掺杂纳米光催化剂的可见光抗菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2粉体或薄膜光催化剂在紫外光作用下可以杀菌、光催化降解有机污染物,从而达到净化环境的目的,具有广阔的应用前景。
     采用sol-gel法制备了具有可见光活性的粉体光催化剂Ag/TiO_2、V/TiO_2和La/TiO_2,并通过测试方法对其进行了表征。XPS结果表明在催化剂表面Ag以单质的形式存在,而La以氧化物的形式存在。XRD表明Ag/TiO_2、V/TiO_2和La/TiO_2光催化剂均以锐钛矿的形式存在,其中V离子的引入使衍射发生宽化。光吸收图谱表明Ag/TiO_2、V/TiO_2和La/TiO_2三种光催化剂的光吸收均发生红移,且在可见光区的吸收强度明显高于TiO_2。
     分别以黑光灯和荧光灯为光源,通过对大肠杆菌的抗菌实验和光催化降解甲基橙溶液,研究了Ag/TiO_2、V/TiO_2和La/TiO_2粉体光催化剂的光催化活性,结果表明三种光催化剂均具有较好的可见光活性。
     为了降低生产成本,实验以无机盐为原料,采用化学沉淀法和浸渍法相结合制备了具有可见光活性的N、金属离子双掺杂TiO_2粉体,光催化实验表明:双掺杂TiO_2粉体在可见光下具有较好的光催化活性。
     由于薄膜材料更具有发展前景,本实验对TiO_2薄膜的抗菌和降解有机污染物活性进行了研究。通过稀土元素掺杂,制备了La/TiO_2和Ce/TiO_2薄膜光催化剂,此光催化剂在可见光下能够有效杀死大肠杆菌和降解甲基橙溶液。
     钙钛矿型氧化物是另一类新型可见光活性光催化剂,实验采用柠檬酸络合法制备了形状均匀的纳米LaCoO_3及其复合钙钛矿型氧化物,并对其光催化活性及抗菌性能进行了分析。结果表明,随着LaCoO_3粉体粒径的增大及Cu掺入量的减少,其光催化活性和抗菌性都降低。各LaBO_3化合物粉体的光催化活性和抗菌性的变化趋势为:LaCoO_3>LaFeO3>LaMnO3。
TiO_2 powder and film could purify circumstance due to their antibacterial action and photocatalytic degradation of organic polluted compounds under the radiation of UV. So TiO_2 photocatalyst has a variety of application prospects in the field of environmental protection.
     Ag/TiO_2, V/TiO_2 and La/TiO_2 powder photocatalysts with visible-light activities were prepared by sol-gel method. And, the so-prepared photocatalysts were characterized by XPS, XRD and UV-vis. XPS showed that Ag existed as metal, whereas La existed as oxide. The crystalline structure of Ag/TiO_2, V/TiO_2 or La/TiO_2 was all anastase, and doping V5+ ion in TiO_2 resulted in the peak shape of X-ray diffraction broadened. UV-vis absorbance spectra of Ag/TiO_2, V/TiO_2 or La/TiO_2 showed that absorption limits bathochromic shift occur in the doped photocatalysts. Moreover, the absorbance intensity of Ag/TiO_2, V/TiO_2 or La/TiO_2 was higher than that of pure TiO_2 under visible region.
     With black light lamp or fluorescent lamp as light source, the antibacterial experiments and photodegradation of methyl orange solution were carried out to investigate the visible-light activity of Ag/TiO_2, V/TiO_2 and La/TiO_2 powder. From the results, it could be found all the three kinds of photocatalysts took on good visible-light activity.
     In order to reduce the cost of TiO_2 powder, the inorganic salt was used as resource to prepare co-doped TiO_2 powder by the chemical precipitation and impregnating methods. The photocatalytic experiment results showed that the co-doped TiO_2 photocatalysts have good photocatalytic activity under visible light irradiation.
     Since film materials have more application prospects than powder, TiO_2 films were prepared in this study. The antibacterial properties and photodegradation of polluted organic compound were analyzed. By doping of rare earth element, the La/TiO_2 and Ce/TiO_2 film photocatalysts were prepared by sol-gel method. These La/TiO_2 or Ce/TiO_2 films can kill bacteria and degrade methyl orange under visible light irradiation.
     Perovskite type oxides are a new-style photocatalysts with visible-light activities. In our experiment, the LaCoO_3 and its multicomponent perovskite type oxides with uniform size were prepared by citric acid complex method. Simultaneity, the photocatalytic activity and antibacterial performance of the powders were analyzed. The results showed that the photocatalytic activity and antibacterial performance were decrease with the increase of the particle size and the decrease of Cu content. And, in LaBO_3 multicomponent perovskite type oxides, the trend of photocatalytic activity and antibacterial performance were LaCoO_3>LaFeO3>LaMnO3.
引文
[1]虞振飞,刘吉平,纳米无机抗菌剂的分类与抗菌机理研究,中国个体防护装备, 2004, 3: 10~12
    [2]赵娣芳,周杰,刘宁,含银无机抗菌材料的开发及应用,矿产保护与利用, 2005, 3: 12~15
    [3]季君晖,严庆,新型塑料抗菌剂的研究及其应用展望,中国科技成果, 2004, 10: 12~15
    [4]雅菁主编,材料概论,重庆:重庆大学出版社, 2006
    [5]刘康时,江显异,赵英,等.银系无机抗菌剂作用机理的研究进展,佛山陶瓷, 2001, 11: 1~5
    [6]吉向飞,李玉平,杨柳青,抗菌剂及抗菌材料的发展和应用,太原理工大学学报, 2003, 34 (1): 11~15
    [7]于平,顾保东,国际抗菌材料市场发展趋势,中国对外贸易, 2005, 3: 84~85
    [8]王大全,无机抗菌新材料与技术,北京:化学工业出版社, 2006
    [9]高颖,张九红,抗菌行业如何走向规范,新材料产业, 2004, 3: 8~11
    [10]夏金兰,王春,刘新星,抗菌剂及其抗菌机理,中南大学学报(自然科学版), 2004, 25(1): 31~38
    [11]汤庆国,王雪峰,沈上越,等.金属离子抗菌剂的抗菌效果及应用研究,环境与健康杂志, 2005, 22(2): 158~160
    [12]王华,梁成浩,抗菌金属材料的研究进展,腐蚀科学与防护技术, 2004, 16(2): 96~100
    [13]付伟,吴卫华,王黔平,新型银系抗菌剂的现状和展望,江苏陶瓷, 2006, 39(5): 26~28, 33
    [14]何敏珠,阎均,龚羽,抗菌织物及其抗菌性能的评价,上海纺织科技, 2005, 33 (3): 62~64
    [15]王静,冀志江,金宗哲,等.抗菌功能建材抗菌性能评价方法,中国建材科技, 2004, 13(2): 6~12
    [16]程明明,柴立元,彭兵,等.抗菌陶瓷的研究现状及展望,材料导报, 2005, 19 (9): 47~49
    [17]金宗哲主编,无机抗菌材料及应用,北京:化学工业出版社, 2004
    [18]李春红,陈玉清,纳米二氧化钛抗菌陶瓷内墙砖的研制和性能研究,陶瓷学报, 2006, 27(1): 68~70
    [19]季君晖,史维明,抗菌材料,北京:化学工业出版社, 2003
    [20]曾冬冬,孙春宝,丁浩,无机抗菌剂及其加工品抗菌效率评价,化工新型材料, 2001, 2: 17~19
    [21]张君,马江涛,纳米TiO2光催化剂在抗菌方面的应用和研究进展,当代化工, 2006, 35(3): 212~214, 225
    [22]鹿院卫,马重芳,王伟,等.纳米光催化杀菌技术研究进展,北京工业大学学报, 2006, 32(7): 622~627
    [23]马玉龙,许梓荣,离子型无机抗菌材料研究进展,材料导报, 2004, 18(2): 16-18, 48
    [24]彭文璟,汤华钊,向晶晶,等.纳米TiO2抑菌机理研究,四川大学学报(自然科学版), 2006, 423(4): 908~912
    [25]蒋新,吴艳香,陈喜明,防雾、自清洁玻璃表面纳米TiO2薄膜的研究进展,浙江化工, 2007, 38(3): 8~11
    [26] XU Wei-guo, CHEN An-mini, CHANG Qiang, Preparation of TiO2 Thin Film and Its Antibacterial Activity, Journal of Wuhan university of technology materials science edition, 2004, 19(1): 16~18
    [27]崔玉民,影响纳米材料TiO2光催化活性的因素,稀有金属, 2006, 30(1): 107~113
    [28]高伟,吴凤清,罗臻,等. TiO2晶型与光催化活性关系的研究,高等学校化学学报, 2001, 22(4): 660~662
    [29]雷绍民,熊毕华,郝骞,等.纳米TiO2复合抗菌材料抗菌机理与研究进展,资源环境与工程, 2006, 20(4): 459~462
    [30]黄惠莉,黄妙良,蔡阿娜,等. TiO2光催化薄膜在陶瓷器具上抗菌效果的研究,应用化学, 2002, 19(1): 48~52
    [31] Saw-Peng Yew, Hui-Ying Tang, Kumar Sudesh, Photocatalytic Activity and Biodegradation of Polyhydroxybutyrate Films Containing Titanium Dioxide, Polymer Degradation and Stability, 2006, 91(8): 1800~1807
    [32]葛琦,张俊英,杨春,等. TiO2静电自组装薄膜在不同光源下的杀菌性能,稀有金属材料与工程, 2005, 34(10): 1642~1645
    [33] J Arana, J L Martínez Nieto, J A.Herrera Melian, et al. Photocatalytic Degradation of Formaldehyde Containing Wastewater from Veterinarian Laboratories, Chemosphere, 2004, 55(6): 893~904
    [34]徐瑛,苏汉桥,纳米TiO2的制备及其抗菌性能研究,武汉理工大学学报, 2002, 24(7): 1~3
    [35]方湘怡, Peter, Hing,等. TiO2薄膜光催化灭菌性能表征,西安交通大学学报,2001, 35(10): 1085~1088
    [36] A Vohra, DY Goswami, S S Block, et al. Enhanced Photocatalytic Disinfection of Indoor Air, Applied Catalysis B: Environmental, 2006, 64(1-2): 57~65
    [37]孟耀斌,黄霞,吴盈禧,等.不同光强下光催化降解对氯苯甲酸钠动力学,环境科学, 2001, 22(4): 56~59
    [38]杨莉萍,刘震炎,光催化氧化有机物所需光强的数学模型和估计方法,上海交通大学学报, 2005, 39(11): 1895~1898
    [39] C Reyes, J Fernandez, J Freer, et al. Mansilla Degradation and Inactivation of Tetracycline by TiO2 Photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1-2): 141~146
    [40] T Matusunaga, R Tomoda, N Toshiaki, et a1. Continuous-sterilization System that Uses Photosemiconductor Powders, Applied and Enviro-mental Microbiology, 1988, 54(6): 1330~1333
    [41]雷乐成,汪大翚,水处理高级氧化技术,北京:化学工业出版社, 2001
    [42]王大全主编,无机抗菌新材料与技术,北京:化学工业出版社, 2006
    [43] Jorge A Ibanez, Marta I Litter, Ramon A Pizarro, Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae: Comparative Study with Other Gram (?) Bacteria, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 81~85
    [44] Fujishima A, Honda K, Electrochemical Photolysis of Water at A Semiconductor Electrode, Nature, 1972, 238(5358): 37~38
    [45]王君, TiO2功能材料应用研究进展,钛工业进展, 2004, 21(5): 11~15
    [46] Akira Fujishima, Xintong Zhang, Titanium Dioxide Photocatalysis: Present Situation and Future Approaches, Comptes Rendus Chimie, 2006, 9(1-2): 750~760
    [47]雷阎盈,余历军,张秀成,纳米TiO2杀菌陶瓷的杀菌机理与性能,佛山陶瓷, 2004, 14(9): 8~10
    [48]梁炜,何志强,纳米TiO2光催化技术在饮用水净化中的应用,医学动物防制, 2002, 20(4): 205~206
    [49]龚敏红,龚丽雯,王成云, TiO2纳米薄膜的制备及降解印染废水的研究,广东化工, 2003, 30(6): 48~52
    [50]王福玉,梁增辉, TiO2光催化剂及在水处理中的应用,环境与健康杂志, 2002, 19(3): 287~288
    [51] Istvan Ilisz, Andras Dombi, Karoly Mogyorosi, et al. Photocatalytic Water Treatment with Different TiO2 Nanoparticles and Hydrophilic/Hydrophobic LayerSilicate Adsorbents, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230(1-3): 89~97
    [52] I M Butterfield, P A Christensen, T P Curtis, et al. Water Disinfection Using an Immobilised Titanium Dioxide Film in a Photochemical Reactor with Electric Field Enhancement, Water Research, 1997, 31(3): 675~677
    [53]王永贵,董素芳,环保抗菌玻璃、陶瓷生产中TiO2的应用研究,山东陶瓷, 2006, 29(3): 20~22
    [54]曹建军,纳米TiO2及其功能改性塑料的研究进展,钢铁钒钛, 2004, 25(4): 1~8
    [55]才红,陈艳,纳米TiO2改性苯丙乳液内墙涂料的研究,应用化工, 2006, 35(10): 789~791
    [56] Cai R X, Hashimoto K, Itoh K, et al. Photokilling of Malignant Cells with Ultrafine TiO2 Powder, Bull. Chem. Soc. Jpn, 1991, 64(4): 1268~1273
    [57]王浩,赵文宽,二氧化钛光催化杀灭肿瘤细胞的研究,催化学报, 1999, 20(3): 3373~3374
    [58]黄宁平,黄丹,超微粒TiO2对U937细胞光杀伤效应及机理研究,生物化学与生物物理进展, 1997, 24(5): 5470~5473
    [59]谭艳君,刘昌南,纳米TiO2粉体的分散及在织物上的应用,染料与染色, 2004, 41(3): 174~176
    [60]李从举,翟国钧,付中玉,等. TiO2纳米纤维无纺布的制备及光催化性能研究,无机化学学报, 2006, 22(11): 2061~2064
    [61]任学昌,史载锋,孔令仁,等.纳米TiO2薄膜在不同陶瓷表面的负载及其光催化性能研究,环境污染治理技术与设备, 2006, 7(2): 1193~1195
    [62]黄应平,罗光富,颜克美, TiO2纳米半导体光催化研究进展,三峡大学学报(自然科学版), 2002, 24(6): 567~570
    [63]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望,化学物理学报, 2003, 16(5): 339~349
    [64]娄向东,赵晓华,成庆堂,复合氧化物光催化研究进展,化学研究与应用, 2003, 15(4): 447~450
    [65]邓慧华,陆祖宏,半导体TiO2光催化杀灭微生物的机理和应用,微生物学通报, 1997, 24(2): 113~115, 109
    [66]郭世宜,沈星灿,郭俊怀,等.超细纳米TiO2光催化灭菌的研究,南开大学学报(自然科学版), 2005, 38(3): 78~82
    [67]马建权,姚亚东,纳米TiO2光催化氧化灭菌的研究进展,材料导报, 2004, 18:58~60, 64
    [68]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社, 2002
    [69] Takafumi Matsunaga, Michio Inagaki, Carbon-coated Anatase for Oxidation of Methylene Blue and NO, Applied Catalysis B: Environmental, 2006, 64(1-2): 9~12
    [70] Rosemary Dunford, Angela Salinaro, Lezhen Cai, et al. Chemical Oxidation and DNA Damage Catalysed by Inorganic Sunscreen Ingredients, FEBS Letters, 1997, 418(1-2): 87~90
    [71] Wei WANG, Jie TAO, Tao WANG, et al. Photocatalytic Activity of Porous TiO2 Films Prepared by Anodic Oxidation, Rare Metals, 2007, 26(2): 136-141
    [72]刘平,孟春,掺杂TiO2光催化膜材料的制备及其灭菌机理,催化学报, 1999, 20(3): 325~328
    [73] Min Cho, Hyenmi Chung, Wonyong Choi, et al. Linear Correlation between Inactivation of E. coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection, Water Research, 2004, 38(4): 1069~1077
    [74] Yoshihiko Kikuchi, Kayano Sunada, Tomokazu Iyoda, et al. Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 106(1-3): 51~56
    [75] P Amezaga-Madrid, R Silveyra-Morales, L Cordoba-Fierro, et al. TEM Evidence of Ultrastructural Alteration on Pseudomonas Aeruginosa by Photocatalytic TiO2Thin Films, Journal of Photochemistry and Photobiology B: Biology, 2003, 70(1): 45~50
    [76] Kayano Sunada, Toshiya Watanabe, Kazuhito Hashimoto, Studies on Photokilling of Bacteria on TiO2 Thin Film, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1-3): 227~233
    [77] A P Huang, Z F Di, Paul K Chu, Microstructure and Visible-photoluminescence of Titanium Dioxide Thin Films Fabricated by Dual Cathodic Arc and Nitrogen Plasma Deposition, Surface and Coatings Technology, 2007, 201(9-11): 4897~4900
    [78] P S M Dunlop, J A Byrne, N Manga,et al. The Photocatalytic Removal of Bacterial Pollutants from Drinking Water, Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1-3): 355~363
    [79] Kayano Sunada, Toshiya Watanabe, Kazuhito Hashimoto, Studies on Photokilling of Bacteria on TiO2 Thin Film, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1-3): 227~233
    [80] S Lee, K Nishida, M Otaki, et al. Photocatalytic Inactivation of Phage Qβby Immobilized Titanium Dioxide Mediated Photocatalyst, Water Science and Technology, 1997, 35(11-12): 101~106
    [81] Choi W, Temin A, HoffnIann M R, The Role of Metal Ion Dopants in Quantum-sized TiO2: Comlation between Photoreactivity and Charge Carried Recombination Dynamics, J. Phys. Chem., 1994, 98(5): 13669~13679
    [82] Sakata Y, Yamamoto T, Gunji H, et al. Effect of Lead Oxide Addition to the Photocatalytic behavior of TiO2, Chem. Lett., 1998, 13: 131~132
    [83]赵秀峰,孟宪锋,张志红,等. Pb掺杂TiO2薄膜的制备及光催化活性研究,无机材料学报, 2004, 19(1): 141~146
    [84] Radecka M, Zakrzewska K, Wierzbicka M, et al. Study of the TiO2-Cr2O3 System for Photoelectrolytic Decomposition of Water, Solid State Ionics, 2003, 157: 379~386
    [85] Karvinen S, Lamminmki R, Preparation and Characterization of Mesoporous Visible-light-active Anatase, Solid State Sciences, 2003, 5: 1159~1166
    [86] Takeuchi M, Yamashita H, Matsuoka M, et al. Photocatalytic Decomposition of NO under Visible Light Irradiation on the Cr-ion-implanted TiO2 Thin Film Photocatalyst, Catal. Lett., 2000, 67(2-4): 135~137
    [87]闫鹏飞,王建强,江欣,等.掺铁TiO2纳米晶的制备及光催化性能研究,材料科学与工艺, 2002, 10(1): 28~31
    [88]于向阳,程继建,铁离子掺杂对TiO2薄膜光催化活性的影响,无机材料学报, 2001, 16(4): 742~745
    [89] J Arana, O González Díaz, M. Miranda Saracho, Photocatalytic Degradation of Formic Acid using Fe/TiO2 Catalysts: the Role of Fe3+/Fe2+ Ions in the Degradation Mechanism. Appl. Catal. B: environmental, 2001, 32(1-2): 49~61
    [90] Sakata Y, Yamarmoto T, Okazaki T, et al. Generaton of Visible Light Response on the Photocatalyst of Copper Ion Contaning TiO2, Chem. Lett., 1998, 12: 1253~1258
    [91] Iwasaki M, Hara M, Kawada H, et al. Cobalt Ion-doped TiO2 Photocatalyst Response to Visible Light, J.Collid Interface Sci., 2000, 224(1): 202~207
    [92]卢萍,姚明明,张颖,等.过渡金属离子的掺杂对TiO2光催化活性的影响,感光科学与化学, 2002, 20(3): 185~190
    [93]刘畅,暴宁钟,杨祝红,等.过渡金属离子掺杂改性TiO2的光催化性能研究进展,催化学报, 2001, 22(2): 215~218
    [94] Martra G, Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase: Relationships Between Surface Morphology and Chemical Behaviour, Applied Catalysis A, 2000, 200(1): 275~283
    [95] Herrmann J M, Photoassisted Platinum Deposition on TiO2 Powder Using Various Platinum Complexes, J. Phys. Chem., I 986, 90: 6028~6033
    [96] Veronica V, Effects of Ag Ions on the Activity of Titania Particals during the Photo-catalytic Oxidation of Organics in Water, The 4th World Congress on Paritical technology, 2002: 3011~3018
    [97]毛立群,冯彩霞,金振声,等. Au/TiO2的制备及其光催化氧化丙烯的研究,感光科学与光化学, 2005, 23(1): 61~66
    [98] Arrii S, Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization:Direct Evidence of Support Contribution, J. Am.Chem. Soc., 2004, 126: 1199~1206
    [99]李振宏,伍虹,我国稀土应用的现状与前景,稀土, 1996, 17(6): 48~53
    [100]刘奎仁,于会文,韩庆,等.稀土掺杂TiO2光催化材料的制备和性能,材料研究学报, 2006, 20(5): 459~464
    [101]陈俊涛,李新军,杨莹,稀土元素掺杂对TiO2薄膜光催化性能的影响,中国稀土学报(专辑), 2003, (21): 67~71
    [102] Bahtat A, Bouazaoui M, Bahtat M, et al. Up-conversion Fluores-cence Spectroscopy in Er/Sup3+: TiO2/Planar Waveguides Prepared by A Sol-gel Process, J. Non-Crys., 2003, 46: 251~259
    [103] Xie Y B, Yuan C W, Visible Light Responsive Cerium Ion Modified Titania Sol and Nanocrystallltes for X-3B Dye Photodegradation, Appl. Catal. B: Environ, 1996, 202(1-2): 16~22
    [104]梁金生,金宗哲,王静,等.环境净化功能(Ce, Ag)/TiO2纳米材料表面能带结构的研究,硅酸盐学报, 2001, 29(5): 500~502
    [105] Xie Y B, Yuan C W, Photceatalysis of Neodymium Ion Modified TiO2 Sol under Visible Light Irradiation, Appl. Sur. Sci, 2004, 221(1-4): 17~24
    [106] Panjit K T, Visible Light Responsive Lanthanon Element Ion Modified Titania, J. Mater. Sci., 1999, 34: 5273~5280
    [107]周武艺,唐绍裘,张世英,等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性,硅酸盐学报, 2004, 32(1): 1203~1209
    [108] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light Photocatalysis in Nitrogendoped Titanium Oxide, Science, 2001, 293: 269~271
    [109] Irie H, Washizuka S, Yoshino N, et al. Research on Preparation and Visible Light Active of Nitrogen-doped TiO2, Chem. Commun., 2003, 11: 1298~1299
    [110] Irie H, Watanabe Y, Hashimoto K, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B, 2003, 107: 5483~5486
    [111] Hiromasa T, Masahiro M, N-doped TiO2 Nanotube with Visible Light Activity, Chem. Lett., 2004, 33(9): 1108~1109
    [112] Diwald O, Thompson T L, Zubkov T, et al. Photochemical Activity of Nitrogen-Doped Rutile TiO2 (110) in Visible Light, J. Phys. Chem. B, 2004, 108(19): 6004~6008
    [113] Lindgren T, Mwabora J M, Avendano E, et al. Structure, Composition, and Morphology of Photoelectrochemically Active TiO2-xNx Thin Films Deposited by Reactive DC Magnetron Sputtering, J. Phys. Chem. B, 2003, 107: 5709~5715
    [114] Ihara T, Miyoshi M, Iriyama Y, et al. Visible-lightactive Titanium Oxide Photocatalyst Realized by an Oxygen-deficient Structure and by Nitrogen Doping,Appl. Catal. B: Environmental, 2003, 42: 403~409
    [115] Yu J C, Yu J G, Wingkei K H, et al. Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater., 2002, 14(9): 3808 ~3816
    [116] Hattori A, Tada H, High Photocatalytic Activity of F-doped TiO2 film on glass, J. Sol-Gel SCi. Technol., 200l, 22: 47~52
    [117] Umebayashi T, Yamaki T, Itoh H, et al., Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 2002, 81(3): 454~456
    [118] Ohno T, Mitsui T, Matsumura M, Photocatalytic Activity of S Doped TiO2 Photocatalyst under Visible Light, Chem. Lett., 2003, 32: 364~365
    [119] Umebayashi T, Yamaki T, Tanala S, et al. Visible Light-induced Degradation of Methylene Blue S-doped TiO2, Chem. Lett., 2003, 32: 330~336
    [120]唐玉朝,黄显怀,俞汉青,等.非金属掺杂改性TiO2光催化剂的机理,化学进展, 2007, 19(2): 225~233
    [121] Ohno T, Miyako A, Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light. Applied Catalysis A: General, 2004, 265: 115~128
    [122]刘红艳,高镰,湿化学法原位合成硫掺杂的纳米金红石TiO2可见光催化剂,无机材料学报, 2005, 20(2): 470~476
    [123] Khan S U M, Al-Shahry M, Ingler J W B, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science, 2002, 297: 2243~2245
    [124] Iire H, Watanabe Y, Hashimoto K, Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst, Chem. Lett., 2003, 32(8): 772~773
    [125]蔡邦宏,赵希平,乐英红,等. NH4H2PO4掺杂改性纳米TiO2的光催化性能,分子催化, 2003, 17(4): 302~308
    [126]申玉芳,龙飞,邹正光,半导体光催化技术研究进展,材料导报, 2006, 20(6): 28~31
    [127]王知彩,昝树财,基于WO3表面改性TiO2的制备及光催化性能研究,化工进展, 2005, 24(2): 174~177
    [128]张松,李琪,乔庆东,半导体复合TiO2纳米光催化剂,化学通报, 2004, 67(4): 295~299
    [129]杨华明,史蓉蓉,张科,等.纳米二氧化钛光催化剂改性研究进展,化工新型材料, 2005, 33(6): 57~59
    [130]李敏,王振岭,石恒真,等.敏化的TiO2纳米晶表面形貌、晶相、光谱及光催化灭菌研究,无机材料学报, 2003, 18(6): 1261~1266
    [131]崔鹏,范益群, TiO2负载膜的制备、表征及光催化性能,催化学报, 2000, 21(5): 494~495
    [132]鄂磊,可见光活性TiO2光催化剂的制备及光催化性能的研究,博士学位论文,天津大学, 2006
    [133]潘海波,林德娟,刘隆兴,材料研究学报,2001,15(5):535~539
    [134]鞠剑峰,徐铭,李澄俊, V2O5/TiO2 -SiO2纳米复合材料的抗菌性能,精细化工, 23(11):1048~1051, 1055
    [135]赵春,钟顺和, V2O5- TiO2复合半导体光催化材料结构及光响应性能研究,无机化学学报, 22(2): 238~242
    [136]刘学军,顾晓东,催化学报, 2003, 24(9): 674~680
    [137] Tsutomu Hirakawa, Yoshio Nosaka, Properties of·O2-and·OH Formed in Aqueous Suspensions by Photocatalysis Reaction and the Influence of H2O2 and Some Ions, Langmuir, 2002, 18: 3247~3254
    [138]武汉大学,吉林大学,等.无机化学(第三版),北京:高等教育出版社, 1994
    [139]徐光宪,王祥云,物质结构(第二版),北京:高等教育出版社, 1987
    [140]吴树新,尹燕华,何菲,等.掺铜TiO2光催化剂光催化氧化还原性能的研究,感光科学与光化学,2005, 23 (5):333-338
    [141]王得军,崔毅,掺杂铈对玻璃表面TiO2薄膜上油酸光催化降解的影响,物理化学学报, 1995, 11(9): 812~815
    [142]梁金生,金宗哲,王静,稀土/纳米TiO2的表面电子结构,中国稀土学报, 2002, 20(1): 74~77
    [143] WEN Chen, DENG Hua, TIAN Jun-ying, ZHANG Ji-Mei, Photocatalytic Activity Enhancing for TiO2 Potocatalyst by Doping with La
    [144] T R Rodriguez, S Vargas, M R Arroyo, Modification of the Phase Transition Temperatures in Titania Doped with Various Canons. Journal of Materials Research, 1997, 12, 439~442
    [145]岳林海,水森,徐铸德,郑遗凡,稀土掺杂二氧化钛的相变和光催化活性,浙江大学学报(理学版), 2000, 27(1):69~72
    [146] Voorhoeve R J H, Burton J J, Garton R L, et al. Advanced Materials in Catalysts, New York: Academic Press, 1977: 129~133
    [147] Cherry M, Islam M S, and Catlow C R A, Oxygen ion migration in perovskitetype oxides, J. Solid State Chemistry, 1995, 118: 125~132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700