherapy is the auxiliary to conventional treatments,because of limitation of specificity and numbers of tumor antigen,then,the most important thing is to find specific tumor antigen.
     Testes-specific protease50(TSP50) is a testis-specific gene that encodes a protein, which is homologous to serine proteases. Normally, TSP50protein is specifically expressed in the spermatocytes of testes, but abnormally activated and expressed in breast cancer. Currently, TSP50is considered as a member of cancer-testis antigens (CTAs), which include almost140members, such as Melanoma Antigen-Encoding Gene-1(MAGE-1), Cancer/testis antigen cancer-associated gene (CAGE), and Opa Interacting Protein5(OIP5), and so on. These proteins are expressed in various types of human cancers including gastric cancer and may serve as tumor markers for clinical prognosis or targets for therapeutic approaches. In this regard, MAGE-1protein is a predictive marker of poor prognosis in differentiated advanced gastric cancer patients Nakamura et al. revealed that OIP5might be a novel immunotherapy target for patients with gastric cancer. However, the expression of TSP50protein in gastric cancer and its diagnostic and/or prognostic significance has not been elucidated.
     In this study, the expression of TSP50protein was examined in a large number of human gastric cancer specimens and its clinicopathological and prognositc significance was also assessed.
     Methods:Immunohistochemistry (IHC) analysis of TSP50was performed on a tissue microarray (TMA) containing334primary gastric cancers and20adjacent non-tumor tissues. Western blot was carried out to confirm the expression of TSP50in3pairs of gastric cancers and adjacent non-tumor tissues.
     Results:IHC analysis revealed high expression of TSP50in57.2%human gastric cancer samples (191out of334). However, it was poorly expressed in all of the20adjacent non-tumor tissues. This was confirmed by western blot, which showed significantly higher levels of TSP50expression in gastric cancer tissues than adjacent non-tumor tissues. A significant association was found between high levels of TSP50and clinicopathological characteristics including junior age at surgery (P=0.001), later TNM stage (P=0.000), and present lymphnode metastases (P=0.003). The survival rate of gastric cancer patients with high expression of TSP50was significantly shorter than those with low levels of TSP50(P=0.021). Multivariate Cox regression analysis indicated that TSP50overexpression was an independent prognostic factor for gastric cancer patients (P=0.017).
     Conclusions:Our data demonstrate that elevated TSP50protein expression could be a potential predictor of poor prognosis in gastric cancer patients.
     Gastric cancer is the second most common cancer in the world, causing nearly one million deaths annually.Although the incidence of gastric cancer has decreased, it still remains among the leading causes of death from cancer in China. Despite major advances in diagnosis and treatment in the past few decades, gastric cancer remains a major clinical challenge.Prognostic factors for survival are useful in the management of gastric cancer. Many molecular markers, such as HER2, E-cadherin, Caveolinl, and so on, have been evaluated as candidate prognostic factors in gastric cancer. However, the prognosis for gastric cancer patients still stays poor and many prognostic factors which can effectively predict the prognosis of gastric cancer patients have not investigated.
     TMEM16A(transmembrane protein16A), also known as ANO1, DOG1or TAOS2, is an established sensitive biomarker for the diagnosis of gastrointestinal stromal tumors (GISTs). It is a member of the Anoctamin family of membrane proteins, which consists of ten components (known as TMEM16A-K or ANO1-10). Moreover, it has been proved to be a calcium-activated chloride channel, and contribute to many important physiologic functions. The coding sequence of TMEM16A is located within the11q13region, which is one of the most frequently amplified chromosomal regions in human cancers, such as head and neck squamous cell carcinoma, breast cancer and gastric cancer. Furthermore, TMEM16A protein is overexpressed in many tumor types including head and neck squamous cell carcinoma, esophageal cancers, breast cancer and prostate cancer, and it plays a vital role in the tumorigenesis and migration of some cancers. However, the expression of TMEM16A in gastric cancer, its prognostic significance and whether it is required for tumor development and migration has not been elucidated.
     In the present study, we examined the expression of TMEM16A protein in gastric cancer cell lines and tissues by Western blot analysis, and in gastric cancer tissues microarray(TMA) by immunohistochemistry.The clinical and prognostic significance of TMEM16A expression in gastric cancer was evaluated. Additionally, scratch wound assay and transwell matrix penetration assay are employed to assess the role of knockdown TMEM16A in the proliferation, migration and invasion of gastric cancer cell lines.
     Methods:Immunohistochemistry (IHC) analysis of TMEM16A was performed on a tissue microarray (TMA) containing367primary gastric cancers and20adjacent non-tumor tissues. Additionally,30matched lymphnode metastatic lesions and5whole-mount section tissues were recruited for this study. Western blot was carried out to confirm the expression of TMEM16A in4pairs of gastric cancers and adjacent non-tumor tissues.Furthermore, scratch wound assay and transwell matrix penetration assay are employed to assess the role of knockdown TMEM16A in the proliferation, migration and invasion of gastric cancer cell lines.
     Results:IHC analysis revealed strong expression of TMEM16A in66.4%human gastric cancer samples and lymphnode metastasis lesions,while weak expressed in adjacent non-tumor mucosal tissues.Consistent with this result, immunohistochemistry for whole-mount sention and western blot analysis displayed a similar finding in gastric cancer and adjacent non-tumor tissues. By univariate survival analyses using Kaplan-Meier method and log-rank test, the impact of TMEM16A on patient survival was analyzed and we found that elevated expression of TMEM16A was closely associated with poor overall survival in both testing set(P=0.022) and overall patients(P=0.018). Furthermore,scratch wound assay and transwell matrix penetration assay showed that silencing of TMEM16A can inhibit AGS cells to migrate and invade.
     Conclusions:Our data demonstrate that elevated TSP50protein expression could be a potential predictor of poor prognosis in gastric cancer patients.
     The most important features of malignant tumors are invasion and metastasis, which contribute to the majority of death because of cancer. Epithelial mesenchymal transitions(EMT) plays vital role in invasion and metastasis of tumors, which is represent of reduction or decrease of E-cadherin. In the previous study we found that TMEM16A is closely relationship with the invasion and metastasis of gastric cancer. To further investigate the underlying mechanism of TMEM16A in the invasion of gastric cell, the relationship between TMEM16A and E-Cadherin, a well-known marker regulating cadherin-based adhesion, was evaluated by immunohistochemistry and Western blot.Then, we speculated that whether or not TMEM16A and E-cadherin are relevant.
     First, E-Cadherin protein was detected by immunohistochemistry in gastric cancer TMA. High E-Cadherin expression was detected in34.1%(125of367) gastric cancer tissues according to the cutoff point generated by ROC curve analysis. Phi and Cramers V correlation analysis indicated that a significant negative correlation between expression of TMEM16A and E-Cadherin (r=-0.330, P=0.000). Moreover, similar negative relation was investigated in lymph node metastases lesions and adjacent non-tumor mucosa tissues.Then, we down-regulated TMEM16A expression in AGS cells transfected with TMEM16A shRNA for48hours, protein levels of E-Cadherin was significantly increased compare with the control group by Western blot analysis.
引文
1. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B J, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J Immunol 2007;178:2617-2621.
    2. Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Nicolay HJ, Sigalotti L, Maio M. The biology of cancer testis antigens:putative function, regulation and therapeutic potential. Mol Oncol 2011;5:164-182.
    3. Cheng YH, Wong EW, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 2011;1:209-220.
    4. Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, Vinciguerra V, Xu HP. Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res 1999;59:3215-3221.
    5. Ogata K, Aihara R, Mochiki E, Ogawa A, Yanai M, Toyomasu Y, Ando H, Ohno T, Asao T, Kuwano H. Clinical significance of melanoma antigen-encoding gene-1 (MAGE-1) expression and its correlation with poor prognosis in differentiated advanced gastric cancer. Ann Surg Oncol 2011;18:1195-1203.
    6. Kim Y, Jeoung D. Role of CAGE, a novel cancer/testis antigen, in various cellular processes, including tumorigenesis, cytolytic T lymphocyte induction, and cell motility. J Microbiol Biotechnol 2008; 18:600-610.
    7. Gong M, Xu Y, Dong W, Guo G, Ni W, Wang Y, Wang Y, An R. Expression of Opa interacting protein 5 (OIP5) is associated with tumor stage and prognosis of clear cell renal cell carcinoma. Acta Histochem 2013; 115:810-815.
    8. Nakamura Y, Tanaka F, Nagahara H, Ieta K, Haraguchi N, Mimori K, Sasaki A, Inoue H, Yanaga K, Mori M. Opa interacting protein 5 (OIP5) is a novel cancer-testis specific gene in gastric cancer. Ann Surg Oncol 2007;14:885-892.
    9. Ghafouri-Fard S, Modarressi MH. Cancer-testis antigens:potential targets for cancer immunotherapy. Arch Iran Med 2009;12:395-404.
    10. Caballero OL, Chen YT. Cancer/testis (CT) antigens:potential targets for immunotherapy. Cancer Sci 2009;100:2014-2021.
    11. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K, Schilling G, Faltz C, Wolschke C, Dierlamm J, Ritter G, Eiermann T, Hossfeld DK, Zander AR, Jungbluth AA, Old LJ, Bokemeyer C, Kroger N. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007;109:1103-1112.
    12. Mischo A, Kubuschok B, Ertan K, Preuss KD, Romeike B, Regitz E, Schormann C, de Bruijn D, Wadle A, Neumann F, Schmidt W, Renner C, Pfreundschuh M. Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. Int J Cancer 2006; 118:696-703.
    13. Tureci O, Sahin U, Schobert I, Koslowski M, Scmitt H, Schild HJ, Stenner F, Seitz G, Rammensee HG, Pfreundschuh M. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996;56:4766-4772.
    14. Laduron S, Deplus R, Zhou S, Khohnanskikh O, Godelaine D, De Smet C, Hayward SD, Fuks F, Boon T, De Plaen E. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004;32:4340-4350.
    15. Bertram J, Palfner K, Hiddemann W, Kneba M. Elevated expression of S100P, CAPL and MAGE 3 in doxorubicin-resistant cell lines:comparison of mRNA differential display reverse transcription-polymerase chain reaction and subtractive suppressive hybridization for the analysis of differential gene expression. Anticancer Drugs 1998;9:311-317.
    16. Shim H, Lee H, Jeoung D. Cancer/testis antigen cancer-associated gene (CAGE) promotes motility of cancer cells through activation of focal adhesion kinase (FAK). Biotechnol Lett 2006;28:2057-2063.
    17. Cilensek ZM, Yehiely F, Kular RK, Deiss LP. A member of the GAGE family of tumor antigens is an anti-apoptotic gene that confers resistance to Fas/CD95/APO-l, Interferon-gamma, taxol and gamma-irradiation. Cancer Biol Ther 2002; 1:380-387.
    18. Cronwright G, Le Blanc K, Gotherstrom C, Darcy P, Ehnman M, Brodin B. Cancer/testis antigen expression in human mesenchymal stem cells:down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res 2005;65:2207-2215.
    19. Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S, Xu HP. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells. Cancer Res 2002;62: 290-294.
    20. Ramsay G. DNA chips:state-of-the art. Nat Biotechnol 1998;16:40-44.
    21. Xu HP, Yuan L, Shan J, Feng H. Localization and expression of TSP50 protein in human and rodent testes. Urology 2004;64:826-832.
    22. Koslowski M, Bell C, Seitz G, Lehr HA, Roemer K, Muntefering H, Huber C, Sahin U, Tureci O. Frequent nonrandom activation of germ-line genes in human cancer. Cancer Res 2004;64: 5988-5993.
    23. Huang Y, Wang Y, Wang M, Sun B, Li Y, Bao Y, Tian K, Xu H. Differential methylation of TSP50 and mTSP50 genes in different types of human tissues and mouse spermatic cells. Biochem Biophys Res Commun 2008;374:658-661.
    24. Xu H, Shan J, Jurukovski V, Yuan L, Li J, Tian K. TSP50 encodes a testis-specific protease and is negatively regulated by p53. Cancer Res 2007;67:1239-1245.
    25. Wang M, Bao YL, Wu Y, Yu CL, Meng XY, Huang YX, Sun Y, Zheng LH, Li YX. Basic FGF downregulates TSP50 expression via the ERK/Sp 1 pathway. J Cell Biochem 2010; 111:75-81.
    26. Zhou L, Bao YL, Zhang Y, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Knockdown of TSP50 inhibits cell proliferation and induces apoptosis in P19 cells. IUBMB Life 2010;62: 825-832.
    27. Song ZB, Bao YL, Zhang Y, Mi XG, Wu P, Wu Y, Yu CL, Sun Y, Zheng LH, Huang YX, Liu B, Li YX. Testes-specific protease 50 (TSP50) promotes cell proliferation through the activation of the nuclear factor kappaB (NF-kappaB) signalling pathway. Biochem J 2011;436: 457-467.
    28. Mi XG, Song ZB, Wu P, Zhang YW, Sun LG, Bao YL, Zhang Y, Zheng LH, Sun Y, Yu CL, Wu Y, Wang GN, Li YX. Alantolactone induces cell apoptosis partially through down-regulation of testes-specific protease 50 expression. Toxicol Lett 2014;224:349-355.
    29. Zheng L, Xie G, Duan G, Yan X, Li Q. High expression of testes-specific protease 50 is associated with poor prognosis in colorectal carcinoma. PLoS One 2011;6:e22203.
    30. Matsuda R, Enokida H, Chiyomaru T, Kikkawa N, Sugimoto T, Kawakami K, Tatarano S, Yoshino H, Toki K, Uchida Y, Kawahara K, Nishiyama K, Seki N, Nakagawa M. LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling. Br J Cancer 2011;104:376-386.
    31. Li FQ, Liu Q, Han YL, Wu B, Yin HL. Sperm protein 17 is highly expressed in endometrial and cervical cancers. BMC Cancer 2010;10:429.
    32. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998;4:844-847.
    33. Hoos A, Cordon-Cardo C. Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 2001;81:1331-1338.
    34. Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL. Efficacy of screening mammography. A meta-analysis. JAMA 1995;273:149-154.
    35.<中国肿瘤登记地区2008年恶性肿瘤发病和死亡分析_郑荣寿.pdf>.
    36. Amedei A, Benagiano M, della Bella C, Niccolai E, D'Elios MM. Novel immunotherapeutic strategies of gastric cancer treatment. J Biomed Biotechnol 2011;2011:437348.
    37. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer 2010;127:2893-2917.
    38. Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 2007;428:209-225.
    39. Haussinger D. The role of cellular hydration in the regulation of cell function. Biochem J 1996;313(Pt 3):697-710.
    40. Chen LX, Zhu LY, Jacob TJ, Wang LW. Roles of volume-activated Cl-currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 2007;40:253-267.
    41. Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS. C1C-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 2005;280: 1241-1247.
    42. Assef YA, Damiano AE, Zotta E, Ibarra C, Kotsias BA. CFTR in K562 human leukemic cells. Am J Physiol Cell Physiol 2003;285:C480-488.
    43. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247-306.
    44. Furst J, Gschwentner M, Ritter M, Botta G, Jakab M, Mayer M, Garavaglia L, Bazzini C, Rodighiero S, Meyer G, Eichmuller S, Woll E, Paulmichl M. Molecular and functional aspects of anionic channels activated during regulatory volume decrease in mammalian cells. Pflugers Arch 2002;444:1-25.
    45. Pappas CA, Ullrich N, Sontheimer H. Reduction of glial proliferation by K+channel blockers is mediated by changes in pHi. Neuroreport 1994;6:193-196.
    46. Shen MR, Yang TP, Tang MJ. A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca(2+) entry and Cl(-) channel activity. J Biol Chem 2002;277:15592-15599.
    47. Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJ, Wang L. Suppression of C1C-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 2008;75:1706-1716.
    48..
    49..
    50. Kunzelmann K. Ion channels and cancer. J Membr Biol 2005;205:159-173.
    51. Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflugers Arch 2007;453:421-432.
    52. Stock C, Schwab A. Protons make tumor cells move like clockwork. Pflugers Arch 2009;458: 981-992.
    53. Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC. Voltage-and calcium-dependent gating of TMEM16A/Anol chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A2011;108:8891-8896.
    54. Galietta LJ. The TMEM16 protein family:a new class of chloride channels? Biophys J 2009;97:3047-3053.
    55. Eggermont J. Calcium-activated chloride channels:(un)known, (un)loved? Proc Am Thorac Soc 2004; 1:22-27.
    56. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002;82:503-568.
    57. Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol 2005;67:719-758.
    58. Elble RC, Pauli BU. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J Biol Chem 2001;276:40510-40517.
    59..
    60. Almaca J, Tian Y, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 2009;284:28571-28578.
    61. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008;455:1210-1215.
    62. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ. Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 2009;284:33360-33368.
    63. Buchholz B, Faria D, Schley G, Schreiber R, Eckardt KU, Kunzelmann K. Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int 2013.
    64..
    65. Galindo BE, Vacquier VD. Phylogeny of the TMEM16 protein family:some members are overexpressed in cancer. Int J Mol Med 2005;16:919-924.
    66. Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K. Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 2012;7:e43265.
    67. Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ, Farrugia G. Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(-) channel, Anol. Biochem Biophys Res Commun 2012;427:248-253.
    68. Liu W, Lu M, Liu B, Huang Y, Wang K. Inhibition of Ca(2+)-activated Cl(-) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett 2012;326:41-51.
    69. Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, Schreiber R, Seethala RS, Egloff AM, Chen X, Lui VW, Grandis JR, Gollin SM. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 2012;72:3270-3281.
    70..
    71. Schwab M. Amplification of oncogenes in human cancer cells. Bioessays 1998;20:473-479.
    72. Koehl GE, Spitzner M, Ousingsawat J, Schreiber R, Geissler EK, Kunzelmann K. Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice. Oncogene 2010;29:1553-1560.
    73..
    74. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. Calcium flickers steer cell migration. Nature 2009;457:901-905.
    75. Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, Djamgoz MB. Apotential novel marker for human prostate cancer:voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005;8:266-273.
    76. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MB. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005;11:5381-5389.
    77..
    78. Yang Z, Zhang Z, Xu Y, Li Y, Ye T. Relationship of intracellular free Ca2+concentration and calcium-activated chloride channels of pulmonary artery smooth muscle cells in rats under hypoxic conditions. J Huazhong Univ Sci Technolog Med Sci 2006;26:172-174,191.
    79.<2010 ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines.pdf>.
    80. Zweig MH, Campbell G Receiver-operating characteristic (ROC) plots:a fundamental evaluation tool in clinical medicine. Clin Chem 1993;39:561-577.
    81. Rodrigo JP, Garcia-Carracedo D, Garcia LA, Menendez S, Allonca E, Gonzalez MV, Fresno MF, Suarez C, Garcia-Pedrero JM. Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol2009;217:516-523.
    82. Reshmi SC, Huang X, Schoppy DW, Black RC, Saunders WS, Smith DI, Gollin SM. Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes Chromosomes Cancer 2007;46:143-154.
    83. Gibcus JH, Kok K, Menkema L, Hermsen MA, Mastik M, Kluin PM, van der Wal JE, Schuuring E. High-resolution mapping identifies a commonly amplified 11q13.3 region containing multiple genes flanked by segmental duplications. Hum Genet 2007; 121:187-201.
    84. Wang M, Yang H, Zheng LY, Zhang Z, Tang YB, Wang GL, Du YH, Lv XF, Liu J, Zhou JG, Guan YY. Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation. Circulation 2012;125:697-707.
    85.<2013-ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling.pdf>.
    86. Spitzner M, Martins JR, Soria RB, Ousingsawat J, Scheidt K, Schreiber R, Kunzelmann K. Eagl and Bestrophin 1 are up-regulated in fast-growing colonic cancer cells. J Biol Chem 2008;283:7421-7428.
    87. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood) 2008;233:779-791.
    88. Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K. Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 2011;25:1058-1068.
    89. Perez-Cornejo P, Gokhale A, Duran C, Cui Y, Xiao Q, Hartzell HC, Faundez V. Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin-radixin-moesin network. Proc Natl Acad Sci U S A 2012;109:10376-10381.
    90. Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R, Kulkarni S, Duvvuri U, Kunzelmann K. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci 2014;369:20130096.
    91. Klausen TK, Bergdahl A, Hougaard C, Christophersen P, Pedersen SF, Hoffmann EK. Cell cycle-dependent activity of the volume-and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J Cell Physiol 2007;210:831-842.
    92. Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev 2002;12: 142-148.
    93. Erlich RB, Kherrouche Z, Rickwood D, Endo-Munoz L, Cameron S, Dahler A, Hazar-Rethinam M, de Long LM, Wooley K, Guminski A, Saunders NA. Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer 2012;106:107-115.
    94. Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Signal 2011;9:18.
    95. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T. Invasion and metastasis in colorectal cancer:epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 2005;179: 56-65.
    96. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006;66:8319-8326.
    97. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition:a cancer researcher's conceptual friend and foe. Am J Pathol 2009;174:1588-1593.
    98. Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008;104:733-744.
    99. Heijink IH, Kies PM, Kauffman HF, Postma DS, van Oosterhout AJ, Vellenga E. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity. J Immunol 2007; 178:7678-7685.
    100. Sun CK, Ng KT, Lim ZX, Cheng Q, Lo CM, Poon RT, Man K, Wong N, Fan ST. Proline-rich tyrosine kinase 2 (Pyk2) promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition. PLoS One 2011;6:e18878.
    101. Nakashima H, Hashimoto N, Aoyama D, Kohnoh T, Sakamoto K, Kusunose M, Imaizumi K, Takeyama Y, Sato M, Kawabe T, Hasegawa Y. Involvement of the transcription factor twist in phenotype alteration through epithelial-mesenchymal transition in lung cancer cells. Mol Carcinog2012;51:400-410.
    102. Yue L, Jiang Z, Wu W, Zhang Y, Yin P, Zhang Y, Sheng C, Wei G, Li X, Ling K. [Latent membrane protein-1 of EB virus and the phenotype of epithelial-mesenchymal transition and cervical lymph node metastasis in nasopharyngeal carcinoma]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2011;25:270-273.
    103. Gungor C, Zander H, Effenberger KE, Vashist YK, Kalinina T, Izbicki JR, Yekebas E, Bockhom M. Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer. Cancer Res 2011;71:5009-5019.
    104. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol2006;7:131-142.
    105. Tamura S. The E-cadherin-mediated cell-cell adhesion system in human cancers. Br J Surg 1997;84:899-900.
    106. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112:1776-1784.
    107. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998;392:190-193.
    108. Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66:107-119.
    109. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991;113:173-185.
    110. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci 2008; 121:727-735.
    111. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998;153:333-339.
    112. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83.
    113. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2:84-89.
    114. Xing X, Tang YB, Yuan G, Wang Y, Wang J, Yang Y, Chen M. The prognostic value of E-cadherin in gastric cancer:a meta-analysis. Int J Cancer 2013;132:2589-2596.
    115. Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. E-cadherin mediated adhesion system in cancer cells. Cancer 1996;77:1605-1613.
    116. Correa P, Miller MJ. Helicobacter pylori and gastric atrophy--cancer paradoxes. J Natl Cancer Inst 1995;87:1731-1732.
    117. Yu XW, Xu Q, Xu Y, Gong YH, Yuan Y. Expression of the E-cadherin/beta-catenin/tcf-4 Pathway in Gastric Diseases with Relation to Helicobacter pylori Infection:Clinical and Pathological Implications. Asian Pac J Cancer Prev 2014;15:215-220.
    118. Carrasco G, Corvalan AH. Helicobacter pylori-Induced Chronic Gastritis and Assessing Risks for Gastric Cancer. Gastroenterol Res Pract 2013;2013:393015.
    119. Yang J, Dai DQ. [A comparative study of E-cadherin mRNA expression in primary tumors and metastatic foci of gastric cancer]. Zhonghua Zhong Liu Za Zhi 2005;27:25-28.
    120. Mayer B, Johnson JP, Leitl F, Jauch KW, Heiss MM, Schildberg FW, Birchmeier W, Funke I. E-cadherin expression in primary and metastatic gastric cancer:down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res 1993;53:1690-1695.
    121. De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005;17:535-547.
    122. Galuska D, Pirkmajer S, Barres R, Ekberg K, Wahren J, Chibalin AV. C-peptide increases Na,K-ATPase expression via PKC-and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells. PLoS One 2011;6:e28294.
    123. Ohashi S, Natsuizaka M, Wong GS, Michaylira CZ, Grugan KD, Stairs DB, Kalabis J, Vega ME, Kalman RA, Nakagawa M, Klein-Szanto AJ, Herlyn M, Diehl JA, Rustgi AK, Nakagawa H. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res 2010;70:4174-4184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700