新闻纸厂过程水中溶胶物质的表征及其稳定性和酶法控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化学机械浆和脱墨浆生产过程中会有一部分物质分散在过程水或浆水体系中,称之为DCS(Dissolved and Colloidal Substances,DCS)。随着白水系统封闭循环程度的提高,DCS物质会产生积累,对制浆造纸过程和产品质量产生不利的影响。为此,对马尾松化机浆和ONP脱墨浆两种浆水体系中DCS的化学组成、释放机制、稳定性等进行了详细的研究,并探讨了生物酶对DCS的处理效果及作用机理。
     论文首先对马尾松化机浆和ONP脱墨浆中的DCS物质进行了定性定量分析。结果发现,马尾松化机浆DCS中的脂肪酸主要有油酸、亚油酸等,树脂酸主要有脱氢枞酸、海松酸、枞酸以及脱氢枞酸氧化物等;一段磨后浆、漂前浆、过氧化氢漂后浆DCS中脂肪酸与树脂酸的比例分别约为1:2.8、1.2:1、1:3.8。脱墨浆DCS中树脂酸占脂肪酸和树脂酸总量(RFAs)的近90%,主要是脱氢枞酸和枞酸。
     DCS中糖类组分的分析结果表明,马尾松化机浆DCS中的碳水化物除了聚半乳糖葡萄糖甘露糖外,还有较多的聚阿拉伯糖葡萄糖醛酸木糖和聚阿拉伯糖半乳糖。经过过氧化氢漂白后,悬浮液DCS中各糖基的浓度均增大,释放出了更多的果胶质。脱墨浆DCS中糖基主要是4-O-甲基-葡萄糖醛酸和木糖。
     接着对两种浆水体系中DCS的释放规律进行了研究。结果发现,木片挤压机的挤压作用对抽出物组分几乎没有选择性,基本按照原木片中抽出物的比例释放出来。第一段磨浆机出口纸浆中树脂组分不是等比例地分散到水中,枞酸的释放量仅占总RFAs的0.74%。漂前浆DCS中总脂肪酸占总RFAa的比例高达50%。这说明此条件下脂肪酸更容易从纤维中分散到水相中。pH值对漂前浆中DCS的释放影响很大。pH值超过8以后,释放出了更多的树脂组分和果胶质,导致DCS浊度的迅速增大和DS部分CD值的增大。
     对脱墨浆生产线不同阶段浆料DCS的分析发现,样品中总脂肪酸与总树脂酸的比例基本不变,约为1:9,但漂后浆(4~#)中各树脂酸之间的比例变化较大,由于脱氢枞酸浓度的大幅降低导致了其它树脂酸所占比例的升高。废纸在碱性碎浆过程中产生了较多的半乳糖醛酸。
     选用有代表性的树脂及合成聚合物模型物,研究了各模型物在金属离子、阳离子聚合物、填料等存在条件下的稳定性以及可溶性聚糖对树脂模型物稳定性的影响。结果发现,加入无机电解质后靠静电斥力而稳定存在的胶体颗粒会失去稳定性而发生聚集。中性的甘油三酯(TG)乳液的残余浊度下降最快,稳定性最差。随着CPAM加入量的增加,体系的残余浊度下降,CPAM加入到一定量时,胶态乳液会完全失稳。当CPAM加入量继续增加,胶体颗粒会重新获得稳定性。PCC和滑石粉可以吸附模型物乳液中的胶体颗粒,导致体系失去稳定性。在pH为7.0时,模型物对滑石粉的稳定性顺序为脂肪酸(O)>树脂酸(R)>甘油三酯(TG),对PCC的稳定性顺序为O>TG>R。
     中性聚糖(GM)对三种模型物乳液均有一定的稳定作用。随着聚糖浓度的增大,R和O乳液的稳定性均增强,且可以达到不受金属离子影响的程度。GM的存在只是阻碍/减缓了CPAM与胶体颗粒的接触,而不能抵挡阳离子聚合物对胶体颗粒的进攻。GM与滑石粉之间有一定的亲合力,在一定程度上减少了滑石粉对模型物乳液胶体颗粒的直接吸附,有利于体系的稳定。
     在酸性聚糖(PGA)-X(X=R,O,TG)-Na~+体系中,PGA对三种树脂模型物乳液都有一定的稳定作用,它可以增加树脂液滴的表面电荷密度。其中,对R乳液的稳定效果最好,O乳液次之,TG最差。钙离子与PGA之间不是简单的电荷中和问题,它会与胶体颗粒表面的PGA的羧基结合生成不溶物,产生共聚沉现象;如果体系中的中性聚糖足以使模型物胶粒稳定,那么酸性聚糖对体系稳定性的影响就会限制在一定范围内。
     探讨了树脂组分之间的相互作用对体系稳定性的影响。结果发现,乳液的制备方法不同,R,O,TG三者在体系中的相互作用也不同。各自配成乳液再进行混合时(即方案1),在pH为5.0条件下,三者乳液不存在相互作用;但加入钙离子以后,三者在失稳的过程中有一定的相互作用。
     各模型物的无水乙醇溶液先按比例进行混合再制得相应的乳液时(即方案2),在pH 5.0和7.0条件下,混合物乳液的浊度都不与模型物的比例存在线性关系。在模型物O的比例较小时,R与TG之间存在较强的作用;而在R的比例较小时,O与TG之间有一定的作用,但不及R与TG之间的作用强。在TG浓度较低时,R与O之间也有相互作用,但结果使得体系的浊度低于理论值。组分之间的相互作用使得体系中的胶体颗粒不是单一组分,而是由模型物(R,O,TG)混和物形成的。
     在pH5.0时,各模型物的无水乙醇溶液先按比例进行混合再制得相应的乳液时(即方案2)制得的混合物乳液中加入钙离子以后,体系的残余浊度基本上与模型物的比例呈线性关系,进一步证实了多组分胶体颗粒模型。在pH 7.0时,模型物两两之间的作用对体系的稳定性是不利的,特别是在TG比例较高时,这种影响更为明显。
     最后探讨了脂肪酶、果胶酶和漆酶对模型物及DCS物质的处理效果及其作用机理。果胶酸(盐)裂解酶(PGL)降解果胶酸模型物较优的条件为pH 9.0,温度60℃,120min。PGL可以有效地降解脱墨浆和马尾松漂白化机浆DCS中的果胶酸,DCS的CD值下降了约40%。果胶酸类物质只有其平均聚合度超过6时,才会与阳离子聚合物发生较强的反应,降低其使用效率。
     碱性果胶酶PL可以有效地酶解果胶模型物,当用量为200 U时(果胶模型物为5mg),果胶模型物的CD值下降约80%。较优的处理条件为:温度70℃,pH 9.0,120min。PL可以有效地降低马尾松漂白浆DCS的CD值,对提高DCS的稳定性作用不大,但可以减缓其沉淀的速度。在漂白浆DCS中的果胶类物质主要以果胶酸的形式存在。
     脂肪酶LP1和LP2可以有效地水解甘油三酯,LP1较优的使用条件为:pH 7.0,温度70℃;LP1较优的使用条件为:pH 6.0,温度60℃。它们可以从甘油的三个位置上释出脂肪酸,最终得到甘油和游离脂肪酸。脂肪酸的存在会抑制脂肪酶的活力。
     漆酶在ABTS(2,2-连氮-二(3-乙基苯并噻唑-6-磺酸))或紫尿酸存在的条件下可以降解带有共轭双键的树脂酸和不饱和脂肪酸;在不加介体的情况下漆酶处理可以除去马尾松CTMP的DCS样品中的部分长叶松酸和枞酸。
During the production of chemi-mechanical pulp and deinked pulp,dissolved and colloidal substances(DCS) are released from the fibers into the process waters or pulp-water systems.The white water systems are increasingly closed,which results in the accumulation of DCS in the water systems.The increased amounts of DCS will affect the pulp and papermaking processes and the paper quality.Thus,the composition,release mechanisms and stability of DCS from Masson pine CTMP(chemi-thermo-mechanical pulp) and ONP (old newsprint) deinked pulps were studied in detail.Additionally,The efficiency and mechanisms of enzymes to treat DCS were investigated.
     Firstly,the components of DCS from Masson pine CTMP and ONP deinked pulps were analyzed qualitatively and quantitatively.Results showed that the RFAs(resin and fatty acids) in DCS of Masson pine CTMP were mainly composed of oleic acid,linoleic acid,DHA (dehydroabietic acid),pimaric acid,abietic acid and oxidized products of DHA.The ratio of fatty acids to resin acids in FR-DCS(DCS of the first refiner pulps),CTMP-DCS(DCS of unbleached CTMP),BCTMP-DCS(DCS of peroxide bleached pulps) were 1:2.8,1:2.1 and 1:3.8,respectively.About 90%of RFAs in DCS of deinked pulps were resin acids,among which DHA and abietic acid were the predominant ones.
     Based on the proportion of sugar units determined,the carbohydrates in DCS of Masson pine CTMP contained galactoglucomannans and considerable amounts of arabinolglucoxylans and arabinogalactans.More pectic substances were released during the peroxide bleaching.The main sugar units in DCS of deinked pulps were 4-O-methyl-glucuronic acid and xylose.
     Secondly,the release mechanisms of DCS from Masson pine pulps and deinked pulps were investigated.It was found that screw press could extrude the wood resins from chips non-selectively.RFAs in the first refiner pulps were not dispersed into the water phase proportionally,and much smaller amount of abietic acid was released.The amount of fatty acids in CTMP-DCS was increased up to 50%of total RFAs.This indicated that fatty acids were more easily released from fibers than resin acids in that condition.The release of DCS from unbleached CTMP fibers was strongly affected by the initial pH value of the suspension. As the pH value was above 8.0,much more wood resins and pectic substance were released, leading to the increase of turbidity and CD value of DCS.
     The ratio of fatty acids to resin acids in DCS of deinked pulps almost remained the same at 1:9.However,the proportion of resin acids components in No.4 sample(DCS of peroxide bleached pulp) was different from those of another three samples(DCS of unbleached pulps, 1~#-3~#),with DHA being a relative minor component,due to the large decrease of DHA concentration.
     Then representative models of wood resins,i.e.triglyceride(TG),fatty acid(O) and resin acids(R) and synthetic polymer(PA) were selected to study the stability of resins and synthetic polymer in DCS in the presence of simple electrolytes,cationic polymer,or fillers. Furthermore,effects of polysaccharides on the stability of model emulsions under the conditions mentioned right above were investigated in detail.Results showed that metal ions (sodium ions and calcium ions) could lead to the aggregation of model emulsions stabilized by electrostatic mechanism.The residual turbidity of TG emulsion decreased rapidly upon addition of simple electrolytes,which indicated that TG was much more easily destabilized than R and O emulsions.
     The residual turbidity of three model emulsions(R,O,TG) decreased with the increasing dosage of CPAM(cationic polyacrylamide).At a certain dosage of CAPM,the model emulsions would be completely aggregated.If more CPAM was added,the emulsion would re-stabilize.Fillers(PCC and talc) could adsorb the colloids in the model emulsions,resulting in the aggregation/flocculation of colloids.At pH 7.0,emulsion O had the best stability against PCC-induced aggregation,with emulsion R being the worst;as for talc,emulsion O were the best with TG being the worst.
     Neutral polysaccharide GM had a positive effect on the stability of three model emulsions in the presence of simple electrolytes,cationic polymer,or fillers.The stability of emulsion R and O could even be enhanced to a level that metal ions could not induce the aggregation of colloids.GM could slow down/baffle the direct contact of CPAM with colloids to a certain extent,but could not keep the colloids from being attacked by CPAM. There could be an affinity between GM and the added talc particles,which affected the absorption of colloids onto the surface of talc particles.This affinity was favorable for the stability of emulsions.
     Acidic polysaccharide PGA had positive effect on the stability of three model emulsions (R,O,TG) against sodium-induced aggregation by increasing the surface charge density of colloids.The efficiency of stabilizing emulsion R was the highest,with TG being the lowest. Interaction between calcium ions and PGA could barely be explained by a charge neutralization mechanism.Insoluble aggregates were formed between calcium ions and the carboxyl groups of PGA,leading to a co-aggregation of colloids and the aggregates.However, once the added GM was enough to wrap the colloids,the adverse effect of PGA would be limited within a certain range.
     Interactions between colloids of three model emulsions and their effects on the mixture stability were investigated.The interactions between colloids depended on the preparation procedure of mixture.There were no observable interactions between colloids at pH 5.0,if pre-emulsified models were mixed together(procedure 1) without addition of calcium ions. However,some interactions might exist when the colloids were de-stabilized upon addition of calcium ions into the mixture.
     The mixture(procedure 2) made of pre-mixed ethanol solution of model resins and distilled water was different from that of pre-emulsified models.At both pH 5.0 and 7.0,there existed considerable interactions between components(model R,O,TG) without addition of calcium ions.Two-component interactions(R-TG,O-TG,R-O) were relatively strong as the proportion of the third component(O,R,TG) was low.R-TG and O-TG interaction contributions to the total turbidity of mixture were positive,while that of R-O interaction was negative.The absolute contribution of R-TG interaction was the largest,with that of R-O being the smallest.The interactions between components resulted in the formation of two/three-component colloids,but not a single-component ones.
     At pH 5.0,the residual turbidity of mixtures of procedure 2 was almost linearly correlated to the proportion of three models upon addition of calcium ions,with the interaction contributions to the turbidity being negligible.This further confirmed the structure model of two/three-component colloids.At pH 7.0,two-component interactions had adverse effect on the mixture stability against calcium-induced aggregation,especially as the proportion of TG was high.
     Finally,the efficiency and mechanism of two lipases and two pectinases as well as to degrade or hydrolyze model substances and DCS from Masson pine BCTMP and deinked pulps were evaluated.The optimal conditions for pectate lyase(PGL) treatment were as follows:pH 9.0,60℃,120min.PGL could effectively degrade the pectic acid in the DCS of Masson pine BCTMP and bleached DIP,resulting in a decrease of about 40 percent in CD value.A minimum average DP(degree of polymerization) of 6 was required for pectic acid to interact strongly with cationic polymers and reduce the efficiency of the latter.Alkaline pectin lyase(PL) could efficiently degrade the pectin model.A decrease of 80 percent in CD value could be achieved at a dosage of 200 U(pectin model 5 mg).The optimal conditions for PL treatment were pH 9.0,60℃,120min.PL could effectively reduce the CD value of DCS from Masson pine BCTMP.Treatment of DCS from Masson pine BCTMP with PL could not prevent DCS from complete aggregation by calcium ions,although the rate of aggregation was lower.Pectic substances in DCS of BCTMP were mainly composed of unmethylated pectic acids.
     Two lipases(LP1 and LP2) could effectively hydrolyze triglyceride.The optimal conditions for LP1 and LP2 treatment were pH 7.0,70℃and pH 6.0,60℃,respectively.All of three ester bonds in triglyceride could be hydrolyzed by these two lipase,with the final product of glycerol and free fatty acid.The ability of lipases to hydrolyze triglyceride was strongly affected by fatty acids added.
     Laccase could degrade the conjugated resin acids and unsaturated fatty acids in model emulsions(R,O,TG) to some extend in the presence of ABTS(2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate)) or VIO(violuric acid).Palustric acid and abietic acid in DCS of Masson pine CTMP could be partially removed by lacaase treatment without addition of external mediator.
引文
[1] Sundberg K., Thornton J., Ekman R., et al. Interactions between simple electrolytes and dissolved and colloidal substances in mechanical pulp[J]. Nordic Pulp & Paper Research Journal. 1994,9(2): 125-128
    [2] Swerin A., Oedberg L., Waagberg L. Preparation and some properties of the colloidal pitch fraction from a thermomechanical pulp[J]. Nordic Pulp & Paper Research Journal. 1993, 8(3): 298-301, 337
    [3] Johnsen I.A., Lenes M., Magnusson L. Stabilization of colloidal wood resin by dissolved material from TMP and DIP[J]. Nordic Pulp and Paper Research Journal. 2004, 19(1): 22-28
    [4] Zhang X. Effects of white-water dissolved and colloidal fractions on paper properties and effects of various enzyme treatments on the removal of organic components[J]. Pulp and Paper Canada. 2000, 101(3): 59-62
    [5] Sjostrom J. Fractionation and characterization of organic substances dissolved in water during groundwood pulping of spruce[J]. Nordic Pulp & Paper Research Journal. 1990, 5(1): 9-15
    [6] Sjostrom J. Detrimental sustances in pulp and paper production-Approaches to chemical analysis of deposits and dissolved organic matter[D]. [Ph.D. thesis]:Abo Akadeni University, Finland, 1990
    [7] Holmbom B., Ekman R., Sjoholm R., et al. Chemical changes in peroxide bleaching of mechanical pulps[J]. Papier. 1991, 45(10A): V16-V22
    [8] Thornton J., Ekman R., Holmbom B., et al. Polysaccharides dissolved from Norway spruce in thermomechanical pulping and peroxide bleaching[J]. Journal of Wood Chemistry and Technology. 1994, 14(2): 159-175
    [9] Holmbom B. Analysis of papermaking process waters and effluents. in: Sjostrom E. and Allen R. Analytical Methods in Wood Chemistry, Pulping and Papermaking, Berlin: Springer; 1998.
    [10] Ekman R., Holmbom B. Analysis by gas chromatography of the wood extractives in pulp and water samples from mechanical pulping of spruce[J]. Nordic Pulp & Paper Research Journal. 1989,4(1): 16-24
    [11] Hsu N.C., Schroeck J.J., Errigo L. Identification of the origins of stickies in deinked pulp[J]. Tappi Journal. 1997, 80(4): 63
    [12] Castro C., Dorris G.M., Brouillette F., et al. Thermogravimetric determination of synthetic polymers in recycled pulp systems and deposits[J].Journal of Pulp and Paper Science.2003,29(5):167-172
    [13]Douek M.,Guo X.Y.,Ing J.An overview of the chemical nature of deposits stickies in mills using recycled fibre[C].1997 Recycling Symposium Tappi proceedings.1997:313-330
    [14]Holmbom B.Analysis of dissolved and colloidal substances generated in deinking[C].Wet End Chemistry and COST Workshop.Leatherhead,Surry:PIRA,1997:1-12
    [15]Stebbing D.Potential of fungal culture filtrate treatment to reduce extractive levels in newsprint mill white-water systems[J].Pulp and Paper Canada.1999,100(3):46-49
    [16]Sundberg K.E.,Sundberg A.C.,Thornton J.W.,et al.Pectic acids in the production of wood-containing paper[J].Tappi Journal.1998,81(7):131-136
    [17]Thornton J.W.Enzymatic degradation of polygalacturonic acids released from mechanical pulp during peroxide bleaching[J].Tappi Journal.1994,77(3):161-167
    [18]Gutierrez A.,del Rio J.C.,Jesus Martinez M.,et al.The biotechnological control of pitch in paper pulp manufacturing[J].Trends in Biotechnology.2001,19(9):340-348
    [19]Allen L.H.Mechanisms and control of pitch deposition in newsprint mills[J].Tappi.1980,63(2):81-87
    [20]Blazey M.A.,Grimsley S.A.,Chen G.C.Indicators for forecasting "pitch season"[J].Tappi Journal.2002,1(12):28-30
    [21]Wallis A.F.A.,Wearne R.H.Characterization of resin in radiata pine woods,bisulfite pulps and mill pitch samples[J].Appita Journal.1997,50(5):409-414
    [22]秦梦华,陈嘉翔,余家鸾.马尾松磨木浆树脂的脂肪酶生物控制[J].中国造纸学报.1997,12(B12):29-34
    [23]Vercoe D.,Stack K.,Blackman A.,et al.A study of the interactions leading to wood pitch deposition[C].59~(th) Appita Annual Conference and Exhibition,incorporating the 13th ISWFPC:International Symposium on Wood,Fibre and Pulping Chemistry,May 16-192005.Auckland,New Zealand:Appita Inc.,Carlton,3053,Australia,123-130
    [24]Gutierrez A.,del Rio J.C.,Gonzalez-Vila F.J.,et al.Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography[J].Journal of Chromatography A.1998,823(1-2):449-455
    [25]Clas S.D.,Koller E.,Allen L.H.Characterization of the effect of hemicellulose on the deposition of calcium soaps of tall oil using factorial design analysis[J].Journal of Pulp and Paper Science.1993,19(5):177-180
    [26]Fengel D.,Wegener G.Wood-Chemistry,Ultrastructure,Reactions[M].New York: Walter de Gruyter, 1989
    
    [27] Sundberg K., Thornton J., Holmbom B., et al. Effect of wood polysaccharides on the stability of colloidal wood resin[J]. Journal of Pulp and Paper Science. 1996, 22(7): J226-J230
    [28] Thornton J., Eckerman C., Ekman R. Effects of peroxide bleaching of spruce TMP on dissolved and colloidal organic substances[C]. 6~(th) Int Sypm Wood Pulping Chem Proc: Appita, 1991:571-577
    [29] Ekman R., Holmbom B. The wood extractives in alkaline peroxide bleaching of groundwood from Norway spruce[J]. Nordic Pulp & Paper Research Journal. 1989, 4(3): 188-191
    [30] Holmbom B., Aman A., Ekman R. Sorption of glucomannans and extractives in TMP waters onto pulp fibers[J]. 8~(th) International Symposium on Wood and Pulping Chemistry , Helsinki, June 6-9, 1995, 1: 597-604
    [31] Holmbom B., Ekman R., Sjoeholm R., et al. Chemical changes in peroxide bleaching of mechanical pulps[J]. Papier, 1991, 45(10A): 16-22
    [32] Lloyd J.A., Horne C.W. The determination of fiber charge and acidic groups of radiata pine pulps[J]. Nordic Pulp & Paper Research Journal. 1993, 8(1): 48-52, 67
    [33] Holmbom B., Orsa F. Methods for analysis of dissolved and colloidal wood component in papermaking process water and effluents[C]. 7~(th) Int Symp Wood Pulping Chem Proc, Beijing: CTAPI, 1993: 810-817
    [34] Zhang Y., Sjogren B., Engstrand P., et al. Determination of charged groups in mechanical pulp fibres and their influence on pulp properties[J]. Journal of Wood Chemistry and Technology. 1994, 14(1): 83-102
    [35] Holmbom B. Molecular interactions in wood fibre suspensions[C]. Proceedings of the 9~(th) International Symposium on Wood and Piping Chemistry, ISWPC. Part 1 (of 2), Jun 9-12 1997. Montreal, Can: ACM, New York, NY, USA, 1997: PL3-1-PL3-6
    [36] Thornton J., Ekman R., Holmbom B., et al. Effects of alkaline treatment of dissolved carbohydrates in suspensions of Norway spruce thermomechanical pulp[J]. Journal of Wood Chemistry and Technology. 1994, 14(2): 177-194
    [37] Holmbom B., Pranovich A.V. Fiber chemistry of alkaline treatment and peroxide bleaching of mechanical pulp[C]. Advances in Lignocellulosics Chemistry for Ecologically Friendly Pulping and Bleaching Technologies, 5~(th) European Workshop on Lignocellulosics and Pulp, University of Aveiro, Aveiro, Port., 1998: 559-562
    [38] Sundberg K., Lassus A., Holmback A., et al. Determination of fatty and resin acid calcium soaps[C]. Proceedings of the 9~(th) International Symposium on Wood and Pulping Chemistry, ISWPC. Part 2 (of 2), Jun 9-12 1997. Montreal, Can: Canadian Pulp & Paper Assoc, Montreal, Que, Can, 108-101
    [39] Sundberg K., Thornton J., Pettersson C., et al. Calcium-induced aggregation of dissolved and colloidal substances in mechanical pulp suspensions[J]. Journal of Pulp and Paper Science. 1994, 20(11): 317-322
    [40] Sundberg A., Ekman R., Holmbom B., et al. Interactions of cationic polymers with components in thermomechanical pulp suspensions [J]. Paperi ja Puu/Paper and Timber. 1994, 76(9): 593-598
    [41] Thornton J., Ekman R., Holmbom B., et al. Release of potential "anionic trash" in peroxide bleaching of mechanical pulp[J]. Pap Puu. 1993, 75(6): 426-431
    [42] Ekman R., Eckerman C, Holmbom B. Studies on the behavior of extractives in mechanical pulp suspensions[J]. Nordic Pulp & Paper Research Journal. 1990, 5(2): 96-103
    [43] Holmbom B. Molecular interactions in the wet end of papermaking[C]. Ottawa, Ont, Can: TAPPI Press, Norcross, GA, USA, 1996: 97-104
    [44] Ferguson L., Shaw R., DeBerry R., et al. Can deinked pulp dare to compete with virgin pulp?[C]. 6~(th) Research Forum on Recycling[C]. Magog:2001: 181-189
    [45] Olson C.R., Letscher M.K. Increasing the use of secondary fiber: an overview of deinking chemistry and stickies control[J]. Appita Journal. 1992, 45(2): 125-130
    [46] Blanco A., Negro C, Concepcion Monte M., et al. New system to predict deposits due to DCM destabilization in paper mills. The deposition rotor has some advantages, authors say[J]. Pulp and Paper Canada. 2000, 101(9): 40-42
    [47] LeRoux R., Armstrong J.R., Lin J.F., et al. Stickies control in newsprint application - review, mechanisms and novel approach[C]. Proceedings of the 81st Annual Meeting of Technical Section Canadian Pulp and Paper Association. Part A, Jan 31-Feb 3 1995[C]. Montreal, Que, Can: Canadian Pulp & Paper Assoc, Montreal, Que, Can, 243-252
    [48] Glittenberg D., Hemmes J.L., Bergh N.O. Cationic starches in systems with high levels of anionic trash[J]. Paper Technology. 1994, 35(7): 18-27
    [49] Hayes P.J., Kauffman T.F. The impact of hot-melt adhesives on the paper recycling process[J]. Tappi Journal. 1993, 76(11): 162-166
    [50] Allen L.H. Pitch control during the production of aspen kraft pulp[J]. Pulp & Paper Canada. 1988, 89(10): 87-91
    [51] Aston D.A., Fryer M.T., Lambert C.G. Improvement in newsprint sheet quality by effective pitch control[C]. 76~(th) Annual Meeting - Technical Section, Canadian Pulp and Paper Association (Preprints A), Jan 30-31 1990[C]. Montreal, Que, Can: Publ by Canadian Pulp & Paper Assoc, Montreal, Que, Can, 113-116
    [52] Biza P. Talc - A modern solution for pitch and stickies control[J]. Paper Technology. 2001, 42(3): 22-24
    [53] Garver T.M. Improving deinked pulp furnish using on-line analysis and control of dissolved substances[C]. Magog, Que.: Pulp and Paper Technical Association of Canada, 2001:135-138
    [54] Allen L.H. Deposition synergy between mechanical and deinked pulps[C]. TAPPI Technology Summit Proceedings, Atlanta, GA, United States: TAPPI Press, 2002: 485-496
    [55] Dechandt A., Watkins T., Pruszynski P. Total approach to deposit control on newsprint machine using TMP and DIP pulp mix from specialized fixation of individual pulps to retention[J]. Appita Journal. 2004, 57(1): 13-18
    [56] Lenes M., Andersen I., Reitan A.M. Formation of secondary stickies in DIP and TMP suspensions[C]. Magog, Que.: Pulp and Paper Technical Association of Canada, 2001: 107-110
    [57] Garver T.M., Xie T., Boegh K.H. Variation of white water composition in a TMP and DIP newsprint paper machine[J]. Tappi Journal. 1997, 80(8): 163-173
    [58] Rundlof M., Eriksson M., Strom H., et al. Effect of mannanase and lipase on the properties of colloidal wood extractives and their interaction with mechanical pulp fines[J]. Cellulose. 2002, 9(2): 127-137
    [59] Francis D.W., Ouchi M.D. Effect of dissolved and colloidal solids on newsprint properties[J]. Journal of Pulp and Paper Science. 2001, 27(9): 289-295
    [60] Mustranta A., Buchert J., Spetz P., et al. Treatment of mechanical pulp and process waters with lipase[J]. Nordic Pulp and Paper Research Journal. 2001, 16(2): 125-129
    [61] Wearing J.T., Barbe M.C., Ouchi M.D. Effect of white-water contamination on newsprint properties[J]. Journal of Pulp and Paper Science. 1985, 11(4): 113-121
    [62] Lindstrom T., Soremark C, Westman L. The influence on paper strength of dissolved and colloidal substances in the white water[J]. Svensk Papperstidning. 1977, 80(11): 341-345
    [63] Whipple W.L., Maltesh C. Adsorption of cationic flocculants to paper slurries[J]. Journal of Colloid and Interface Science. 2002, 256(1): 33-40
    [64] Yu X., Somasundaran P. Enhanced flocculation with double flocculants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993, 81: 17-23
    [65]Strom G.,Barla P.,Stenius P.The formation of polyelectrolyte complexes between pine xylan and cationic polymers[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects.1985,13(2-32-3):193-207
    [66]刘温霞,隆言泉,王启常.聚合物在纸浆纤维上的吸附特性[J].广东造纸.1999,5-6:61-64
    [67]何北海,文飚.清洁生产与纸机湿部化学系统的适应性:造纸生产水系统封闭与“零排放”[J].中国造纸.2000,19(6):47-52
    [68]Habets L.H.A.,Hooimeijer A.,Knelissen H.J.In-line biological process water treatment for zero discharge operation at recycled fibre board mills[J].Pulp & Paper Canada.1997,98(12):184-187
    [69]Leach J.M.,Thakore A.N.Toxic constituents in mechanical pulping effluents[J].Tappi.1976,59(2):129-132
    [70]Liss S.N.,Bicho P.A.,Saddler J.N.Microbiology and biodegradation of resin acids in pulp mill effluents:a mini-review[J].Canadian Journal of Microbiology.1997,43(7):599-611
    [71]Back E.L.,Allen L.H.Pitch Control,Wood Resin and Deresination[M].Atlanta:Tappi Press,2000
    [72]张开.高分子界面化学[M].北京:中国石化出版社,1997年第一版:111
    [73]Hiemenz P.C.,Rajagopalan R.Principles of Colloid and Surface Chemistry(3rd).New York:Marcel Dekker Inc.,1997
    [74]Allen L.H.Characterization of colloidal wood resin in mechanical pulps[J].Colloid &Polymer Science.1979,257:533-538
    [75]Sundberg K.,Pettersson C.,Eckerman C.,et al.Preparation and properties of a model dispersion of colloidal wood resin from Norway spruce[J].Journal of Pulp and Paper Science.1996,22(7):248-252
    [76]Sundberg K.,Thornton J.,Holmbom B.,et al.Effects of wood polysaccharides on the stability of colloidal wood resin[J].8~(th) International Symposium on Wood and Pulping Chemistry,Helsinki,June 6-9,1995.1995,3:267-272
    [77]Pelton R.H.,Allen L.H.,Nugent H.M.A survey of potential retention aids for newsprint manufacture[C].65~(th) Annu.Meet.Can.Pulp Pap.Assoc.,Tech.Sect..1979:163-172
    [78]Bobacka V.,Eklund D.Influence of charge density of cationic starch on dissolved and colloidal material from peroxide bleached thermomechanical pulp[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,152(3):285-291
    [79]Nurmi M.,Byskata J.,Eklund D.On the interaction between cationic polyacrylamide and dissolved and colloidal substances in thermomechanical pulp[J].Paperi ja Puu/Paper and Timber.2004,86(2):109-112
    [80]Huo X.,Venditti R.A.,Chang H.M.Effect of cationic polymers,salts and fibres on the stability of model micro-stickies[J].Journal of Pulp and Paper Science.2001,27(6):207-212
    [81]Eklund D.,Lindstrom T.Grankulla.Paper chemistry-An introduction.:DT Paper Science Publications,1991
    [82]Hassler T.Pitch deposition in papermaking and the function of pitch-control agents[J].Tappi Journal.1988,71(6):195-201
    [83]Dorris G.M.,Douek M.,Allen L.H.Analysis of metal soaps in kraft mill brownstock pitch deposits[C].Montreal,Que,Can:Canadian Pulp & Paper Assoc,Montreal,Que,Can,1983:33-40
    [84]Douek M.,Allen L.H.Some aspects of pitch control with talc in unbleached kraft pulps[J].Journal of Pulp and Paper Science.1991,17(5):171-177
    [85]秦梦华.马尾松磨木浆和酸性亚硫酸盐浆的树脂及其控制[D].[博士论文]:华南理工大学,1996
    [86]王旭,詹怀宇,陈港,等.pH值对钙离子存在下树脂沉积的影响[J].华南理工大学学报:自然科学版.2004,32(2):10-13,36
    [87]Pelton R.H.,Allen L.H.,Nugent H.M.Survey of potential retention aids for newsprint manufacture[J].Pulp and Paper Canada.1980,81(1):54-56
    [88]Sundberg K.,Thornton J.,Holmbom B.,et al.Effects of wood polysaccharides on the stability of colloidal wood resin[J].Journal of Pulp and Paper Science.1996,22(7):226-230
    [89]Rogan K.R.Adsorption of oleic acid and triolein onto various minerals and surface treated minerals[J].Colloid and Polymer Science.1994,272(1):82-98
    [90]Willfor S.,Sundberg A.,Sihvonen A.-L.,et al.Interactions between fillers and dissolved and colloidal substances from TMP[J].Paperi ja Puu/Paper and Timber.2000,82(6):398-402
    [91]Hannuksela T.,Holmbom B.Stabilization of wood-resin emulsions by dissolved galactoglucomannans and galactomannans[J].Journal of Pulp and Paper Science.2004,30(6):159-164
    [92]Alvarado F.Extractives in Process Waters from Newsprint Papermaking(TMP)[D]. [Ph.D. thesis] :Royal Institute of Technology, 1995
    [93] Yokoyama A., Srinivasan K.R., Fogler H.S. Stabilization mechanism of colloidal suspensions by gum tragacanth: The influence of pH on stability[J]. Journal of Colloid and Interface Science. 1988, 126(1): 141-149
    [94] Garnier C., Axelos M.A.V., Thibault J.-F. Phase diagrams of pectin-calcium systems: influence of pH, ionic strength, and temperature on the gelation of pectins with different degrees of methylation[J]. Carbohydrate Research. 1993, 240: 219-232
    [95] Parmentier C.J. Electron microscopic observation of pitch problems associated with closed water systems[J]. Tappi. 1973, 56(10): 80-83
    [96] Allen L.H. Characterization of colloidal wood resin in newsprint pulps[J]. Colloid & Polymer Science. 1979, 257(5): 533-538
    [97] Stack K., Stevens E., Richardson D., et al. Factors affecting the deposition of wood resin[C]. 54~(th) Appita Annual Conference, Apr 3-Apr 6 2000. Melbourne, Aust: Appita Inc, Carlton, Australia, 567-570
    [98] Richardson D.E., Parsons T., Bosch J., et al. Factors affecting the formation and control of pitch deposits in newsprint manufacture from mechanical pulp and recycled fibre[C]. Pro. 50~(th) Appita Ann. Gen. Conf.[C]:1996: 499-506
    [99] Stack K.R., Stevens E.A., Richardson D.E., et al. Factors affecting the deposition of pitch in process waters and model dispersions[C]. Proceedings of the 52nd Appita Annual General Conference. Part 1 (of 2). Brisbane, Australia: Appita Inc, Carlton, Australia, 1998, 59-66
    [100] Vercoe D., Stack K., Blackman A., et al. A multicomponent insight into the interactions leading to wood pitch deposition[J]. Appita Journal. 2005, 58(3): 208-213
    [101] Vercoe D., Stack K., Blackman A., et al. An Innovative Approach Characterising the Interactions Leading to Pitch Deposition[J]. Journal of Wood Chemistry and Technology. 2004,24(2): 115-137
    [102] Qin M., Hannuksela T., Holmbom B. Physico-chemical characterisation of TMP resin and related model mixtures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003, 221(1-3): 243-254
    [103] Suckling I.D., Hua H.L., Uprichard J.M. Factors affecting resin removal from radiata pine mechanical pulps[J]. Appita Journal. 1990, 43(3): 217-221
    [104] Allen L.H. Importance of pH in controlling metal-soap deposition[J]. Tappi Journal. 1988, 71(1): 61-64
    [105] Back E.L. Resin in suspension and mechanism of its deposition. in: Back E.L. and Allen L.H., editors. Pitch control, wood resin and deresination, TAPPI Press; 2000.
    [106] Sundberg A., Bertaud F., Holmbom B. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins[J]. Carbohydrate Polymers. 2002, 48(3): 319-324
    [107] Sundberg A., Sundberg K., Lillandt C, et al. Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography[J]. Nordic Pulp & Paper Research Journal. 1996, 11(4): 216
    [108] Tenkanen M., Hausalo T., Siika-aho M, et al. Use of enzymes in combination with anion exchange chromatography in the analysis of carbohydrate composition of pulps[C]. Proc 8~(th) Int Symp Wood Pulp Chem. Helsinki, Finland: 1995: 189-194
    [109] Sullivan J., Douek M. Determination of carbohydrates in wood, pulp and process liquor samples by high performance anion-exchange chromatography with pulsed amperometric detection[J]. Journal of chromatography A. 1994, 671: 339-350
    [110] Kleen M., Lindstroem K. Polysaccharides and lignins in newsprint process waters studied by pyrolysis-gas chromatography/mass Spectrometry [J]. Nordic Pulp & Paper Research Journal. 1994,9(2): 111-119
    [111] Sjoestroem J., Reunanen M. Characterization of lignin and carbohydrates dissolved in groundwood pulping by pyrolysis-gas chromatography/mass Spectrometry [J]. Journal of Analytical and Applied Pyrolysis. 1990, 17(4): 305
    [112] McMahon D.H. Analysis of low levels of fatty and resin acids in kraft mill process streams[J]. Tappi. 1980, 63(9): 101-103
    [113] Orsa F., Holmbom B. Convenient method for the determination of wood extractives in papermaking process waters and effluents[J]. Journal of Pulp and Paper Science. 1994, 20(12): 361-366
    [114] Sweeney K.M. Solid-phase extraction techniques in the pulp and paper industry[J]. Tappi Journal. 1988, 71(1): 137-140
    [115] Chen T., Wang Z., Zhou Y., et al. Using solid-phase extraction to assess why aspen causes more pitch problems that softwoods in kraft pulping[J]. Tappi Journal. 1995, 78(10): 143
    [116] Holmbom B. Molecular interactions in the wet end of papermaking[C]. Proceedings of the 1996 International Paper and Coating Chemistry Symposium, Jun 11-13 1996. Ottawa, Ont, Can: TAPPI Press, Norcross, GA, USA, 97-104
    [117] Dunlop-Jones N., Allen L.H. Rapid method for the qualitative analysis of plastic and 'sticky' contaminants by pyrolysis-gas chromatography [J]. Tappi Journal. 1988, 71(2): 109-113
    [118] Sjostrom J., Holmbom B. Size-exclusion chromatography of deposits in pulp and paper mills[J]. Journal of Chromatography. 1987, 411: 363-370
    [119] Wilhelm D.K., Makris S.P., Banerjee S. Signature of recalcitrant stickies in recycled newsprint mills[J]. Tappi Journal. 1999, 82(12): 63-66
    [120] Allen L.H., Douek M. Effectiveness of talc for pitch control in kraft pulp manufacture [J]. Journal of Pulp and Paper Science. 1993, 19(3): 131-136
    [121] Allen L.H. Pitch particle concentration: an important parameter in pitch problems[J]. Transactions of the Technical Section (Canadian Pulp and Paper Association). Montreal. 1977, 3(2): TR32-TR40
    
    [122] Glazer J.A. Overview of deposit control[J]. Tappi Journal. 1991, 74(7): 72-74
    [123] Caulkins D., Wildman J. Changes in paper process causing problems in controlling deposits[J]. Pulp and Paper. 1988, 62(6): 89-93
    [124] Fogarty T.J. Cost-effective common sense approach to stickies control [J]. Tappi Journal. 1993,76(3): 161-166
    [125] Shetty C.S., Greer C.S., Laubach G.D. Likely mechanism for pitch deposition control[J]. Tappi Journal. 1994, 77(10): 91-96
    [126] Sundberg A., Ekman R., Holmbom B., et al. Interactions between dissolved and colloidal substances and a cationic fixing agent in mechanical pulp suspensions[J]. Nordic Pulp & Paper Research Journal. 1993, 8(1): 226-231
    [127] Gill R.I.S. Chemical control of deposits - scopes and limitations[J]. Paper Technology. 1996, 37(6): 23-31
    [128] Wagberg L., Inger.Ang.sell. The action of cationic polymers in the fixation of dissolved and colloidal substances. Part 2[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects. 1995, 104(2/3): 169-184
    [129] Nurmi M., Westerholm M., Eklund D. Factors influencing flocculation of dissolved and colloidal substances in a thermornechanical pulp water[J]. Journal of Pulp and Paper Science. 2004, 30(2): 41-44
    [130] Fujita Y., Awaji H., Taneda H., et al. Recent advances in enzymatic pitch control[J]. Tappi Journal. 1992,75(4): 117-122
    [131] Kallioinen A., Vaari A., Ratto M., et al. Effects of bacterial treatments on wood extractives[J]. Journal of Biotechnology. 2003, 103(1): 67-76
    [132] Buchert J., Kayhko J., Spetz P., et al. Enzymatic control of pitch during mechanical pulping[C]. Proc. 27~(th) EUCEPA Conf., CTP. Grenoble: 1999: 191-194
    [133] Chen S., Lin Y., Zhang Y, et al. Enzymatic pitch control at Nanping Paper Mill[J]. Tappi Journal. 2001, 84(4): 44-47
    [134] Shimoto H. Enzymatic pitch control of mechanical pulp production process[J]. Kami Pa Gikyoshi/Japan Tappi Journal. 1999, 53(9): 45-50
    [135] Gutierrez A., del Rio J.C., Ibarra D., et al. Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp[J]. Environmental Science & Technology. 2006, 40(10): 3416-3422
    [136] Fitzhenry J.W., Hoekstra P.M., Glover D. Enzymatic Stickies Control in MOW, OCC, and ONP Furnishes[C]. Proceedings of the 2000 TAPPI Pulping/Process and Product Quality Process, Nov 5-8 2000. Boston, MA, United States: TAPPI Press, 985-988
    [137] Fitzhenry J.W., Hoekstra P.M., Glover D. Enzymatic Stickies Control in MOW, OCC, and ONP Furnishes[C]. TAPPI Pulping Conference, Boston, MA, United States: TAPPI Press, 2000: 985-988
    [138] Ma J.H., Jiang C. Enzyme applications in the pulp and paper industry[J]. Progress in Paper Recycling. 2002, 11(3): 36-47
    [139] Gutierrez A., Del Rio J.C., Martinez M.J., et al. Fungal degradation of lipophilic extractives in Eucalyptus globulus wood[J]. Applied and Environmental Microbiology. 1999,65(4): 1367-1371
    [140] Fleet C, Breuil C. High concentrations of fatty acids affect the lipase treatment of softwood thermomechanical pulps[J]. Applied Microbiology and Biotechnology. 1998, 49(5): 517-522
    [141] Gutierrez A., del Rio J.C., Rencoret J., et al. Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediator system[J]. Applied Microbiology and Biotechnology. 2006, 72(4): 845-851
    [142] Hata K., Matsukura M., Taneda H., et al. Mill-scale application of enzymatic pitch control during paper production[M]. Enzymes for Pulp and Paper Processing by Jeffries TW and Viikari L, ACS Symposium Series, Washington DC; 1996
    [143] Blanco A., Negro C., Borch K., et al. Pitch control in thermomechanical pulping and papermaking by enzymatic treatments[J]. Appita Journal. 2005, 58(5): 358-361
    [144] Wang X.H., Jiang C. Practical experience with enzymatic pitch control in mechanical pulping processes[C]. International Mechanical Pulping Conference, Jun 2-5 2003. Quebec City, Que., Canada: Pulp and Paper Technical Association of Canada, Montreal, Quebec, H3C 3X6, Canada, 341-345
    [145] Johanna B., Tenkanen M., Viikari L., Enzymatic modification of the dissolved and colloidal substance, in Wet End Chemistry Conference and COST Workshop, 1997: Gatwick, UK. p. P8.
    [146] Buchert J., Mustranta A., Tamminen T., et al. Modification of spruce lignans with Trametes hirsuta laccase [J]. Holzforschung. 2002, 56(6): 579-584
    [147] Mustranta A., Fagernas L., Viikari L. Effects of lipases on birch extractives[J]. Tappi Journal. 1995,78(2): 140-146
    [148] Zhang X., Stebbing D.W., Saddler J.N., et al. Enzyme treatments of the dissolved and colloidal substances present in mill white water and the effects on the resulting paper properties[J]. Journal of Wood Chemistry and Technology. 2000, 20(3): 321-335
    [149] Buchert J., Mustranta A., Spetz P., et al. Enzymatic control of wood extractives[C]. 54~(th) Appita Annual Conference, Apr 3-Apr 6 2000. Melbourne, Aust: Appita Inc, Carlton, Australia, 571-573
    [150] Fisher K., Kurt M. Adsorption of Lipase on the Fibers during Biological Pitch Control in Paper Industry[J]. Enzyme Microb. Technol. 1992, 14(6): 470-473
    [151] Tenkanen M., Kontkanen H., Isoniemi R., et al. Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa[J]. Applied Microbiology and Biotechnology. 2002, 60(1-2): 120-127
    [152] Calero-Rueda O., Gutierrez A., Del Rio J.C., et al. Hydrolysis of sterol esters by an esterase from Ophiostoma piceae: Application to pitch control in pulping of Eucalyptus globulus wood[J]. International Journal of Biotechnology. 2004, 6(4): 367-375
    [153] Karlsson S., Holmbom B., Spetz P., et al. Reactivity of Trametes laccases with fatty and resin acids[J]. Applied Microbiology and Biotechnology. 2001, 55(3): 317-320
    [154] Buchert J., Mustranta A., Spetz P. Modification of dissolved and colloidal substances by laccases during spruce TMP processing[C]. 217~(th) ACS National Meeting. Anaheim, Calif: 1999:
    [155] Kantelinen A., Jokinen O., Sarkki M.-L., et al. Effects of enzymes on the stability of colloidal pitch[C]. 8~(th) International Symposium on Wood and Pulping Chemistry, Helsinki, June 6-9, 1995, 1:605-612
    [156] Blanchette R.A., Farrell R.L., Burnes T.A., et al. Biological control of pitch in pulp and paper production by Ophiostoma piliferum[J]. Tappi Journal. 1992, 75(12): 102-106
    [157] Farrell R.L., Fritz A., Iverson S., et al. Cartapip: a biological product for control of pitch in pulp mills[C]. Proceedings of the 80~(th) Annual Meeting of Canadian Pulp and Paper Association, Feb 3-4 1994. Montreal, QUE, Can: Publ by Canadian Pulp & Paper Assoc, Montreal, Que, Can, 143
    [158] Martinez-Inigo M.J., Immerzeel P., Gutierrez A., et al. Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi[J]. Holzforschung. 1999, 53(3): 247-252
    [159] White-McDougall W.J., Blanchette R.A., Farrell R.L. Biological control of blue stain fungi on Populus tremuloides using selected Ophiostoma isolates[J]. Holzforschung. 1998, 52(3): 234-240
    [160] Behrendt C.J., Blanchette R.A. Biological control of blue stain in pulpwood: Mechanisms of control used by Phlebiopsis gigantea[J]. Holzforschung. 2001, 55(3): 238-245
    [161] Dorado J., Claassen F.W., Lenon G., et al. Degradation and detoxification of softwood extractives by sapstain fungi[J]. Bioresource Technology. 2000, 71(1): 13-20
    [162] Martinez M.J., Barrasa J.M., Gutierrez A., et al. Fungal screening for biological removal of extractives from Eucalyptus globulus wood[J]. Canadian Journal of Botany. 1999,77(10): 1513-1522
    [163] Rocheleau M.J., Sithole B.B., Allen L.H., et al. Fungal treatment of aspen for wood resin reduction: Effect on aged aspen wood chips at room temperature and at 5 degrees C[J]. Holzforschung. 1999, 53(1): 16-20
    [164] Forde Kohler L.J., Dinus R.J., Malcolm E.W., et al. Improving softwood mechanical pulp properties with ophiostoma piliferum[J]. Tappi Journal. 1997, 80(3): 135
    [165] Su Y.-C., Wang E.I., Farrell R., et al. Screening of fungi for removal of wood extractives[C]. 58~(th) Annual Appita Proceedings, Canberra, Australia: Appita Inc., Carlton, 3053, Australia, 2004: 27-34
    [166] Dorado J., van Beek T.A., Claassen F.W., et al. Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor[J]. Wood Science and Technology. 2001, 35(1-2): 117-125
    [167] del Rio J.C., Gutierrez A., Gonzalez-Vila F.J., et al. Characterization of organic deposits produced in the kraft pulping of Eucalyptus globulus wood[J]. Journal of Chromatography A. 1998, 823(1-2): 457-465
    [168] Gutierrez A., Del Rio J.C., Gonzalez-Vila F.J., et al. Variation in the composition of wood extractives from Eucalyptus globulus during seasoning[J]. Journal of Wood Chemistry and Technology. 1998, 18(4): 439-446
    [169] Zhang X.Z., Kang G., Ni Y., et al. Kinetics of carbohydrate degradation due to direct attack by ozone[C]. Proceedings of the 9~(th) International Symposium on Wood and Pulping Chemistry, ISWPC. Part 2 (of 2), Jun 9-12 1997. Montreal, Can: Canadian Pulp & Paper Assoc, Montreal, Que, Can, 1997, 131-131
    [170] Zhang X., Cai Y., Stebbings D., et al. Influence of accumulated dissolved and colloidal substances on paper properties and the potential of enzyme treatment for component removal[C]. 7~(th) International Conference on Biotechnology in the Pulp and Paper Industry- Poster Presentations Vol C. 1998: C151-C154
    [171] Zhang X., Stebbing D.W., Soong J.J., et al. The removal of detrimental dissolved and colloidal substance by a combined fungal and enzyme treatment system[C]. Denver, CO, United States: Technical Assoc. of the Pulp and Paper Industry Press, Norcross, GA 30092, United States, 2000: 233-236
    [172] Lindberg L.E., Holmbom B.R., Vaisanen O.M., et al. Degradation of paper mill water components in laboratory tests with pure cultures of bacteria[J]. Biodegradation. 2001, 12(3): 141-148
    [173] Freire C.S.R., Silvestre A.J.D., Pascoal Neto C, et al. Effect of oxygen, ozone and hydrogen peroxide bleaching stages on the contents and composition of extractives of Eucalyptus globulus kraft pulps[J]. Bioresource Technology. 2006, 97(3): 420-428
    [174] Sjostrom E. Wood Chemistry-Fundmentals and Applications[M]. San Diego: Academic Press, 1993
    [175] Holmbom B. Molecular interactions in wood fibre suspensions[C]. Proceedings of the 9~(th) International Symposium on Wood and Piping Chemistry, ISWPC. Part 1 (of 2), Jun 9-12 1997. Montreal, Can: ACM, New York, NY, USA, 1997: PL3-1-PL3-6
    [176] Borsa J., Racz I. Carboxymethylcellulose of fibrous character[J]. Cellulose Chemistry and Technology. 1995, 29(6): 657
    [177] Orsa F., Holmbom B., Haara M. Effects of grinder shower water temperature on the release of spruce wood components into water[J]. Paperi ja Puu/Paper and Timber. 1996, 78(10): 605
    [178] Orsaa F., Holmbom B., Thornton J. Dissolution and dispersion of spruce wood components into hot water[J]. Wood Science and Technology. 1997, 31(4): 279-290
    [179] Jarvinen R., Vahtila M., Mannstrom B., et al. Reduce environmental load in TMP[J]. Pulp and Paper Canada. 1980, 81(3): 39-43
    [180] Shaw D. Introduction to colloid and surface chemistry[M]. in. Introduction to Colloid and Surface Chemistry, London: Butterworth Heinemann; 1992.
    [181] Durand D., Bertrand C., Clark A.H., et al. Calcium-induced gelation of low methoxy pectin solutions-thermodynamic and rheological considerations [J]. Int. J. Biol. Macromol. 1990, 12: 14-18
    [182] Wagberg L., Odberg L. The action of cationic polyelectrolytes used for the fixation of dissolved and colloidal substances[J]. Nordic Pulp & Paper Research Journal. 1991, 6(3): 127-135
    [183] Back E.L. Physicochemical aspects of rosin problems[J]. Svensk Papperstidn. 1969, 72(6): 182-189
    [184] McLennan I.J., Pelton R. Some factors influencing the morphology of flexo ink-calcium soap particles[J]. Journal of Pulp and Paper Science. 1997, 23(6): 263-281
    [185] McLennan I.J.,Pelton R. Some factors influencing flexo ink calcium soap particle morphology in flotation deinking[C]. 3rd Research Forum on Recycling, Vancouver, BC, Can: Canadian Pulp & Paper Assoc, Montreal, Que, Can, 1995: 77-90
    [186] Miyanishi T., Kamijo Y., Ono H. Adsorption of anionic dissolved and colloidal substances onto calcium carbonate fillers[J]. Tappi Journal. 2000, 83(7): 72-73
    [187] Kamiti M., van de Ven T.G.M. Impinging jet studies of the kinetics of deposition and dissolution of calcium carbonate particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995, 100: 117-129
    [188] Kamiti M., Van De Ven T.G.M. Kinetics of deposition of calcium carbonate particles onto pulp fibres[J]. Journal of Pulp and Paper Science. 1994, 20(7): 199-205
    [189] Napper D.H.. Polymeric Stabilization of Colloidal Dispersions[M], London: Academic Press; 1983.
    [190] Sundari C.S., Balasubramanian D. Hydrophobic surfaces in saccharide chains[J]. Progress in Biophysics and Molecular Biology. 1997, 67(2-3): 183-216
    [191] Gaonkar A.G. Surface and interfacial activities and emulsion characteristics of some food hydrocolloids[J]. Food Hydrocolloids. 1991, 5(4): 329-337
    [192] Garti N., Reichman D. Surface properties and emulsification activity of galactomannans[J]. Food Hydrocolloids. 1994, 8(2): 155-173
    [193] Welkener U., Hassler T., McDermott M. The effect of furnish components on depositability of pitch and stickies[J]. Nordic Pulp & Paper Research Journal. 1993, 8(1): 223-225, 232
    [194] Dreisbach D. Strategy of mechanical pulp pitch control[C]. 1988 Pulping Conference, Oct 30-Nov 2 1988. New Orleans, LA, USA: Publ by TAPPI Press, Atlanta, GA, USA, 217-220
    [195] Dreisbach D.D., Michalopoulos D.L. Understanding the behavior of pitch in pulp and paper mills[J]. Tappi Journal. 1989,72(6): 129-134
    [196] Suurnakki A., Mustranta A., Siika-Aho M., et al. Biotechnical approaches for pitch removal[J]. Papiripar. 2001, 45(2): 51-55
    [197] Jones D.R. Enzymes: Using Mother Nature's tools to control man-made stickies[J]. Pulp and Paper Canada. 2005, 106(2): 23-25
    [198] Jones D.R., Fitzhenry J.W. Esterase-type enzymes offer recycled mills an alternative approach to stickies control[J]. Pulp and Paper. 2003, 77(2): 28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700