铁基磷酸盐正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LiFePO_4具有价格低廉、环境友好、循环稳定,良好的安全性等特点而成为有望大量应用于动力电池的锂离子电池材料,得到国内外广泛的重视。与LiCoO2、LiMn2O4相比,阻碍LiFePO_4广泛使用的主要问题是其电子导电率、振实密度较低,国内外研究者为此开展了大量的研究。改善LiFePO_4导电性的方法主要有两种:一种是C包覆,这种方法可以明显的改善LiFePO_4的电化学性能,但是引入C却降低了材料的体积比能量,另一种是金属阳离子的掺杂,阳离子掺杂不存在降低体积比容量的问题,但对于掺杂元素的存在形式还需要进一步深入的研究。
     本论文针对金属阳离子掺杂改性LiFePO_4,通过水热及固相法合成了掺杂LiFePO_4,对LiFePO_4的掺杂原子占位,LiFePO_4充放电机制进行了深入的研究,同时探索了一种新体系的锂离子电池正极材料羟基磷酸铁,取得以下的成果。
     首次以邻菲啰啉为络合剂,水热法合成出0.5μm纯相类球形LiFePO_4,络合剂起到防止二价铁被氧化同时控制晶体生长形貌的作用,样品在0.1C循环20次放电比容量保持在140mAh/g。
     首次通过XAS技术研究了Mo掺杂LiFePO_4的掺杂元素的占位情况,发现Mo同时占据了Fe位和Li位。利用第一性原理计算了LiMo1/31Fe31/32PO_4和Li31/32Mo1/32FePO_4的电子态密度,发现Mo的掺杂改变了LiFePO_4费米面附近的电子态密度的分布,改善了LiFePO_4的电子导电性能。Mo掺杂LiFePO_4的电子导电率相对于未掺杂LiFePO_4提高了约8倍。1%Mo掺杂样品在0.1C倍率下放电比容量达到161 mAh/g,接近理论容量170 mAh/g;在1C倍率下,循环20次放电比容量保持在140mAh/g,比相同条件下未掺杂样品的放电比容量高50mAh/g。
     首次通过一种简易水热法结合固相法合成了LixFePO_4 (x=0.89),从另一个侧面证实了室温下固溶体LixFePO_4的存在。初步探讨了LiFePO_4的两相和固溶放电机制,LiFePO_4的固溶放电机制与样品的颗粒尺寸、离子置换和离子空位有关。
     用水热法合成了另外一种正极材料,羟基磷酸铁。不同于LiFePO_4的两相放电机制,这种正极材料在充放电过程中表现为固溶放电。在空间结构中,相邻的FeO_6八面体是共面相连,经过第一性原理计算发现羟基磷酸铁的电子导电性远高于LiFePO_4的电子导电性。利用PITT测试中得到的电流随时间变化曲线计算得到Li离子在Fe_(1.33)(PO_4)(OH)中的扩散系数为10-12cm~2/s,这要高于Li离子在LiFePO_4中的扩散系数(10-15cm~2/s),与LiMn_2O_4 (10-11cm2/s)、LiCoO_2(10~(-10)-10~(-12)cm~2/s)相当。该材料具有良好的电化学性能,在1C(170mAh/g)下,放电比容量可高达160 mAh/g,在4C (680mA/g)下循环50次放电比容量保持在120 mAh/g。
Lithium iron phosphate is focused in the world wild as a promising cathode material for the power batteries in terms of its excellent structural stability, low cost, and environmental benignity and safety. Compared with LiCoO2 and LiMn2O4, LiFePO_4 is low conductivity and low tap density, which are fundamental limitations for this material to be used. Researchers in the world-wide have made efforts on this issue. To improve its electronic conductivity, two main means were explored: one is the synthesis of LiFePO_4 with carbon coating; the other is the modification by doping cations into LiFePO_4. The presence of carbon in LiFePO_4 decreases the energy density, but the modification by doping cations doesn’t induce this problem. However, it is still an open question as to where the doped cations in LiFePO_4 go and no clear evidence exists on Li and Fe sites.
     To address this issue in this work, several works have been done, including the synthesis of cation-doped LiFePO_4 by solid-state reaction or hydrothermal method, the investigation of doping cations occupancies and charge/discharge mechanism of LiFePO_4 and the exploration of iron hydroxyl-phosphates, a new cathode material for lithium ion batteries. The results we got list in the following.
     Spherical-like LiFePO_4 was synthesized firstly by hydrothermal method using Phenanthroline as complexing-agent to avoid the Fe(II) ions from oxidation and control the growth of the crystal. The sample possesses uniform spherical-like particles with average size of 0.5μm. Test showed that the reversible capacity of spherical-like LiFePO_4 was about 140mAh/g at 0.1C and the capacity fading was neglectable after 20 cycles.
     The doping cations occupancies of the Mo-doped LiFePO_4 system were investigated by XAS. Data support a concurrent replacement of Mo ions at Fe and Li sites. The electronic structures of Mo-doped LiFePO_4 were studied by ab initio calculations using VASP. With respect to the density of states (DOS) of the LiFePO_4, in which no electronic states were at the Fermi level, the Mo doping is predicted largely impacting the conductivity. The test showed the electronic conductivity of Mo-doped LiFePO_4 increased by 8 times relative to the pure LiFePO_4. The Mo-doped LiFePO_4 sample exhibits a better cycling performance with an initial specific capacity of 161 mAh/g at a 0.1 C rate, near to the theoretical limit of 170 mAh/g, with negligible fading. In particular, at the higher rate (1C), the Mo-doped LiFePO_4 shows remarkable power capability ~140 mAh/g, which is 50 mAh/g more than that of pure LiFePO_4 powders.
     LixFePO_4 (x=0.89) solid solution was synthesized firstly by a hydrothermal method combined with a solid-state reaction. On another hand, we give the experimental evidence that the solid solution LixFePO_4 (x=0.89) exists at room temperature. The two phase and one single phase mechanism were investigated during charge/discharge process of LiFePO_4. The solid solution charge/discharge of LiFePO_4 is relative to the particle size, ion replacements and ion vacancies.
     Another cathode material, Fe_(2-y□y)(PO_4)(OH)_(3-3y)(H_2O)_(3y-2) was very easy synthesized by hydrothermal methods. It exhibits solid solution mechanism during the charge/discharge process which is different with that of LiFePO_4. In Fe_(2-y□y)(PO_4)(OH)_(3-3y)(H_2O)_(3y-2) framework, a face is shared by two neighboring FeO6 octahedra. According to the results of the GGA+U calculation, Fe5(PO_4)_4(OH)_3·H_2O is a higher electronic conductivity than LiFePO_4. The diffusion coefficient of lithium ion in this material is 10-12cm~2/s derived from PITT, which is higher than 10-15cm~2/s in LiFePO_4 and comparable with 10-11cm2/s in LiMn2O4 and 0-10~10-12cm~2/s in LiCoO_2. The compound exhibits good electrochemical performance, with reversible capacities of around 150 mAh/g and 120 mAh/g at current densities of 170 mA/g and 680 mA/g, respectively, and sloping voltage charge/discharge curves characteristic of single-phase behavior.
引文
1 J. B. Ralph, R. B. Kathryn, A. L. Randolph, L. M. Richard, R. M. John, T. Esther. J. Electrochem. Soc. 2004, 151(3): K1~K11
    2 S.Bruno..Electrochimica Acta, 2000, 45 (8) 2461-2466
    3 H. Li, X.J. Huang, L.Q. Chen, et al., Electrochem. Solid-State Lett. 2,549(1999)
    4 Padhi A K,Nanjundaswamy K S, Masquelier C,.J.Electrochem.Soc.,1997,144(5) : 1609-1613
    5 Tackeray M., Nat. Mater.,2002,1 ,81-82
    6 Tarascon J M,Armand M. Nature,2001,414:358-367
    7 S. Y. Chung, J. T. Blocking, Y. M. Chiang. Nat. Mater., 2002, 2,123.
    8 Herle P S, Ellis B, Coombs N. et al, Nat. Mater., 2004, 3 (3):147-152
    9 Gibot, P.; Montse, C.-C.; Laffont, L.; Masquelier, C. Nat. Mater. 2008, 7, 741.
    10 Delacourt,C.; Poizot, P.; Tarascon, J.-M.; Masquelier, C.; Nat. Mater. 2005, 4, 254.
    11 Meethong, N.; Shadow, H.-Y. S; Speakman, S. A.; Carter, W. C.; Chiang, Y. M. Adv. Funct. Mater. 2007, 17, 1115-1123.
    12 Nishimura S, Kobayashi G, Ohoyama K, et al. Nat. Mater., 2008, 7 , 707-711.
    13 Yamada A, Koizumi H, Nishimura SI, et al. Nat. Mater., 2006, 5 , 357-360.
    14 Ellis BL, Makahnouk WRM, Makimura Y, et al Nat. Mater., 2007, 6, 749-753.
    15 Delmas C, Maccario M, Croguennec L, et al. Nat. Mater. , 2008, 7 , 665-671.
    16 Nishimura S, Kobayashi G, Ohoyama K, et al.. Nat. Mater., 2008, 7, 707-711.
    17吕鸣祥,黄长保,宋玉谨.化学电源.第一版.天津:天津大学出版社,1992: 306-307
    18 R.Koksbang, J.Barker, H.Shi.,Solid State Ionics,1996, 84(1-2): 1-21
    19 Junji Akimoto, Yoshito Gotoh, Yoshinao Oosawo J. Solid State Chemistry, 1998, 141(1): 298-302
    20 T.Ohzuku, A.Vede, M.Nagayama. J.Electrochem. Soc.,1996,140 (7): 1862-1869
    21 DELMASC. J.Power Sources,1997,68(1):120-125
    22 M.Broussely, P Biensen. Electrochimica Acts, 1999,45(1-2 ):7-13
    23 E.S.Takeuchi, H.Gan, M.Palazzo, J.Electrochem. Soc., 1997, 144(6): 1944-1948
    24 M.Broussely. J.Power.Sources, 1999, 81-82(1-2 ):140-143
    25 K.Tamura, T.Horiba. J.Power.Sources, 1999, 81-82 (1-2) :156-161
    26 A. R. Armstrong, P. G. Bruce. Nature. 1996, 381:499
    27 Takeda Y, Nakahara K, Nishijima M. Mater Res Bull, 1994, 29: 659-666.
    28 Wu E J, Tepesch P D, Ceder Cz Philos Mag, 1998, 77:1039-1047.
    29 R Kanno, T Shirane, Y Inaba, et al. J Power Sources,l997,68:145-152.
    30 B.Garcia, J.Farcy, J.P Pereira-Ramos, et al. J.Electrochem.. Soc., 1998,145 (7):1179-1184
    31 Manthilam A, Goodenough J B. J Solid State Chem,1987,71:349-360.
    32 A Manthiram, J B Goodenough. J Power Sources,1989,26:403-408.
    33 Padhi A K, Najundaswamy KS, Goodenough JB. J ElectrochemSoc,1997,144: 1188-1194.
    34 Padhi AK, Najundaswamy KS, MasquelierC,et al.J.Electrochem Soc,1997,144:1609-1613.
    35 Andersson A S, Kalska B, Hggstrom L, et al. Solid State Ionics 2000,130: 41-52.
    36 Yamada A, Chung S C, Hinokuma K. J Electrochem Soc, 2001, 148: A224-A229.
    37 Takahashi M, Tobishima S, Takei K, et al. J Power Sources, 2001,97-98: 508-501.
    38 Ravet N, Chouinard Y, Magnan J F, et al. J Power Sources, 2001, 97-98:503-507.
    39 Andersson A S, Thomas J O. J Power Sources, 2001, 97-98:498-502.
    40 Nallathamby Kalaiselvi, Chil-Hoon Doh, Cheol-Wan Park, Electrochemistry Communications 2004, 6, 1110-1113
    40 Xie HM,Wang RS, Ying JR, et al, Adv. Mater. 18,2006, 2609
    41 Kim DK,Park HM, Jung SJ, et al. J Power Sources 159 ,2006, 237
    43 Yang S, Song Y, Zavalij PY, et al. Electrochern Comm ,2002,4: 239-244.
    44 Andersson A S, Kalska B, Solid State Ionics 2000,130: 41-52.
    45 Kaoru Dokko, Kiyoshi Kanamuraa et al. Journal of Power Sources 165 (2007) 656–659
    46 M. Stanley Whittingham et al. Electrochemistry Communications 8 (2006) 855
    47 M. Stanley Whittingham et al. Journal of Power Sources 174 (2007) 442.
    48 J. Lee, A.S. Teja J. of Supercritical Fluids 35 (2005) 83–90
    49 C.B. Xua, J. Lee, A. S. Teja J. of Supercritical Fluids 44 (2008) 92-97
    50 Shigehisa Tajimi, Mineo Sato et al. Solid State Ionics 175 (2004) 287–290
    51 Baofeng Wang, Yali Qiu and Siyu Ni Solid State Ionics 178 (2007) 843–847
    52 M.M. Doeff, R.Finones, H.Yaoqin. Monterey, CA, USA:2002.
    53 Arnold G., Garche J, Hemmer R, Strobele S, Vogler C, Mehrens M W, J. Power Sources 2003, 119-121:247
    54 Park K S, Son J T,Chung H T, et al. Electrochem. Commu., 2003,5:839-842.
    55 Bewlay SL, Konstantinov K, Wang GX, et al. Mat. Lett.,2004,58(11): 1788-1791.
    56 Yan ,Y.F.; Zhang, S. B. Phys. Rev. Lett. 2001, 86, 5723.
    57 Giorgetti, M.; Berrettoni, M. Inorg. Chem. 2006, 45, 2750.
    58 Prince, A. A.; Mylswamy, S.; Chan, T. S.; Liu, R. S.; Hannoyer, B.; Jean, M.; Chen, C. H.; Huang, S. M.; Le, J. F.; Wang, G. X. Solid State Commun. 2004, 132, 455.
    59 X. Huang, J. F. Ma, P. W. Wu, Y. M. Hu, J. H. Dai, Z. B. Zhu, H. F. Wang, Materials letters 59 (2005) 578-582.
    60 C.V. Ramana, A. Ait-Salanh, S. Utsunomiya; J. Phys. Chem. C 2007, 111, 1049-1054.
    61 B. Ellis, L. K. Perry, D. H. Ryan, and L. F. Nazar, J. AM. CHEM. SOC. 2006, 128, 11416-11422.
    62 J. L. Dodd, I. Halevy, and B. Fultz, J. Phys. Chem. C, Vol. 111, No. 4, 2007, 1563-1566.
    63 Ravet, N. et al. CA Patent No. EP1049182(2000-05-02 2002).
    64 Ravet, N.; Abouimrane, A.; Armand, M.; Nat. Mater. 2003, 2, 702.
    65 Ouyang, C.Y.;Shi, S.Q.; Wang, Z.X.; Chen, L.Q.; Huang, X.J. Phys. Rev. B 2004, 69,104303.
    66 Zaghib, K.; Mauger, A.; Goodenough, J.B.; Gendron, F.; Julien, C.M. Chem. Mater. 2007, 19, 3740.
    67 Maxisch, T.; Ceder, G.; Phys. Rev. B, 73, 174112 (2006).
    68 L. Wang, F. Zhou, and G. Ceder; Electrochemical and Solid-State Letters, 11 (6) A94-A96 , 2008.
    69 L. Wang, F. Zhou, Y. S. Meng, and G. Ceder 76, 165435 (2007)
    70 Maxisch, T.; Zhou ,F.; Ceder, G.; Phys. Rev. B, 73, 104301 (2006).
    1马礼敦,物理学进展,第16卷,第2期,1996年6月.
    2马礼敦,近代X射线多晶体衍射,化学工业出版社,2002.
    3梁敬魁,粉末衍射法测定晶体结构,科学出版社,2003.
    4马礼敦,杨福家.同步辐射应用概论.复旦大学出版社,2001:149~173
    5王其武,刘文汉. X射线吸收精细结构及其应用.科学出版社,1994:52~141
    6 .E. Sayers, E.A. Stern and F.W. Lytle. New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure. Phys. Rev. Lett. 27, 1204~1207,1971
    7 Ressler. WinXAS: a Program for X-ray Absorption Spectroscopy Data Analysis under MS-Windows. J. Synchrotron Rad. 1998. 5: 118~122 203
    8 A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson. Real Space Multiple Scattering Calculation and Interpretation of X-Ray Absorption Near Edge Structure. Phys. Rev. B. 1998, 12: 7565~7576
    9 A.L. Ankudinov and J.J. Rehr. Relativistic Calculations of Spin-dependent X-ray-absorption Spectra. Phys. Rev. B 1997,56:R1712
    10 L. Matthesis. Energy Bands for Solid Argon. Phys. Rev. 1964,133:A1399~A1403
    11 U.von Barth and L. Hedin. A Llocal Exchange-correlation Potential for the Spin Polarized Case: I. J. Phys. C. 1972, 5:1629~1642
    12 P.A. Lee and J.B. Pendry. Theory of the Extended X-ray Absorption Fine Structure. Phys. Rev. B. 1975, 11: 2795~2811
    13 J.J. Rehr and R.C. Alners. Scattering-matrix Formulation of Curved-wave Multiple-scattering Theory: Application to X-ray Absorption Theory. Phys. Rev. B. 1990, 41: 8139
    14 H. Modrow, S. Bucher, J.J. Rehr and A.L. Ankudinov. Calculation and Interpretation of K-shell X-ray Absorption Near-edge Structure of Transition Metal Oxides. Phys. Rev. B. 2003, 67: 035123
    15 R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford, New York (1989);
    16 R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer-Vertag, Berlin (1990).
    17谢希德,陆栋,固体能带理论,复旦大学出版社,1998.
    18 P.Hohenberg, W.Kohn, Phys. Rev.,136,B864(1964).
    19 W.Kohn,L.J.Sham, Phys.Rev.,140,A1133(1965).
    20 J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
    21 J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Phys. Rev. B 46 (1992) 6671.
    22 J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    23 Payne M, Teter M P, Allan D C ,et al. Rev. Mod. Phys., 64 (1992) 1045-1097.
    24 Blochl P E, Phys. Rev. B, 50, (1994) 17953-17979.
    25 G.Kreessea,D.Joubert,Phys. Rev. B, 59,1758 (1999)
    26 G. Kresse and J. Hanfner, Phys. Rev. B, 47, 558(1993).
    
    1施尔畏,陈之战,元如林水热结晶学,北京科学出版社,2004
    2 Shoufeng Yang, Zavalij P Y, Whittinggham M S, Electrochemistry Communications, 2001, 3:505-508.
    3 M. S. Whittingham et al. Electrochemistry Communications 8 (2006) 855–858
    4 M. S. Whittingham et al. Journal of Power Sources 174 (2007) 442
    5 Yang S, Song Y, Zavalij PY, et al. Electrochern Comm ,2002,4: 239-244.
    6 Andersson A S, Kalska B, Solid State Ionics 2000,130: 41-52.
    7 Kaoru Dokko, Kiyoshi Kanamuraa et al. Journal of Power Sources 165 (2007) 656–659
    8 J. Lee, A.S. Teja J. of Supercritical Fluids 35 (2005) 83–90
    9 C.B. Xua, J. Lee, A. S. Teja J. of Supercritical Fluids 44 (2008) 92-97
    10 Shigehisa Tajimi, Mineo Sato et al. Solid State Ionics 175 (2004) 287–290
    11 Baofeng Wang, Yali Qiu and Siyu Ni Solid State Ionics 178 (2007) 843–847
    12 M. S. Whittingham et al. Solid State Ionics 2008,179:1721-1724.
    13 A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (1994).
    14 B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. (2001). 34, 210-213.
    15 A.S.Andersson, B.Kalska, L.Haggstrom, J.O.Thomas, Solid State Ionics 130 (2000) 41.
    16陆家和,陈长彦.表面分析技术.电子工业出版社,1987
    17 Briggs D. (桂琳琳等译),X射线与紫外光电子能谱.北京大学出版社, 1984
    18郭沁林,实验技术,36卷(2007年) 5期
    19 X. Huang, J. F. Ma, P. W. Wu, Y. M. Hu, J. H. Dai, Z. B. Zhu, H. F. Wang, Materials letters 59 (2005) 578-582.
    20 C.V. Ramana, A. Ait-Salanh, S. Utsunomiya; J. Phys. Chem. C 2007, 111, 1049-1054.
    21金永君;物理与工程; Vol.14, No.5,2004,49-51.
    22夏元复,陈懿;穆斯堡尔谱学基础和应用;北京科学出版社1987
    23 B. Ellis, L. K. Perry, D. H. Ryan, and L. F. Nazar, J. AM. CHEM. SOC. 2006, 128, 11416-11422.
    24 J. L. Dodd, I. Halevy, and B. Fultz, J. Phys. Chem. C, Vol. 111, No. 4, 2007, 1563-1566.
    1 Andersson A S, Kalska B, Hggstrom L, et al. Solid State Ionics 2000,130: 41-52.
    2 Yamada A, Chung S C, Hinokuma K. J Electrochem Soc, 2001, 148: A224-A229.
    3 Takahashi M, Tobishima S, Takei K, et al. J Power Sources, 2001,97-98: 508-501.
    4 Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M.; Nature Materials, 2002, 1, 123.
    5 Andersson A S, Thomas J O. J Power Sources, 2001, 97-98:498-502.
    6 Nallathamby Kalaiselvi, Chil-Hoon Doh, Cheol-Wan Park, Electrochemistry Communications 2004, 6, 1110-1113。
    7 Xie HM,Wang RS, Ying JR, et al, Adv. Mater. 18,2006, 2609。
    8 Herle P S, Ellis B, Coombs N. et al, Nat. Mater., 2004, 3 (3):147-152
    9 Hsu, K. F.; Tsay, S. Y.; J. Mater. Chem., 2004, 14, 2690.
    10 Doeff, M. M.; Hu, Y.; McLarnon, F.; Kostecki, R. Electrochem. Solid-State Lett. 2003, 6, A207.
    11 H. Huang, S.C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 2001, 4, A170.
    12 Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier,M. Electrochim. Acta 2004, 50, 263.
    13 Ravet, N.; Abouimrane, A.; Armand, M.; Nat. Mater. 2003, 2, 702.
    14 Dominko, R., Gaberscek, M., Drofenik, J., Bele, M. & Pejovnik, S.; Electrochem. Solid State Lett. 4, A187–A190 (2001).
    15 Armand, M., Gauthier, M., Magnan, J. -F. & Ravet, N. World Patent WO 2002, 02/27823 A1.
    16 Barker, J., Saidi, M. Y. & Swoyer, J. L. Electrochem. Solid State Lett. 2003, 6, A53–A55.
    17 Jiajun Chen, M. Stanley Whittingham, Electrochem. Commun. 2006, 8, 855-858.
    18 Zhang, M; Jiao, L.F.; Yuan, H. T.; Wang, Y. M.; Guo, J.; Zhao, M.; Wang, W.; Zhou, X.D.; Solid State Ionics, 2006, 177, 3309–3314
    19 Guan, W.; Yan, C.; Yan, M.; Jiang, Z. Y.; J. Solid State Electrochem, 2007. 11, 457–462
    20 Hu, G.-R.; Gao, X.-G.; Peng Z.-D.; Trans. Nonferrous Met. SOC. China, 2007, 17, 296
    21 Liu, H.; Cao, Q.; Fu, L.J.; Li, C.; Wu,Y.P. ; Wu, H.Q. Electrochem. Commun., 2006, 8, 1553–15
    22王小建,中科院物理所博士论文:磷酸盐正极材料的研究(2008)
    23胡信国,王殿龙,戴长松;电池,Vol.13 No.1, 2008
    1 Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M.; Nature Materials, 2002, 1, 123.
    2 Ravet, N.; Abouimrane, A.; Armand, M.; Nat. Mater. 2003, 2, 702.
    3 Herle P S, Ellis B, Coombs N. et al, Nat. Mater., 2004, 3 (3):147-152
    4 Wang,G. X.; Bewlay, S.; Chend , J. M. J. Electrochem. Soc. 2006, 153, A25
    5 Zhang, M; Jiao, L.F.; Yuan, H. T.; Wang, Y. M.; Guo, J.; Zhao, M.; Wang, W.; Zhou, X.D.; Solid State Ionics, 2006, 177, 3309–3314
    6 Guan, W.; Yan, C.; Yan, M.; Jiang, Z. Y.; J. Solid State Electrochem, 2007. 11, 457–462
    7 Hu, G.-R.; Gao, X.-G.; Peng Z.-D.; Trans. Nonferrous Met. SOC. China, 2007, 17, 296
    8 Liu, H.; Cao, Q.; Fu, L.J.; Li, C.; Wu,Y.P. ; Wu, H.Q. Electrochem. Commun., 2006, 8, 1553–1557
    9 Giorgetti, M.; Berrettoni, M. Inorg. Chem. 2006, 45, 2750.
    10 Prince, A. A.; Mylswamy, S.; Chan, T. S.; Liu, R. S.; Hannoyer, B.; Jean, M.; Chen, C. H.; Huang, S. M.; Le, J. F.; Wang, G. X. Solid State Commun. 2004, 132, 455.
    11 Haas, O.; Deb, A.; Cairns, E. J.; Wokaun, A. J. Electrochem. Soc. 2005, 152, A191.
    12 Resslert, T. J. Synchrotron Rad. 1998, 5, 118.
    13 A. Ankudinov, B. Ravel, J.J. Rehr, Feff8 (21 May, 2002).
    14 Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144.
    15 Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun. 2004, 132, 181.
    16 Shi, S.Q.; Chen, L. Q.; Huang, X. J. Phys. Rev. B 2003, 68, 195108
    17 Laks, D.B.; Van de Walle, C.G.; Neumark, G.F.; Pantelides, S.T. Phys. Rev. Lett. 1991, 66, 648.
    18 Zhang, S. B.; Northrup, J.E.; Phys. Rev. Lett. 1991, 67, 2339.
    19 Deb, A.; Bergmann, U.; Cairns, E. J.; Cramer, S. P.; J. Phys. Chem. B 2004, 108, 7046.
    20 G. Kresse and J. Hanfner, Phys. Rev. B, 47, 558(1993).
    21 G. Kresse and J. Hanfner, Phys. Rev. B, 49, 14251(1994).
    22 G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15(1996).
    23 G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169(1996).
    24 G.K.H. Madsen, P. Blaha, K. Schwarz et al., Phys. Rev. B 64 (2001) 195134.
    25 G. Kresse and J. Furthmuller, VASP the GUIDE, http://cms.mpi.univie.ac.at
    26 John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
    27 Blochl P E, Phys. Rev. B, 50, (1994) 17953-17979.
    28 Zaghib, K.; Mauger, A.; Goodenough, J.B.; Gendron, F.; Julien, C.M. Chem. Mater. 2007, 19, 3740.
    29 Fang, Z.; Terakura, K.; and Kanamori, J.; Physical Review B, 2001, 63, 180407(R).
    30 Tandon, S.P.; Gupta, J.P.; Physica Status Solidi 1970, 38, 363.
    1 C. Delacourt, P. Poizot, J.-M. Tarascon and C. Masquelier, Nat. Mater., 4, 254 (2005).
    2 Gibot, P.; Montse, C.-C.; Laffont, L.; Masquelier, C. Nat. Mater. 2008, 7, 741.
    3 Yamada A, Koizumi H, Nishimura SI, et al. Nat. Mater., 2006, 5 , 357-360.
    4 J. L. Dodd, I. Halevy, and B. Fultz, J. Phys. Chem. C, Vol. 111, No. 4, 2007,1563-1566.
    5 Yang, S F; Whittingham, M S. Electrochem. Commun. 3 (2001) 505-508.
    6 B. Ellis, L. K. Perry, D. H. Ryan, and L. F. Nazar, J. AM. CHEM. SOC. 2006, 128, 11416-11422.
    7 T. Maxish, G. Ceder; Phys. Rev. B 73, 174112 (2006).
    8 Meethong, N.; Shadow, H.-Y. S; Speakman, S. A.; Carter, W. C.; Chiang, Y. M. Adv. Funct. Mater. 2007, 17, 1115-1123.
    1 B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar, Nat. Mater. 6, 749(2007) .
    2 C. Delacourt, P. Poizot, J.-M. Tarascon and C. Masquelier, Nat. Mater., 4, 254 (2005).
    3 T. Maxisch, G. Ceder, Phys. Rev. B 73, 174112, (2006).
    4 F.Zhou, C. A. Marianetti, M. Cococcioni, D. Morgan, G. Ceder, Phys. Rev. B 69, 201101(R) , (2004).
    5 A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Electrochem. Solid-State lett. 8, A409 (2005).
    6 Y. Song, P. Y. Zavalij, N. A. Chernova, M. S. Whittingham. Chem. Mater. 2005, 17, 1139-1147.
    7 Lindberg, M. L.; Pecora, M. Am. Mineral. 1955, 40, 952.
    8 Lindberg, M. L.; Christ, C. L. Acta Crystallogr. 1959, 12, 695.
    9 Redhammer, G. J.; Tippelt, G.; Roth, G.; Lottermoser, W.; Amthauer, G. Phys. Chem. Miner. 2000, 27, 419.
    10 Moore, P. B. Science 1969, 164, 1063.
    11 Moore, P. B. Am. Mineral. 1970, 55, 135.
    12 Fanfani, L.; Zanazzi, P. F. Acta Crystallogr. 1967, 22, 173.
    13 Moore, P. B.; Kampf, A. R. Z. Kristall. 1992, 201, 263.
    14 Moore, P. B.; Kampf, A. R.; Irving, A. J. Am. Mineral. 1974, 59, 900.
    15 Jambor, J. L.; Dutrizac, J. E. Neues Jahrb. Miner., Monatsh. 1988, 159, 51.
    16 Gheith, M. A. Am. Mineral. 1953, 38, 612.
    17 Zaghib, K.; Mauger, A.; Goodenough, J. B.; Gendron, F.; Julien, C. M. Chem. Mater. 2007, 19, 3740.
    18 Wang, Z.; Sun, S.; Xia, D.; Chu, W.; Zhang, S. ; Wu, Z.; J. Phys. Chem. C, 2008, 112 (44), 17450-17455
    19 Meethong, N.; Shadow, H.-Y. S; Speakman, S. A.; Carter, W. C.; Chiang, Y. M. Adv. Funct. Mater. 2007, 17, 1115-1123.
    20 Gibot, P.; Montse, C.-C.; Laffont, L.; Masquelier, C. Nat. Mater. 2008
    21 Young, H R.; Kaoru D.; Kiyoshi, K.. J.Power. Source. 2004, 6, 1144. Michael, D; Sebastien, P; Richardson, T J. J.Power. Source. 2005, 144, 208.
    22 LIU, Su-qin; ZHANG, Jian-feng; HUANG, Ke-long and YU, Jin-gang J. Braz. Chem. Soc. 2008, v. 19, n. 6, pp. 1078-1083.
    23 Churikov A V , Ivanischev A V. Electrochem. Acta.2003 ,48(24):3677-3691
    24 Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun. 2004, 132, 181.
    25 Shi, S.Q.; Liu, L.J.; Ouyang, C.Y.; Wang, D.S.; Wang, Z.Y.; Chen, L.Q.; Huang, X.J. Phys. Rev. B 2003, 68,195108.
    26 Laks, D.B.; Van de Walle, C.G.; Neumark, G.F.; Pantelides, S.T. Phys. Rev. Lett. 1991, 66, 648.
    27 Zhang, S. B.; Northrup, J.E.; Phys. Rev. Lett. 1991, 67, 2339.
    28 Deb, A.; Bergmann, U.; Cairns, E. J.; Cramer, S. P.; J. Phys. Chem. B 2004, 108, 7046.
    29 John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
    30 Islam, M.S.; Driscoll, D.J.; Fisher, C.A.; Slater, P.R.; Chem. Mater. 2005, 17, 5085-5092.
    31 Islam, M.S.; Tolchard, J.R.; Slater, P. R. Chem. Commun. 2003, 1486.
    32 Tolchard, J. R.; Slater, P. R.; Islam, M. S.; J. Mater. Chem. 2003, 13, 1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700