功能导向的电化学体系建立与碳基复合电极的设计和制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同电化学体系(电解、电池/电容器、电化学传感器)的发展,都离不开电极材料与电极结构的进步,依据不同电化学体系的特点和功能需求,对相应的电极材料和结构进行导向设计与研究具有重要的意义。本论文基于导电碳黑和纳米尺寸活性物质(电催化剂)构建碳基复合多孔电极,在包括电解KI和O_2合成KIO_3、电解Na_2CO_3-H_2O为NaOH和NaHCO_3、高速充放电电极材料以及葡萄糖无酶传感器等多个应用领域展开电解方式和电极材料方面的创新研究,以实现节能、高效为目标。具体研究内容如下:
     (1)绿色、节能和低成本的电解合成碘酸钾技术:已有的电解合成碘酸钾工艺槽电压超过2.0V,且必须使用昂贵的离子膜。本文在对KI电化学氧化及KIO_3电化学还原的电极过程、机理研究基础上,提出通过电解KI和O_2合成KIO_3的原子经济型节能新工艺。研究表明,在以纳米Ag为催化剂的气体扩散多孔氧阴极上,主要发生的是O_2的还原,而产物IO_3~-的还原所占比例不足1%。在单液流无膜电解槽中,在电流密度为150mA cm~(-2)时,槽电压仅为0.7~0.8V,电流效率达到96%,电耗仅为传统电解方法的35~40%。
     (2)面向碱溶碳分法的氧还原电解碳酸钠技术:碱溶碳分法是针对我国铝土矿提出的一种先进高效的氧化铝工艺,膜电解碳酸钠是打通整个工艺的关键环节,但是已有膜电解碳酸钠工艺的电解能耗偏高。本文提出阳极析氧-阴极氧还原的电解碳酸钠体系,以工作电位较高的氧阴极替代原有析氢阴极,从而缩小与阳极析氧电位差距,达到降低离子膜电解碳酸钠槽电压目的。首先通过旋转圆盘电极技术进行了Ag-Co_3O_4/C、Co_3O_4/C、Ag/C催化剂的氧还原反应动力学研究;对相应的气体扩散多孔氧阴极进行了电极性能表征与测试,结果表明Ag/C电极最佳;以Ag/C为阴极,RuO_2/Ti为阳极进行碳酸钠的电解实验,结果表明在电流密度为100mA cm~(-2)时,槽电压为1.52±0.09V,相对于传统电解方式(槽电压为2.53±0.11V)节电达到40%。
     (3)面向碱溶碳分法的氢阳极电解碳酸钠技术:在前述研究基础上提出更高效节电的氢阳极电解碳酸钠技术。论文对Pt/C、Pd/C氢气氧化催化剂及相应的三相气体扩散多孔电极进行了结构表征和性能测试,结果表明Pt-Pd/C氢阳极在碳酸钠电解体系中表现最优性能。小规模电解槽实验结果表明在100mA cm~(-2)的电流密度下槽电压为0.86V,相对于常规-析氢析氧电解和氧阴极电解(分别为2.53V和1.52V)有显著降低。氢阳极电解方式即使在200mA cm~(-2)的电流密度下槽压也仅为1.32V,表明所建立的氢阳极电解方式在提高时空产率和降低槽电压方面具有显著的优势。
     (4)高速充放电性能的Ni(OH)_2/C纳米复合多孔电极:采用新工艺制备了Nano-Ni(OH)_2/C多孔复合电极:将浸渍有硝酸镍的高比表面积超导电炭黑(BP1000)压制成型后热处理得到载有前驱体的复合碳片,再通过碱液处理使Ni(OH)_2原位沉淀而得。TEM、SEM、XRD表征结果表明,活性物质Ni(OH)_2没有阻隔开导电碳网络,而是均匀负载在导电网络碳基底上。上述结构保证了该电极的高速充放电性能,循环伏安法和计时电位法测试结果表明在电极活性物质负载密度约6mg cm~(-2)、电流密度为40mA cm~(-2)的充-放电测试中,其充、放电时间分别为272s和261s,单位面积电量分别达到10.9和10.4C cm~(-2);放电流密度达到1000mA cm~(-2)(放电倍率高达498C,质量放电电流密度163A g~(-1))时,容量保持率达到40mA cm~(-2)时的81.5%。
     (5)基于Ni(OH)_2NiOOH快速电化学转化的宽线性范围无酶葡萄糖传感器:通过原位沉积和电化学处理将Ni(OH)_2原位负载于纳米导电碳基底上制成Ni(OH)_2NPs/纳米复合电极,该电极可用作无酶葡萄糖传感器。研究表明提高介质中OH-浓度有助于提高Ni(OH)_2NiOOH转化速率以及对葡萄糖浓度的线性响应范围。采用逐个周期改变葡萄糖浓度的循环伏安法快速研究了该电极在不同电位区间内电催化葡萄糖氧化的控制步骤、灵敏度和线性相关性。在优化的测试条件下(0.28V vs. SCE,7M KOH),该电极对葡萄糖浓度的检测线性范围为1×10~(-6)–1.5×10~(-2)M,相关系数达到0.9999,检测灵敏度为1004.6μA mM~(-1)cm~(-2)。
The development of electrochemical systems (electrolysis,batteries/super capacitor, electrochemical sensor) is greatly depended onthe advance in electrode material and electrode structure. It is importantto carry functional directed design and investigation for these differentelectrochemical systems. Based on the composite electrodes withnano-sized electro-catalysts on conductive carbon, several energy-savingand high efficient electrolysis methods or electrode materials in followingfields were studied.1) Electrolytic synthesis KIO_3from KI and O_2.2)Electrolysis of Na_2CO_3-H_2O to produce NaOH and NaHCO_3.3) Ultrafastcharge and discharge rate of electrode materials for battery orsuper-capacitor.4) Non-enzymatic electrochemical sensor for glucosedetection. The main work and results of this dissertation are as follows:
     (1) Green, energy-saving and low-cost method of electrolyticsynthesis KIO_3: The traditional electrolytic synthesis of KIO_3is limitedby the high cell voltage and high cost of ion exchange membrane. Baseon the investigation on the mechanism and electrode process of electro-oxidation of I-and electro-reduction of IO_3~-, an atom economyand energy-saving process for synthesis KIO_3by electrolysis KI and O_2isproposed in this thesis. Oxygen reduction reaction is the mainelectrochemical reaction while the electrochemical reduction of IO_3~-isnegligible on Ag catalyst-Oxygen consumption cathode, so we adopt asimple membraneless and single liquid flow electrolytic cell in theproposed method. The cell voltage is only0.7~0.8V at the current densityof150mA cm~(-2), and the current efficiency achieves96%. Thecorresponding electricity consumption is only35~40%as compared totraditional method.
     (2) Energy-saving electrolysis of sodium carbonate with oxygenreduction cathode for alkaline digestion-carbonation precipitation processof alumina production:The method of alkaline digestion-carbonationprecipitation is an efficient and advance technology for production ofalumina. The membrane electrolysis of sodium carbonate is the keyprocess in this technology but its high electricity consumption hashindered its industrialization. This thesis investigated the electrolysis ofsodium carbonate with oxygen evolution on anode and oxygen reductionon cathode. By replacing the traditional hydrogen evolution cathode withoxygen reduction cathode that work at high potential, the potential gapbetween anode and cathode is reduced and the corresponding cell voltageof electrolysis sodium carbonate is decreased. The ORR catalyst including Ag-Co_3O_4/C, Co_3O_4/C and Ag/C was prepared by simplemethod that contains impregnation step and thermal decomposition step.The kinetic parameter of the ORR of the prepared catalysts wasinvestigated through rotation disk electrode (RDE) system. The oxygendiffusion cathode was prepared, characterized and then used forelectrolysis of sodium carbonate; The constant current electrolysisindicates that the cell voltage of Ag nanoparticles catalyzed ORCelectrolysis of Na_2CO_3is as low as1.52V and the correspondingelectrical energy consumption is saved up to39.8%as compared to HECelectrolysis at the same current density of100mA cm~(-2).
     (3) Energy-saving electrolysis of sodium carbonate with hydrogenoxidation anode: In order to decrease electricity consumption ofelectrolysis Na_2CO_3-H_2O to produce NaOH and NaHCO_3as much aspossible, the electrolysis method using hydrogen oxidation anode andhydrogen evolution cathode was established. The hydrogen oxidationelectro-catalyst and the hydrogen diffusion anode was prepared,characterized and then used for electrolysis of sodium carbonate with theoptimization of the experimental conditions. The cell voltage of andhydrogen anode electrolysis at100mA cm~(-2)is only0.86V, while thetraditional hydrogen evolution cathode-oxygen evolution anodeelectrolysis and oxygen reduction cathode electrolysis is2.53and1.52V,respectively. What’s more, the cell voltage of the hydrogen anode electrolysis is only1.32V at200mA cm~(-2). These results demonstrate thatthe hydrogen anode takes the obvious advantages of improving thespace-time yield and decreasing the electricity consumption.
     (4) The Ni(OH)_2/C nanocomposite electrode with ultrafastcharge-discharge rate:Conductive carbon black with high specific surfacearea was dipped with nickel nitrate solution and then rolled into electrodeplate directly. The in-situ precipitation in KOH solution was used toloading the Ni(OH)_2inside the porous electrode. The results of XRD,SEM and TEM indicated that the porous conductive carbon substrate wasnot separate by Ni(OH)_2and the Ni(OH)_2is evenly distributed onelectrode. The ultrafast charge-discharge properties of the preparednanocomposite electrode were investigated by cyclic voltammetry andchronopotentiometry. The results indicated that the charge-discharge timeis only272-261s at40mA cm~(-2)even when the active material loading isas high as6mg cm~(-2), and the corresponding electricity quantity exceed10C cm~(-2), respectively. The capacity achieves2688F g~(-1)even at dischargecurrent density as high as200mA cm~(-2)(32.6A g~(-1)). its capacity keeps81.5%at super high discharge current density of1000mA cm~(-2)(498C)as that of40mA cm~(-2). The prepared electrode shows excellent ultrafastcharge-discharge rate and high capacity.
     (5) Non-enzymatic glucose sensor with extended linearity based onfast conversion of Ni(OH)_2NiOOH and concentrated OH-: The Ni(OH)_2nanoparticles modified carbon (Ni(OH)_2/C) composite electrodeelectrode was prepared by in-situ precipitation of Ni(OH)_2on carbon andthen treated by cyclic voltammetry. Fast conversion of redox couple(Ni(OH)_2/NiOOH: NiII/NiIII) is established on the prepared electrodecoupling with concentrated COH-electrolyte. Continuous cyclicvoltammetry method with increasing the concentration of glucose on eachcycle step by step was employed to quickly determine linear range andappropriate potential for glucose detection in0.1,1and7M KOHelectrolyte. The amperometric measurement under the optimizedcondition (0.28V vs. SCE in7M KOH) indicates the Ni(OH)_2/Ccomposite electrode holds a sensitivity of1004.6A mM~(-1)cm~(-2)in thewide linear range of1×10~(-6)-1.5×10~(-2)M (R=0.9999). These performancesshow that the Ni(OH)_2/C nanocomposite electrode in concentrated KOHis a promising platform as glucose sensor.
引文
[1] Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries [J].Angewandte Chemie International Edition2008;47(16):2930-46.
    [2] Scrosati B. Nanomaterials: Paper powers battery breakthrough [J]. Nature Nanotechnology2007;2(10):598-99.
    [3] Buratto S. Fuel cells: Engineering the next generation [J]. Nature Nanotechnology2010;5(3):176.
    [4] Abelson PH. Applications of Fuel Cells [J]. Science1990;248(4962):1469.
    [5] Grotheer M, Alkire R, Varjian R, Srinivasan V, Weidner J. Industrial electrolysis andelectrochemical engineering [J]. Interface2006;15(1):52-54.
    [6] Millet P, Mbemba N, Grigoriev SA, Fateev VN, Aukauloo A, Etiévant C. Electrochemicalperformances of PEM water electrolysis cells and perspectives [J]. International Journal ofHydrogen Energy2011;36(6):4134-42.
    [7] Meng M, Huang YM. Electrodeposition of Polyhedral Copper Crystals on Porous Silicon [J].Solid State Phenomena2012;181:434-38.
    [8] Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE. Electrochemical Sensors andBiosensors [J]. Analytical Chemistry2011;84(2):685-707.
    [9] Pale ek E, Barto ík M. Electrochemistry of Nucleic Acids [J]. Chemical Reviews2012;112(6):3427-81.
    [10] Kear G, Barker B, Walsh F. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corrosion science2004;46(1):109-35.
    [11] Wu G, Feng K, Shanaghi A, et al. Effects of surface alloying on electrochemical corrosionbehavior of oxygen-plasma-modified biomedical magnesium alloy [J]. Surface and CoatingsTechnology2012;206(14):3186-95.
    [12] Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J. Aluminum Electrolysis[J]. The Chemistry of the Hall-Heroult Process. Aluminium-Verlag GmbH, Dusseldorf,Germany.1977,350.
    [13] Endoh E, Otouma H, Morimoto T. Advanced low hydrogen overvoltage cathode forchlor-alkali electrolysis cells [J]. International Journal of Hydrogen Energy1988;13(4):207-13.
    [14] Takenaka H, Torikai E, Kawami Y, Wakabayashi N. Solid polymer electrolyte waterelectrolysis [J]. International Journal of Hydrogen Energy1982;7(5):397-403.
    [15] Yu Z, Chen Y, Niu Y, et al. Efficient and Sustainable Production of Alumina by Electrolysis ofSodium Carbonate [J]. Angewandte Chemie International Edition2011;50(49):11719-23.
    [16] de Benoist B, Andersson M, Takkouche B, Egli I. Prevalence of iodine deficiency worldwide[J]. Lancet2003;362(9398):1859-59.
    [17] Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders [J]. The Lancet2008;372(9645):1251-62.
    [18] Arroyave G, Pineda O, Scrimshaw NS. The stability of potassium iodate in crude table salt [J].Bull World Health Organ1956;14(1):183-5.
    [19] Oshinowo T, Diosady L, Yusufali R, Laleye L. Stability of salt double-fortified with ferrousfumarate and potassium iodate or iodide under storage and distribution conditions in Kenya [J].Food Nutr Bull2004;25(3):264-70.
    [20] Chemists AoOA, Cunniff P. Official methods of analysis of the Association of OfficialAnalytical Chemists [R]. Association of Official Analytical Chemists,1995.
    [21] Wilderjans E, Lagrain B, Brijs K, Delcour JA. Impact of Potassium Bromate and PotassiumIodate in a Pound Cake System [J]. Journal of Agricultural and Food Chemistry2010;58(10):6465-71.
    [22] El-Shaboury SR, Mohamed FA, Saleh GA, Rageh AH. Kinetic spectrophotometricdetermination of certain cephalosporins using iodate/iodide mixture [J]. Natural Science2010;2(5):432-43.
    [23] Asakai T, Murayama M, Tanaka T. Precise coulometric titration of sodium thiosulfate anddevelopment of potassium iodate as a redox standard [J]. Talanta2007;73(2):346-51.
    [24] Patnaik P. Handbook of inorganic chemicals [M]. New York: McGraw-Hill,2003.
    [25] Schmitz G. Iodine oxidation by hydrogen peroxide in acidic solutions, Bray-Liebhafskyreaction and other related reactions [J]. Physical Chemistry Chemical Physics2010;12(25):6605-15.
    [26]杨振声.碘酸钾生产技术改进[J].化工设计2001(01):44-46+2.
    [27]张亚伟,王爱敏.食盐加碘剂-碘酸钾清洁生产工艺的探讨[J].中国井矿盐2008;No.198(02):13-14.
    [28] Liu Z, Huang W. Preparation of potassium iodate from chlorine oxidation and potassiumiodide in weak base medium, controlling pH of reacting system and temperature and separatingthe product with simple operation, high purity and safety [J]. Xilong Chem Ind Plant ShantouCity; Xilong Chem Ind Co Ltd,2006.
    [29] Hillmer HN, Albornoz JEM, De Arce WLP. Preparing potassium iodate from iodine andpotassium hydroxide by electrolysis of potassium iodide solutions [P]. Soc Quimica&MineraChile Sa,1997.
    [30] Ghosh PK, Gadde R, Susarla VRK, Gour PM, Veghela SS, Patel SN. Process for preparationof pure potassium iodate solution from iodine and potassium hydroxide for salt iodization [P].Council Sci&Ind Res India,2007.
    [31]柯敏,张丽娟,李致宝,等.电解法制备食品级碘酸钾[J].化工技术与开发2007;154(03):8-9.
    [32] Wei S, Mo B, Zhang L, et al. Method for preparing mannitol and potassium iodate byelectrolysis involves oxidizing molecular iodine to potassium iodate by anode reaction,deoxidizing hydrolyzed sucrose solution to mannitol and D-sorbitol by cathode reaction [P].Guangxi Chuang Autonomous Region Cas Gua; Guangxi Chem Ind Res Inst,2008.
    [33] Tang Y, Li Y, Yu Z, et al. Energy-saving synthesis of potassium iodate via electrolysis ofpotassium iodine and O2in a membraneless cell [J]. Green Chemistry2012;14(2):334-37.
    [34] Moussallem I, J rissen J, Kunz U, Pinnow S, Turek T. Chlor-alkali electrolysis with oxygendepolarized cathodes: history, present status and future prospects [J]. Journal of AppliedElectrochemistry2008;38(9):1177-94.
    [35] Savinell RF. Oxygen-reduction catalysts: Picking perovskites [J]. Nature Chemistry2011;3(7):501-02.
    [36] Steele B, Heinzel A. Materials for fuel-cell technologies [J]. Nature2001;414(6861):345-52.
    [37] Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Designprinciples for oxygen-reduction activity on perovskite oxide catalysts for fuel cells andmetal–air batteries [J]. Nature Chemistry2011;3(7):546-50.
    [38] Kiros Y, Pirjamali M, Bursell M. Oxygen reduction electrodes for electrolysis in chlor-alkalicells [J]. Electrochimica Acta2006;51(16):3346-50.
    [39] Faverjon F, Rakib M, Durand G. Electrochemical study of a hydrogen diffusionanode-membrane assembly for membrane electrolysis [J]. Electrochimica Acta2005;51(3):386-94.
    [40] Furuya N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalystsin chlor-alkali membrane cells [J]. Electrochimica Acta2000;45(25-26):4251-56.
    [41] Bidault F, Kucernak A. Cathode development for alkaline fuel cells based on a porous silvermembrane [J]. Journal of Power Sources2011;196(11):4950-56.
    [42] Moussallem I, Pinnow S, Wagner N, Turek T. Development of high-performance silver-basedgas-diffusion electrodes for chlor-alkali electrolysis with oxygen depolarized cathodes [J].Chemical Engineering and Processing: Process Intensification2011;52:125-31.
    [43] Sudoh M, Arai K, Izawa Y, et al. Evaluation of Ag-based gas-diffusion electrode fortwo-compartment cell used in novel chlor-alkali membrane process [J]. Electrochimica Acta2011;56(28):10575-81.
    [44] Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid room-temperature synthesis ofnanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J]. Nat Chem2011;3(1):79-84.
    [45] Bezerra CWB, Zhang L, Lee K, et al. A review of Fe–N/C and Co–N/C catalysts for theoxygen reduction reaction [J]. Electrochimica Acta2008;53(15):4937-51.
    [46] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells [J].Nature2006;443(7107):63-66.
    [47] Lefevre M, Proietti E, Jaouen F, Dodelet J. Iron-based catalysts with improved oxygenreduction activity in polymer electrolyte fuel cells [J]. Science2009;324(5923):71.
    [48] Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. Vertically Aligned BCN Nanotubesas Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A SynergeticEffect by Co-Doping with Boron and Nitrogen [J]. Angewandte Chemie International Edition2011;50(49):11756-60.
    [49] Stamenkovic V, Mun B, Arenz M, et al. Trends in electrocatalysis on extended and nanoscalePt-bimetallic alloy surfaces [J]. Nature Materials2007;6(3):241-47.
    [50] Stamenkovic VR, Fowler B, Mun BS, et al. Improved Oxygen Reduction Activity onPt3Ni(111) via Increased Surface Site Availability [J]. Science2007;315(5811):493-97.
    [51] Greeley J, Stephens I, Bondarenko A, et al. Alloys of platinum and early transition metals asoxygen reduction electrocatalysts [J]. Nature Chemistry2009;1(7):552-56.
    [52] Chen J, Lim B, Lee EP, Xia Y. Shape-controlled synthesis of platinum nanocrystals forcatalytic and electrocatalytic applications [J]. Nano Today2009;4(1):81-95.
    [53] Arenz M, Schmidt TJ, Wandelt K, Ross PN, Markovic NM. The Oxygen Reduction Reactionon Thin Palladium Films Supported on a Pt(111) Electrode [J]. The Journal of PhysicalChemistry B2003;107(36):9813-19.
    [54] Markovi N, Ross Jr P. Surface science studies of model fuel cell electrocatalysts [J]. SurfaceScience Reports2002;45(4):117-229.
    [55] Lim B, Jiang M, Camargo PHC, et al. Pd-Pt Bimetallic Nanodendrites with High Activity forOxygen Reduction [J]. Science2009;324(5932):1302-05.
    [56] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyedcore¨Cshell fuel cell catalysts [J]. Nature Chemistry2010;2(6):454-60.
    [57] Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Nanostructured Pt-alloy electrocatalysts for PEMfuel cell oxygen reduction reaction [J]. Chemical Society Reviews2010;39(6):2184-202.
    [58] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemicalsupercapacitors [J]. Chemical Society Reviews2012;41(2):797-828.
    [59] Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J. Highly dispersed RuO2nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitanceperformance [J]. The Journal of Physical Chemistry C2010;114(6):2448-51.
    [60] Hu C-C, Chang K-H, Lin M-C, Wu Y-T. Design and Tailoring of the Nanotubular ArrayedArchitecture of Hydrous RuO2for Next Generation Supercapacitors [J]. Nano letters2006;6(12):2690-95.
    [61] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction ofgraphene–MnO2composites as supercapacitor electrodes [J]. Carbon2010;48(13):3825-33.
    [62] Hsu Y-K, Chen Y-C, Lin Y-G, Chen L-C, Chen K-H. Reversible phase transformation ofMnO2nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J]. Chemical Communications2011;47(4):1252-54.
    [63] Subramanian V, Zhu H, Wei B. Nanostructured MnO2: Hydrothermal synthesis andelectrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources2006;159(1):361-64.
    [64] Zhu Z, Wei N, Liu H, He Z. Microwave-assisted hydrothermal synthesis of Ni(OH)2architectures and their in situ thermal convention to NiO [J]. Advanced Powder Technology2011;22(3):422-26.
    [65] Lu Q, Lattanzi MW, Chen Y, et al. Supercapacitor Electrodes with High-Energy and PowerDensities Prepared from Monolithic NiO/Ni Nanocomposites [J]. Angewandte Chemie2011;123(30):6979-82.
    [66] Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J. Preparation of mesoporous NiO with abimodal pore size distribution and application in electrochemical capacitors [J]. ElectrochimicaActa2010;55(22):6830-35.
    [67] Hosogai S, Tsutsumi H. Electrospun nickel oxide/polymer fibrous electrodes forelectrochemical capacitors and effect of heat treatment process on their performance [J].Journal of Power Sources2009;194(2):1213-17.
    [68] Lee JW, Ko JM, Kim J-D. Hierarchical Microspheres Based on α-Ni(OH)2NanosheetsIntercalated with Different Anions: Synthesis, Anion Exchange, and Effect of IntercalatedAnions on Electrochemical Capacitance [J]. The Journal of Physical Chemistry C2011;115(39):19445-54.
    [69] Sun Y, Pan J, Wan P, Liu X. The proton exchange chemistry of layered Ni(OH)2for two typesof high-capacity cathode materials in rechargeable batteries [J]. Materials Research Bulletin2009;44(1):227-30.v
    [70] Cheng H, Lu ZG. A Facile Method to Improve the High Rate Capability of Co3O4NanowireArray Electrodes [J]. Nano Research2010;3(12):895-901.
    [71] Lee JK, Kim GP, Kim KH, Song IK, Baeck SH. Fabrication of mesoporous cobalt oxide(Co3O4) film by electrochemical method for electrochemical capacitor [J]. J NanosciNanotechnol2010;10(5):3676-9.
    [72] Selvan RK, Perelshtein I, Perkas N, Gedanken A. Synthesis of Hexagonal-Shaped SnO2Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors [J].The Journal of Physical Chemistry C2008;112(6):1825-30.
    [73] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2nanocomposites and itsapplication in electrochemical supercapacitors [J]. Nanotechnology2009;20(45):455602.
    [74] Chen Z, Augustyn V, Wen J, et al. High‐Performance Supercapacitors Based on IntertwinedCNT/V2O5Nanowire Nanocomposites [J]. Advanced Materials2011;23(6):791-95.
    [75] Chen S, Zhu J, Wu X, Han Q, Wang X. Graphene Oxide MnO2Nanocomposites forSupercapacitors [J]. ACS Nano2010;4(5):2822-30.
    [76] Kim J-H, Lee KH, Overzet LJ, Lee GS. Synthesis and Electrochemical Properties ofSpin-Capable Carbon Nanotube Sheet/MnOxComposites for High-Performance EnergyStorage Devices [J]. Nano letters2011;11(7):2611-17.
    [77] Li G-R, Feng Z-P, Ou Y-N, Wu D, Fu R, Tong Y-X. Mesoporous MnO2/Carbon AerogelComposites as Promising Electrode Materials for High-Performance Supercapacitors [J].Langmuir2010;26(4):2209-13.
    [78] Fan Z, Chen J, Zhang B, Liu B, Zhong X, Kuang Y. High dispersion of γ-MnO2onwell-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond andRelated Materials2008;17(11):1943-48.
    [79] Wei W, Cui X, Chen W, Ivey DG. Manganese oxide-based materials as electrochemicalsupercapacitor electrodes [J]. Chemical Society Reviews2011;40(3):1697-721.
    [80] Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D. A Simple Template-Free Strategy to SynthesizeNanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and TheirElectrochemical Properties [J]. Advanced Functional Materials2008;18(10):1544-54.
    [81] Yang G-W, Xu C-L, Li H-L. Electrodeposited nickel hydroxide on nickel foam with ultrahighcapacitance [J]. Chemical Communications2008(48):6537-39.
    [82] Wu M-S, Wang M-J. Nickel oxide film with open macropores fabricated by surfactant-assistedanodic deposition for high capacitance supercapacitors [J]. Chemical Communications2010;46(37):6968-70.
    [83] Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-dischargebulk battery electrodes [J]. Nature Nanotechnology2011;6(5):277-81.
    [84] Wang H, Casalongue HS, Liang Y, Dai H. Ni(OH)2Nanoplates Grown on Graphene asAdvanced Electrochemical Pseudocapacitor Materials [J]. Journal of the American ChemicalSociety2010;132(21):7472-77.
    [85] Jiang J, Liu J, Zhou W, et al. CNT/Ni hybrid nanostructured arrays: synthesis and applicationas high-performance electrode materials for pseudocapacitors [J]. Energy&EnvironmentalScience2011;4(12):5000-07.
    [86] Grieshaber D, MacKenzie R, V r s J, Reimhult E. Electrochemical Biosensors-SensorPrinciples and Architectures [J]. Sensors2008;8(3):1400-58.
    [87] Wang J. Electrochemical Glucose Biosensors [J]. Chemical Reviews2008;108(2):814-25.
    [88] Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors [J]. AnalyticaChimica Acta2006;556(1):46-57.
    [89] Wang Z, Hu Y, Yang W, Zhou M, Hu X. Facile One-Step Microwave-Assisted Route towardsNi Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing [J].Sensors2012;12(4):4860-69.
    [90] Park S, Park S, Jeong R-A, et al. Nonenzymatic continuous glucose monitoring in humanwhole blood using electrified nanoporous Pt [J]. Biosensors and Bioelectronics2012;31(1):284-91.
    [91] Li C, Su Y, Lv X, et al. Controllable anchoring of gold nanoparticles to polypyrrole nanofibersby hydrogen bonding and their application in nonenzymatic glucose sensors [J]. Biosensorsand Bioelectronics2012;38(1):402-06.
    [92] Luo J, Jiang S, Zhang H, Jiang J, Liu X. A novel non-enzymatic glucose sensor based on Cunanoparticle modified graphene sheets electrode [J]. Analytica Chimica Acta2012;709:47-53.
    [93] Liu Y, Teng H, Hou H, You T. Nonenzymatic glucose sensor based on renewable electrospunNi nanoparticle-loaded carbon nanofiber paste electrode [J]. Biosensors and Bioelectronics2009;24(11):3329-34.
    [94] Wang J, Thomas DF, Chen A. Nonenzymatic Electrochemical Glucose Sensor Based onNanoporous PtPb Networks [J]. Analytical Chemistry2008;80(4):997-1004.
    [95] Gao H, Xiao F, Ching CB, Duan H. One-Step Electrochemical Synthesis of PtNiNanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection[J]. ACS Applied Materials&Interfaces2011;3(8):3049-57.
    [96] Xiao F, Zhao F, Mei D, Mo Z, Zeng B. Nonenzymatic glucose sensor based onultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbonnanotubes–ionic liquid composite film [J]. Biosensors and Bioelectronics2009;24(12):3481-86.
    [97] Li L-H, Zhang W-D, Ye J-S. Electrocatalytic Oxidation of Glucose at Carbon NanotubesSupported PtRu Nanoparticles and Its Detection [J]. Electroanalysis2008;20(20):2212-16.
    [98] Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS. CuNi Dendritic Material: Synthesis,Mechanism Discussion, and Application as Glucose Sensor [J]. Chemistry of Materials2007;19(17):4174-80.
    [99] Dong X-C, Xu H, Wang X-W, et al.3D Graphene–Cobalt Oxide Electrode forHigh-Performance Supercapacitor and Enzymeless Glucose Detection [J]. ACS Nano2012;6(4):3206-13.
    [100] Chen J, Zhang W-D, Ye J-S. Nonenzymatic electrochemical glucose sensor based onMnO2/MWNTs nanocomposite [J]. Electrochemistry Communications2008;10(9):1268-71.
    [101] El Khatib KM, Abdel Hameed RM. Development of Cu2O/Carbon Vulcan XC-72asnon-enzymatic sensor for glucose determination [J]. Biosensors and Bioelectronics2011;26(8):3542-48.
    [102] Quoc Dung N, Patil D, Jung H, Kim D. A high-performance nonenzymatic glucose sensormade of CuO-SWCNT nanocomposites [J]. Biosensors and Bioelectronics2013;42(0):280-86.
    [103] Wang G, Lu X, Zhai T, et al. Free-standing nickel oxide nanoflake arrays: synthesis andapplication for highly sensitive non-enzymatic glucose sensors [J]. Nanoscale2012;4(10):3123-27.
    [104] Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z. Assembly of Ni(OH)2nanoplates on reducedgraphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing [J].Journal of Materials Chemistry2011;21(42):16949-54.
    [105] Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemicalsensors for the detection of glucose and hydrogen peroxide with enhanced stability [J].Biosensors and Bioelectronics2013;45(0):206-12.
    [106] Jiang F, Wang S, Lin J, et al. Aligned SWCNT-copper oxide array as a nonenzymaticelectrochemical probe of glucose [J]. Electrochemistry Communications2011;13(4):363-65.
    [107] Wang X, Dong X, Wen Y, Li C, Xiong Q, Chen P. A graphene-cobalt oxide based needleelectrode for non-enzymatic glucose detection in micro-droplets [J]. ChemicalCommunications2012;48(52):6490-92.
    [108] Mu Y, Jia D, He Y, Miao Y, Wu H-L. Nano nickel oxide modified non-enzymatic glucosesensors with enhanced sensitivity through an electrochemical process strategy at high potential[J]. Biosensors and Bioelectronics2011;26(6):2948-52.
    [109] Wang G, Lu XH, Zhai T, et al. Free-Standing Nickel Oxide Nanoflake Arrays: Synthesis andApplication for Highly Sensitive Non-enzymatic Glucose Sensors [J]. Nanoscale2012;4(10):3123-27.
    [110] De Levie R. On porous electrodes in electrolyte solutions: I. Capacitance effects [J].Electrochimica Acta1963;8(10):751-80.
    [111] De Levie R. On porous electrodes in electrolyte solutions-IV [J]. Electrochimica Acta1964;9(9):1231-45.
    [112] Newman JS, Tobias CW. Theoretical analysis of current distribution in porous electrodes [J].Journal of the Electrochemical Society1962;109(12):1183-91.
    [113] Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide compositeelectrode materials for energy storage [J]. Nano Energy2012;1(1):107-31.
    [114] Zhao M-Q, Zhang Q, Huang J-Q, Wei F. Hierarchical Nanocomposites Derived fromNanocarbons and Layered Double Hydroxides-Properties, Synthesis, and Applications [J].Advanced Functional Materials2012;22(4):675-94.
    [115] Rolison DR, Long JW, Lytle JC, et al. Multifunctional3D nanoarchitectures for energy storageand conversion [J]. Chemical Society Reviews2009;38(1):226-52.
    [116] Carrette L, Friedrich K, Stimming U. Fuel cells: principles, types, fuels, and applications [J].Chemphyschem2000;1(4):162-93.
    [117] O'hayre R, Cha S, Colella W, Prinz F. Fuel cell fundamentals [J]. New York: John Wiley&Sons,2006.
    [118]查全性等.电极过程动力学导论[M].北京:科学出版社2002.360
    [119] Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes forelectrochemical supercapacitors [J]. Nat Nano2011;6(4):232-36.
    [120] Sattayasamitsathit S, O' Mahony AM, Xiao X, et al. Highly dispersed Pt nanoparticle-modified3D porous carbon: A metallized carbon electrode material [J]. ElectrochemistryCommunications2011;13(8):856-60.
    [121] Xiao X, Monta o GA, Edwards TL, et al. Lithographically defined3D nanoporousnonenzymatic glucose sensors [J]. Biosensors and Bioelectronics2011;26(8):3641-46.
    [122] Kang B, Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature2009;458(7235):190-93.
    [1] El-Shaboury SR, Mohamed FA, Saleh GA, Rageh AH. Kinetic spectrophotometricdetermination of certain cephalosporins using iodate/iodide mixture [J]. Natural Science2010;2(5):432-43.
    [2] Asakai T, Murayama M, Tanaka T. Precise coulometric titration of sodium thiosulfate anddevelopment of potassium iodate as a redox standard [J]. Talanta2007;73(2):346-51.
    [3] Singh S, Singh A. Kinetics of Ir (III)-catalyzed Oxidation of D-glucose by Potassium Iodate inAqueous Alkaline Medium [J]. Journal of Carbohydrate Chemistry2009;28(5):278-92.
    [4] Singh AK, Srivastava S, Srivastava J, Srivastava R, Singh P. Studies in kinetics andmechanism of oxidation of d-glucose and d-fructose by alkaline solution of potassium iodate inthe presence of Ru(III) as homogeneous catalyst [J]. Journal of Molecular Catalysis A:Chemical2007;278(1-2):72-81.
    [5]. Oshinowo T, Diosady L, Yusufali R, Laleye L. Stability of salt double-fortified with ferrousfumarate and potassium iodate or iodide under storage and distribution conditions in Kenya [J].Food Nutr Bull2004;25(3):264-70.
    [6] Arroyave G, Pineda O, Scrimshaw NS. The stability of potassium iodate in crude table salt [J].Bull World Health Organ1956;14(1):183-5.
    [7] Kelly F. Studies on the stability of iodine compounds in iodized salt [J]. Bulletin of the WorldHealth1953;9:217.
    [8]张亚伟,王爱敏.食盐加碘剂——碘酸钾清洁生产工艺的探讨[J].中国井矿盐2008;No.198(02):13-14.
    [9]杨振声.碘酸钾生产技术改进[J].化工设计2001(01):44-46.
    [10] Schmitz G. Iodine oxidation by hydrogen peroxide in acidic solutions, Bray-Liebhafskyreaction and other related reactions [J]. Phys. Chem. Chem. Phys.2010;12(25):6605-15.
    [11] Patnaik P. Handbook of inorganic chemicals [J]. McGraw-Hill New York,2003.
    [12]王为国,张所信,江龙法,曾真.过氧化氢氧化法合成碘酸钾[J].武汉化工学院学报2000(03):14-15.
    [13]柯敏,张丽娟,李致宝,等.电解法制备食品级碘酸钾[J].化工技术与开发2007;No.154(03):8-9.
    [14] Hillmer HN, Albornoz JEM, De Arce WLP. Preparing potassium iodate from iodine andpotassium hydroxide by electrolysis of potassium iodide solutions [J]. Soc Quimica&MineraChile Sa,1997.
    [15] Wei S, Mo B, Zhang L, et al. Method for preparing mannitol and potassium iodate byelectrolysis involves oxidizing molecular iodine to potassium iodate by anode reaction,deoxidizing hydrolyzed sucrose solution to mannitol and D-sorbitol by cathode reaction [P].Guangxi Chuang Autonomous Region Cas Gua; Guangxi Chem Ind Res Inst,2008.
    [16] Liu Z, Huang W. Preparation of potassium iodate from chlorine oxidation and potassiumiodide in weak base medium, controlling pH of reacting system and temperature and separatingthe product with simple operation, high purity and safety [P]. Xilong Chem Ind Plant ShantouCity; Xilong Chem Ind Co Ltd,2006.
    [17] De Souza RFM, Areias MCC, Bieber LW, Navarro M. Electrochemical allylation of aldehydesin a solvent-free cavity cell with a graphite powder cathode [J]. Green Chemistry2011;13(5):1118-20.
    [18] Zhang L, Niu D, Zhang K, Zhang G, Luo Y, Lu J. Electrochemical activation of CO2in ionicliquid (BMIMBF4): synthesis of organic carbonates under mild conditions [J]. GreenChemistry2008;10(2):202-06.
    [19] Nematollahi D, Rafiee M. Diversity in electrochemical oxidation of dihydroxybenzoic acids inthe presence of acetylacetone. A green method for synthesis of new benzofuran derivatives [J].Green Chem.2005;7(9):638-44.
    [20] Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Organicelectrosynthesis: a promising green methodology in organic chemistry [J]. Green Chemistry2010;12(12):2099-119.
    [21] Areias MCC, Navarro M, Bieber LW, et al. A novel electrosynthesis cell with a compressedgraphite powder cathode and minimal organic solvent content: Application to the Reformatskyreaction [J]. Electrochimica Acta2008;53(22):6477-83.
    [22] He P, Watts P, Marken F, Haswell SJ. Electrosynthesis of phenyl-2-propanone derivativesfrom benzyl bromides and acetic anhydride in an unsupported micro-flow cell electrolysisprocess [J]. Green Chemistry2007;9(1):20-22.
    [23]韩立敏.碘酸钾电解生产技术[J].无机盐工业1993(02):43.
    [24] Tang Y, Li Y, Yu Z, et al. Energy-saving synthesis of potassium iodate via electrolysis ofpotassium iodine and O2in a membraneless cell [J]. Green Chemistry2012;14(2):334-37.
    [25] GT.中华人民共和国国家标准《化学试剂标准滴定溶液的制备》[S],2002.
    [26] Newson JD, Riddiford AC. The Kinetics of the Iodine Redox Process at Platinum Electrodes[J]. Journal of The Electrochemical Society1961;108(7):699-706.
    [27] Grgur BN, Gvozdenovic MM, Stevanovic JS, Jugovic BZ, Trisovic LT. Electrochemicaloxidation of iodide in aqueous solution [J]. Chemical Engineering Journal2006;124(1-3):47-54.
    [28] Tang H, Kitani A, Shiotani M. Cyclic voltammetry of KI at polyaniline-filmed Pt electrodesPart I: Formation of polyaniline-iodine charge transfer complexes [J]. Journal of appliedelectrochemistry1996;26(1):36-44.
    [29] Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications [M]. WileyNew York,1980.
    [30] Kolthoff I, Jordan J. Voltammetry of Iodine and Iodide at Rotated Platinum Wire Electrodes[J]. Journal of the American Chemical Society1953;75(7):1571-75.
    [31] Beer H. Improvements in or relating to electrodes for electrolysis [J]. British Patent1969;1:10.
    [32] Iwakura C, Tanaka M, Nakamatsu S, Inoue H, Matsuoka M, Furukawa N. Electrochemicalproperties of Ni (Ni+RuO2) active cathodes for hydrogen evolution in chlor-alkali electrolysis[J]. Electrochimica Acta1995;40(8):977-82.
    [33] Cross M, Varhue W, Pelletier K, Stewart M. RuO2nanorod coated cathode for the electrolysisof water [J]. International journal of hydrogen energy2012;37(3):2166-72.
    [34] Antozzi A, Brown C, Calderara A. Novel DSA Anode for Electrowinning of Non FerrousMetals [J]. Electrometallurgy2012:35-40.
    [35] Vasudevan D, Vaghela S, Ramachandraiah G. Electrosynthesis of dimethylsulfone fromdimethylsulfoxide at a dimensionally stable anode [J]. Journal of applied electrochemistry2000;30(11):1299-302.
    [1] BAYEB K J. Process of Obtaining Alumina [P]. Google Patents,1888.
    [2] Yu Z, Chen Y, Niu Y, et al. Efficient and Sustainable Production of Alumina by Electrolysis ofSodium Carbonate [J]. Angewandte Chemie International Edition2011;50(49):11719-23.
    [3] Gontijo GS, Araújo ACBd, Prasad S, Vasconcelos LGS, Alves JJN, Brito RP. Improving theBayer Process productivity-An industrial case study [J]. Minerals Engineering2009;22(13):1130-36.
    [4] Dash B, Tripathy BC, Bhattacharya IN, Das SC, Mishra CR, Mishra BK. Precipitation ofboehmite in sodium aluminate liquor [J]. Hydrometallurgy2009;95(3-4):297-301.
    [5]. Li H, Addai-Mensah J, Thomas JC, Gerson AR. The crystallization mechanism of Al(OH)3from sodium aluminate solutions [J]. Journal of Crystal Growth2005;279(3-4):508-20.
    [6] Li M, Wu Y. Dynamic simulation of periodic attenuation in seeded precipitation of sodiumaluminate solution [J]. Hydrometallurgy2012;113-114(0):91-97.
    [7] Bidault F, Kucernak A. Cathode development for alkaline fuel cells based on a porous silvermembrane [J]. Journal of Power Sources2011;196(11):4950-56.
    [8] Moussallem I, J rissen J, Kunz U, Pinnow S, Turek T. Chlor-alkali electrolysis with oxygendepolarized cathodes: history, present status and future prospects [J]. Journal of AppliedElectrochemistry2008;38(9):1177-94.
    [9] Tang Y, Li Y, Yu Z, et al. Energy-saving synthesis of potassium iodate via electrolysis ofpotassium iodine and O2in a membraneless cell [J]. Green Chemistry2012;14(2):334-37.
    [10] Christensen PA, Hamnett A, Linares-Moya D. Oxygen reduction and fuel oxidation in alkalinesolution [J]. Phys Chem Chem Phys2011;13(12):5206-14.
    [11] Bidault F, Kucernak A. Cathode development for Alkaline Fuel Cells based on a Porous SilverMembrane [J]. Journal of Power Sources2011;196(11):4950-56.
    [12] Yang B, Lu Q, Wang Y, et al. Simple and low-cost preparation method for highly dispersedPtRu/C catalysts [J]. Chemistry of Materials2003;15(18):3552-57.
    [13] Tang Y, Li Y, Sun Y, et al. Energy-saving electrolysis of sodium carbonate with a silvernanoparticles/carbon oxygen reduction cathode [J]. Electrochemistry Communications2013;27(0):108-11.
    [14] Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications [M]. WileyNew York,1980.
    [15] Liang Y, Li Y, Wang H, et al. Co3O4nanocrystals on graphene as a synergistic catalyst foroxygen reduction reaction [J]. Nature Materials2011;10(10):780-86.
    [16]赵峰,余章龙,钮因健,潘军青,陈咏梅,万平玉.膜电解在碱溶碳分法氧化铝生产工艺中的应用[J].北京化工大学学报(自然科学版)2009(04):65-70.
    [17] Barbir F. PEM fuel cells: theory and practice [M]. Academic Press,2012.
    [18] N rskov JK, Rossmeisl J, Logadottir A, et al. Origin of the Overpotential for OxygenReduction at a Fuel-Cell Cathode [J]. The Journal of Physical Chemistry B2004;108(46):17886-92.
    [19] Nacef M, Affoune AM. Comparison between direct small molecular weight alcohols fuel cells’and hydrogen fuel cell’s parameters at low and high temperature [J]. Thermodynamic study.International Journal of Hydrogen Energy2011;36(6):4208-19.
    [1] Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells [J]. Nature2012;486(7401):43-51.
    [2] Stamenkovic V, Mun B, Arenz M, et al. Trends in electrocatalysis on extended and nanoscalePt-bimetallic alloy surfaces [J]. Nature Materials2007;6(3):241-47.
    [3] Proch S, Wirth M, White HS, Anderson SL. Strong Effects of Cluster Size and Air Exposureon Oxygen Reduction and Carbon Oxidation Electrocatalysis by Size-Selected Ptn (n≤11) onGlassy Carbon Electrodes [J]. Journal of the American Chemical Society2013;135(8):3073-86.
    [4] Meier JC, Galeano C, Katsounaros I, et al. Degradation Mechanisms of Pt/C Fuel CellCatalysts under Simulated Start–Stop Conditions [J]. ACS Catalysis2012;2(5):832-43.
    [5]. Wu J, Yuan XZ, Martin JJ, et al. A review of PEM fuel cell durability: Degradationmechanisms and mitigation strategies [J]. Journal of Power Sources2008;184(1):104-19.
    [6] Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel celldurability and degradation [J]. Chemical Reviews-Columbus2007;107(10):3904-51.
    [7] Taniguchi A, Akita T, Yasuda K, Miyazaki Y. Analysis of electrocatalyst degradation inPEMFC caused by cell reversal during fuel starvation [J]. Journal of Power Sources2004;130(1):42-49.
    [8] De Bruijn F, Dam V, Janssen G. Review: Durability and degradation issues of PEM fuel cellcomponents [J]. Fuel cells2008;8(1):3-22.
    [9] Stamenkovic VR, Fowler B, Mun BS, et al. Improved Oxygen Reduction Activity onPt3Ni(111) via Increased Surface Site Availability [J]. Science2007;315(5811):493-97.
    [10] Lim B, Jiang M, Camargo PHC, et al. Pd-Pt Bimetallic Nanodendrites with High Activity forOxygen Reduction [J]. Science2009;324(5932):1302-05.
    [11] Xu C, Liu Y, Wang J, Geng H, Qiu H. Fabrication of nanoporous Cu-Pt(Pd) core/shellstructure by galvanic replacement and its application in electrocatalysis [J]. ACS AppliedMaterials&Interfaces2011;3(12):4626-32.
    [12] Cochell T, Manthiram A. Pt@PdxCuy/C Core–Shell Electrocatalysts for Oxygen ReductionReaction in Fuel Cells [J]. Langmuir2011;28(2):1579-87.
    [13] Wang M-x, Liu Q, Sun H-f, et al. Investigation of carbon corrosion in polymer electrolyte fuelcells using steam etching [J]. Materials Chemistry and Physics2010;123(2-3):761-66.
    [14] Dicks AL. The role of carbon in fuel cells [J]. Journal of Power Sources2006;156(2):128-41.
    [15] Marini S, Salvi P, Nelli P, et al. Advanced alkaline water electrolysis [J]. Electrochimica Acta2012;82(0):384-91.
    [16] Poinsot V, CarpénéMA, Bouajila J, Gavard P, Feurer B, Couderc F. Recent advances in aminoacid analysis by capillary electrophoresis [J]. Electrophoresis2012;33(1):14-35.
    [17] Schmidt T, Paulus U, Gasteiger H, Behm R. The oxygen reduction reaction on a Pt/carbon fuelcell catalyst in the presence of chloride anions [J]. Journal of Electroanalytical Chemistry2001;508(1):41-47.
    [18] N rskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reductionat a fuel-cell cathode [J]. The Journal of Physical Chemistry B2004;108(46):17886-92.
    [19] Paulus U, Schmidt T, Gasteiger H, Behm R. Oxygen reduction on a high-surface areaPt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal ofElectroanalytical Chemistry2001;495(2):134-45.
    [20] Lin R-B, Shih S-M. Kinetic analysis of the hydrogen oxidation reaction at Nafion film coveredPt-black rotating disk electrodes [J]. Journal of the Chinese Institute of Chemical Engineers2008;39(5):475-81.
    [21] Mello RMQ, Ticianelli EA. Kinetic study of the hydrogen oxidation reaction on platinum andNafion covered platinum electrodes [J]. Electrochimica Acta1997;42(6):1031-39.
    [22] Neyerlin K, Gu W, Jorne J, Gasteiger HA. Study of the exchange current density for thehydrogen oxidation and evolution reactions [J]. Journal of the Electrochemical Society2007;154: B631.
    [23] Kiros Y, Schwartz S. Long-term hydrogen oxidation catalysts in alkaline fuel cells [J]. Journalof Power Sources2000;87(1-2):101-05.
    [24] Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B. Ru-Pt core–shell nanoparticles forpreferential oxidation of carbon monoxide in hydrogen [J]. Nature Materials2008;7(4):333-38.
    [25] Jambunathan K, Hillier AC. Scanning electrochemical microscopy of hydrogenelectro-oxidation: Part II. Coverage and potential dependence of platinum deactivation bycarbon monoxide [J]. Journal of Electroanalytical Chemistry2002;524-525(0):144-56.
    [26] García N, Climent V, Orts JM, Feliu JM, Aldaz A. Effect of pH and Alkaline Metal Cations onthe Voltammetry of Pt(111) Single Crystal Electrodes in Sulfuric Acid Solution [J].Chemphyschem2004;5(8):1221-27.
    [27] Kumar SMS, Hidyatai N, Herrero JS, Irusta S, Scott K. Efficient tuning of the Pt nano-particlemono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluationof hydrogen oxidation and oxygen reduction reactions [J]. International journal of hydrogenenergy2011;36(9):5453-65.
    [28] StrmcnikD, KodamaK, van der Vliet D, GreeleyJ, Stamenkovic VR, Markovi NM. The role ofnon-covalent interactions in electrocatalytic fuel-cell reactions on platinum [J]. Naturechemistry2009;1(6):466-72.
    [29] Genorio B, Strmcnik D, Subbaraman R, et al. Selective catalysts for the hydrogen oxidationand oxygen reduction reactions by patterning of platinum with calix[4]arene molecules [J].Nature Materials2010;9(12):998-1003.
    [30] Li W, Liang C, Zhou W, et al. Preparation and Characterization of Multiwalled CarbonNanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells [J]. TheJournal of Physical Chemistry B2003;107(26):6292-99.
    [31] Gabrielli C, Grand P, Lasia A, Perrot H. Investigation of Hydrogen Adsorption and Absorptionin Palladium Thin Films II. Cyclic Voltammetry [J]. Journal of the Electrochemical Society2004;151(11): A1937-A42.
    [1] Armand M, Tarascon JM. Building better batteries [J]. Nature2008;451(7179):652-57.
    [2] Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures [J].Chemical Reviews2004;104:4463-92.
    [3] Kumar RV, Sarakonsri T. A Review of Materials and Chemistry for Secondary Batteries [M].Wiley-VCH Verlag GmbH&Co. KGaA,2010.
    [4] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat Mater2008;7(11):845-54.
    [5] Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide compositeelectrode materials for energy storage [J]. Nano Energy2012;1(1):107-31.
    [6] K tz R, Carlen M. Principles and applications of electrochemical capacitors [J].Electrochimica Acta2000;45(15-16):2483-98.
    [7] Lokhande CD, Dubal DP, Joo O-S. Metal oxide thin film based supercapacitors [J]. CurrentApplied Physics2011;11(3):255-70.
    [8] Zheng JP, Jow TR. High energy and high power density electrochemical capacitors [J]. Journalof Power Sources1996;62(2):155-59.
    [9] Wang X, Li L, Yan'ge Zhang, et al. High-yield synthesis of NiO nanoplatelets and theirexcellent electrochemical performance [J]. Crystal Growth&Design2006;6(9):2163-65.
    [10] Wang L, Hao Y, Zhao Y, Lai Q, Xu X. Hydrothermal synthesis and electrochemicalperformance of NiO microspheres with different nanoscale building blocks [J]. Journal ofSolid State Chemistry2010;183(11):2576-81.
    [11] Yang H, Guai GH, Guo C, et al. NiO/Graphene Composite for Enhanced Charge Separationand Collection in p-Type Dye Sensitized Solar Cell [J]. The Journal of Physical Chemistry C2011;115(24):12209-15.
    [12] Zhang X, Shi W, Zhu J, et al. Synthesis of porous NiO nanocrystals with controllable surfacearea and their application as supercapacitor electrodes [J]. Nano Research2010;3(9):643-52.
    [13] Lee JW, Ko JM, Kim J-D. Hierarchical Microspheres Based on α-Ni(OH)2NanosheetsIntercalated with Different Anions: Synthesis, Anion Exchange, and Effect of IntercalatedAnions on Electrochemical Capacitance [J]. The Journal of Physical Chemistry C2011;115(39):19445-54.
    [14] Zhu Z, Wei N, Liu H, He Z. Microwave-assisted hydrothermal synthesis of Ni(OH)2architectures and their in situ thermal convention to NiO [J]. Advanced Powder Technology2011;22(3):422-26.
    [15] Sun Y, Pan J, Wan P, Liu X. The proton exchange chemistry of layered Ni(OH)2for two typesof high-capacity cathode materials in rechargeable batteries [J]. Materials Research Bulletin2009;44(1):227-30.
    [16] Park JH, Ko JM, Park OO. Carbon nanotube/RuO2nanocomposite electrodes forsupercapacitors. Journal of the Electrochemical Society2003;150(7): A864-A67.
    [17] Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J. Highly dispersed RuO2nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitanceperformance [J]. The Journal of Physical Chemistry C2010;114(6):2448-51.
    [18] Yuan C, Chen L, Gao B, Su L, Zhang X. Synthesis and utilization of RuO2·xH2O nanodotswell dispersed on poly (sodium4-styrene sulfonate) functionalized multi-walled carbonnanotubes for supercapacitors [J]. Journal of Materials Chemistry2009;19(2):246-52.
    [19] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction ofgraphene–MnO2composites as supercapacitor electrodes [J]. Carbon2010;48(13):3825-33.
    [20] Fan Z, Chen J, Zhang B, Liu B, Zhong X, Kuang Y. High dispersion of γ-MnO2onwell-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond andRelated Materials2008;17(11):1943-48.
    [21] Subramanian V, Zhu H, Wei B. Nanostructured MnO2: Hydrothermal synthesis andelectrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources2006;159(1):361-64.
    [22] Lee JK, Kim GP, Kim KH, Song IK, Baeck SH. Fabrication of mesoporous cobalt oxide(Co3O4) film by electrochemical method for electrochemical capacitor [J]. Journal of NanosciNanotechnol2010;10(5):3676-9.
    [23] Zhang F, Yuan C, Lu X, Zhang L, Che Q, Zhang X. Facile growth of mesoporous Co3O4nanowire arrays on Ni foam for high performance electrochemical capacitors [J]. Journal ofPower Sources2012;203(0):250-56.
    [24] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2nanocomposites and itsapplication in electrochemical supercapacitors [J]. Nanotechnology2009;20(45):455602.
    [25] Selvan RK, Perelshtein I, Perkas N, Gedanken A. Synthesis of Hexagonal-Shaped SnO2Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors [J].The Journal of Physical Chemistry C2008;112(6):1825-30.
    [26] Chen Z, Augustyn V, Wen J, et al. High‐Performance Supercapacitors Based on IntertwinedCNT/V2O5Nanowire Nanocomposites [J]. Advanced Materials2011;23(6):791-95.
    [27] Jayalakshmi M, Rao MM, Venugopal N, Kim K-B. Hydrothermal synthesis of SnO2-V2O5mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5-CNT,and SnO2-V2O5-CNT electrodes for supercapacitor applications [J]. Journal of Power Sources2007;166(2):578-83.
    [28] Chen Y-M, Cai J-H, Huang Y-S, Lee K-Y, Tsai D-S, Tiong K-K. A nanostructured electrodeof IrOxfoil on the carbon nanotubes for supercapacitors [J]. Nanotechnology2011;22(35):355708.
    [29] Liu D-Q, Yu S-H, Son S-W, Joo S-K. Supercapacitive Studies on IrO2Thin Film ElectrodesPrepared by Radio Frequency Magnetron Sputtering [J]. Electrochemical and Solid-StateLetters2008;11(11): A206-A08.
    [30] Rolison DR, Long JW, Lytle JC, et al. Multifunctional3D nanoarchitectures for energy storageand conversion [J]. Chemical Society Reviews2009;38(1):226-52.
    [31] Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-dischargebulk battery electrodes [J]. Nature Nanotechnology2011;6(5):277-81.
    [32] Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes forelectrochemical supercapacitors [J]. Nat Nano2011;6(4):232-36.
    [33] Gogotsi Y, Simon P. True Performance Metrics in Electrochemical Energy Storage [J].Science2011;334(6058):917-18.
    [34] Zhao M-Q, Zhang Q, Huang J-Q, Wei F. Hierarchical Nanocomposites Derived fromNanocarbons and Layered Double Hydroxides-Properties, Synthesis, and Applications [J].Advanced Functional Materials2012;22(4):675-94.
    [35] Lee SW, Yabuuchi N, Gallant BM, et al. High-power lithium batteries from functionalizedcarbon-nanotube electrodes [J]. Nat Nano2010;5(7):531-37.
    [36] Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: Areview [J]. International Journal of Hydrogen Energy2009;34(11):4889-99.
    [37] Tang Z, Tang C-h, Gong H. A High Energy Density Asymmetric Supercapacitor fromNano-architectured Ni(OH)2/Carbon Nanotube Electrodes [J]. Advanced Functional Materials2012;22(6):1272-78.
    [38] Wang H, Casalongue HS, Liang Y, Dai H. Ni(OH)2Nanoplates Grown on Graphene asAdvanced Electrochemical Pseudocapacitor Materials [J]. Journal of the American ChemicalSociety2010;132(21):7472-77.
    [39] Kang B, Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature2009;458(7235):190-93.
    [40] Giorgi L, Antolini E, Pozio A, Passalacqua E. Influence of the PTFE content in the diffusionlayer of low-Pt loading electrodes for polymer electrolyte fuel cells [J]. Electrochimica Acta1998;43(24):3675-80.
    [41] Hartley P, Parfitt G. Dispersion of powders in liquids.1. The contribution of the van der Waalsforce to the cohesiveness of carbon black powders [J]. Langmuir1985;1(6):651-57.
    [42] Cai F-S, Zhang G-Y, Chen J, Gou X-L, Liu H-K, Dou S-X. Ni(OH)2Tubes with MesoscaleDimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries [J].Angewandte Chemie International Edition2004;43(32):4212-16.
    [1] Wang J. Electrochemical Glucose Biosensors [J]. Chemical Reviews2008;108(2):814-25.
    [2] Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus andits complications. Part1: diagnosis and classification of diabetes mellitus. Provisional report ofa WHO Consultation [J]. Diabetic Medicine1998;15(7):539-53.
    [3] Mellitus D. Diagnosis and classification of diabetes mellitus [J]. Diabetes care2011;27:S5-S10.
    [4] Niculescu M, Mieliauskiene R, Laurinavicius V, Cs regi E. Simultaneous detection of ethanol,glucose and glycerol in wines using pyrroloquinoline quinone-dependent dehydrogenasesbased biosensors [J]. Food chemistry2003;82(3):481-89.
    [5]. Graber N, Lüdi H, Widmer H. The use of chemical sensors in industry [J]. Sensors andActuators B: Chemical1990;1(1):239-43.
    [6] Wilson A, Work T, Bushway A, Bushway R. HPLC determination of fructose, glucose, andsucrose in potatoes [J]. Journal of Food Science1981;46(1):300-01.
    [7] Yamakoshi K, Yamakoshi Y. Pulse glucometry: a new approach for noninvasive blood glucosemeasurement using instantaneous differential near-infrared spectrophotometry [J]. Journal ofBiomedical Optics2006;11(5):054028-28-9.
    [8] Heise H, Marbach R, Janatsch G, Kruse-Jarres J. Multivariate determination of glucose inwhole blood by attenuated total reflection infrared spectroscopy [J]. Analytical Chemistry1989;61(18):2009-15.
    [9] Heller A, Feldman B. Electrochemical Glucose Sensors and Their Applications in DiabetesManagement [J]. Chemical Reviews2008;108(7):2482-505.
    [10] Kang X, Mai Z, Zou X, Cai P, Mo J. A sensitive nonenzymatic glucose sensor in alkalinemedia with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J]. Analytical biochemistry2007;363(1):143-50.
    [11] Park S, Park S, Jeong R-A, et al. Nonenzymatic continuous glucose monitoring in humanwhole blood using electrified nanoporous Pt [J]. Biosensors and Bioelectronics2012;31(1):284-91.
    [12] Grieshaber D, MacKenzie R, V r s J, Reimhult E. Electrochemical Biosensors-SensorPrinciples and Architectures [J]. Sensors2008;8(3):1400-58.
    [13] Clark LC, Lyons C. Electrode systems for continuous montitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences1962;102(1):29-45.
    [14] Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors [J]. AnalyticaChimica Acta2006;556(1):46-57.
    [15] Park S, Chung TD, Kim HC. Nonenzymatic Glucose Detection Using Mesoporous Platinum[J]. Analytical Chemistry2003;75(13):3046-49.
    [16] Li C, Su Y, Lv X, et al. Controllable anchoring of gold nanoparticles to polypyrrole nanofibersby hydrogen bonding and their application in nonenzymatic glucose sensors [J]. Biosensorsand Bioelectronics2012;38(1):402-06.
    [17] Liu Y, Teng H, Hou H, You T. Nonenzymatic glucose sensor based on renewable electrospunNi nanoparticle-loaded carbon nanofiber paste electrode [J]. Biosensors and Bioelectronics2009;24(11):3329-34.
    [18] Luo J, Jiang S, Zhang H, Jiang J, Liu X. A novel non-enzymatic glucose sensor based on Cunanoparticle modified graphene sheets electrode [J]. Analytica Chimica Acta2012;709:47-53.
    [19] Wang J, Thomas DF, Chen A. Nonenzymatic Electrochemical Glucose Sensor Based onNanoporous PtPb Networks [J]. Analytical Chemistry2008;80(4):997-1004.
    [20] Xiao F, Zhao F, Mei D, Mo Z, Zeng B. Nonenzymatic glucose sensor based onultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbonnanotubes–ionic liquid composite film [J]. Biosensors and Bioelectronics2009;24(12):3481-86.
    [21] Gao H, Xiao F, Ching CB, Duan H. One-Step Electrochemical Synthesis of PtNiNanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection[J]. ACS Applied Materials&Interfaces2011;3(8):3049-57.
    [22] Li L-H, Zhang W-D, Ye J-S. Electrocatalytic Oxidation of Glucose at Carbon NanotubesSupported PtRu Nanoparticles and Its Detection [J]. Electroanalysis2008;20(20):2212-16.
    [23] Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS. CuNi Dendritic Material: Synthesis,Mechanism Discussion, and Application as Glucose Sensor [J]. Chemistry of Materials2007;19(17):4174-80.
    [24] Dong X-C, Xu H, Wang X-W, et al.3D Graphene–Cobalt Oxide Electrode forHigh-Performance Supercapacitor and Enzymeless Glucose Detection [J]. ACS Nano2012;6(4):3206-13.
    [25] El Khatib KM, Abdel Hameed RM. Development of Cu2O/Carbon Vulcan XC-72asnon-enzymatic sensor for glucose determination [J]. Biosensors and Bioelectronics2011;26(8):3542-48.
    [26] Quoc Dung N, Patil D, Jung H, Kim D. A high-performance nonenzymatic glucose sensormade of CuO-SWCNT nanocomposites [J]. Biosensors and Bioelectronics2013;42(0):280-86.
    [27] Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z. Assembly of Ni(OH)2nanoplates on reducedgraphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing [J].Journal of Materials Chemistry2011;21(42):16949-54.
    [28] Wang G, Lu X, Zhai T, et al. Free-standing nickel oxide nanoflake arrays: synthesis andapplication for highly sensitive non-enzymatic glucose sensors [J]. Nanoscale2012;4(10):3123-27.
    [29] Mu Y, Jia D, He Y, Miao Y, Wu H-L. Nano nickel oxide modified non-enzymatic glucosesensors with enhanced sensitivity through an electrochemical process strategy at high potential[J]. Biosensors and Bioelectronics2011;26(6):2948-52.
    [30] Sun Y, Pan J, Wan P, Liu X. The proton exchange chemistry of layered Ni(OH)2for two typesof high-capacity cathode materials in rechargeable batteries [J]. Materials Research Bulletin2009;44(1):227-30.
    [31] Reisner DE, Salkind AJ, Strutt PR, Xiao TD. Nickel hydroxide and other nanophase cathodematerials for rechargeable batteries [J]. Journal of Power Sources1997;65(1):231-33.
    [32] Tehrani RMA, Ab Ghani S. MWCNT-ruthenium oxide composite paste electrode asnon-enzymatic glucose sensor [J]. Biosensors and Bioelectronics2012;38(1):278-83.
    [33]郭炳焜,电源,李新海,杨松青.化学电源:电池原理及制造技术[M].长沙:中南工业大学出版社,2000.
    [34] Ito A, Li D, Ohsawa Y, Sato Y. A new approach to improve the high-voltage cyclicperformance of Li-rich layered cathode material by electrochemical pre-treatment [J]. Journalof Power Sources2008;183(1):344-46.
    [35] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novelnanocomposite electrode [J]. Biosensors and Bioelectronics2009;24(6):1655-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700