膜技术处理低浓度SO_2吸收液和铝厂工业废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容主要包括两个方面:一、用离子膜技术处理低浓度SO_2烟气吸收液的研究;二、用膜技术处理山西铝厂工业废水的研究。
     在所有的低浓度SO_2烟气净化技术中,Wellman—Lord钠碱法已应用于工业脱硫,而且近几年来发展较快,但仍然存在吸收后液中亚硫酸氢钠浓度达不到汽提高浓度SO_2气体的要求,汽提SO_2温度过高,亚硫酸盐氧化严重,产生大量的硫酸盐,造成碱耗增大等诸多问题。
     针对以上的问题,首次采用三室双阳膜电解和双极膜电渗析法处理了低浓SO_2钠碱吸收液。
     在三室双阳膜电解槽中,按某电厂SO_2烟气吸收液组成配制电解料液,在阳极室硫酸浓度为5mol/L、电流密度在1667A/m~2左右、极室液采用泵为驱动力的强制流动方式的条件下进行电解,酸室液pH在3以上时电流效率可达到98%以上,同时碱室液的pH值可达到7.4以上,即达到了再生吸收液的要求,此时酸室液上面气相中SO_2含量在92%以上(65℃)。电解后的酸室液在105℃的温度下蒸发(比Wellman—Lord钠碱法中的115℃低),不但使溶液中亚硫酸氢盐完全分解,蒸发后溶液的pH值恢复到了电解前溶液的pH值,而且蒸发过程中无Na_2SO_3结晶产生。由此可见三室双阳膜电解法完全能解决原工艺中存在的问题。
     在双极膜电渗析法处理低浓度SO_2吸收液的研究中,首次提出了用阴膜和双极膜组成二室结构的电渗析器处理低浓度SO_2吸收液的新方法。按某电厂SO_2烟气吸收液组成配制电解料液,在酸、碱室进料比为1:3、电流密度80 mA/cm~2、室温(23℃)的最佳条件下电解,酸室液pH>3时,电流效率达了88.51%以上。
     研究结果表明,三室结构双极膜电渗析器和阳膜-双极膜组成的二室结构电渗析器处理低浓度SO_2吸收液时的电流效率低,处理效果差,相同条件下用阴膜-双极膜组成的二室结构电渗析器处理低浓度SO_2吸收液的电流效率高,处理效果
    
    中南大学博士学位论文
    摘要
    好。阴膜一双极膜组成的二室结构电渗析器在上述电解过程中
    的能耗要比三室双阳膜电解法低,所以,只要双极膜材料的
    制备技术过关,用该方法处理低浓度502吸收液更具优越性。
     山西铝厂既是用水大户,又是废水排放大户,工业废水
    排放量为4万m3/d。因此采取有效措施,对各种外排水进行
    处理,实现水回用是关系铝厂自身前途的大事。论文第二部
    分是膜法处理工业外排水,实现废水回用,生产不同等级工
    业用水的研究。
     通过反渗透预处理试验,确定了预处理工艺路线为混凝
    一砂滤。处理后的浊度小于0.INTu,无铁及游离氯,pH值
    平均为7,全部符合反渗透进水水质要求。与此同时,平均
    COD值降至32。
     在反渗透膜筛选试验中选用了美国海德伦公司、美国
    osmotric公司的卷式RO膜及国产RO膜。从得出的反渗透的
    基本工艺参数发现,美国海德伦公司的ESPA 1 RO膜的性能
    优良。完成了处理量为Zooom3/d大型反渗透工程的计算机模
    拟设计。
     完成了215x550mm2膜堆电渗析制取工业用水试验。试
    验证明电渗析制取TDS<5 00的一般工业用水是可行的,但用
    其制取Na+<35mg/L的优质工业用水在经济上不划算。利用美
    国道公司的卷式NF膜(松散反渗透)进行脱盐试验,表明用
    NF膜也可以实现制取一般工业用水的目标。
Two aspects of pollution are studied in this paper, one is treatment of dilute absorbed solution of SO2 with ion -exchange membrane technique, the other is treatment of industrial waste water from Shanxi Aluminium Plant with membranes.
    Among the technologies of the treatment of dilute SO2 gas, Wellman-lord natrium-alkali means has been applied in the desulphurizing process for many years. It has much more progress than the others in recent years, but hydrosulfite concentration of the absorbed solution is low, which increase the temperature for steam stripping SO2, and lots of the thermalenergy is used to evaporate water. During the process of steam stripping, the crystal of the sodium sulfite is easy to cause the blockage of pipecine , too much sulphate formed because of oxidation of the sulphite may cause the heavy comsuption ofnatrium.
    Aimed at the problems above, the three-compartment cation selective membrane electrolysis and dipolar membrane electrodialysis technique are used to deal with the dilute SO2 absorbed solution.
    In cation-exchange membrane electrolysis experiments with three-compartments cell, the electrolyte was prepared according to the absorbing solution of SO2 from one power plant . The concentration of sulphuric acid in anode compartment is 5mol/L, the current density is about 1667 A/m2, the flow of the solution in the compartment is forced by the pump, the pH of the solution in acid compartment is above 3, and so the current efficiency is more than 98%, and pH value of alkali compartment solution can be up to 7.4, which can satisfy the requirement of regenerating absorption solution, the concentration of SO2 in gas phase is above 92%(at 65), the hydrosulfite in the solution decomposes completely and the pH -value recoveries to that of primary solution,the crystalization of Na2SO3 does not form in the solution after electrolysis in the acid compartment evaperuted at the 105 (the evaperating temperature in Wellman-Lord is 115 ). The problems of original process can be solved with the three-compartment membrane
    electrolysis cell.
    The means using two-compartment electrodialysis consisting of
    
    
    ABSTRACT
    anion-selective and bipolar membrane to treat the absorbed dilute SO2 solution is put forward for the first time . The experimental results show that the optimal working current density is 80mA/cm2.
    The electrolyte feed composition was prepared in experiment according to absorbed solution of SO2 from a certain power plant. When the ratio of acid compartment and alkali compartment feed is 1 : 3, and at room temperature (23 癈), pH>3, the current efficiency is up to 88.5 1%.
    The results of experiments show that three-compartment bipolar membrane electrodialysis and two-compartment cation selective-bipolar membrane electrodialysis are not suit to treat the dilute absorbed solution of SO2 because of low current efficiency, under the same conditions, using two-compartment anion selective-bipolare membrane electrodialysis to treat the solution has high current efficienly advantages. The consumption of energy using the two compartment electrodialysis consisting of anion-selective and bipolar membrane to treat solution above is lower than that of the tricompartment cation membrane electrolyser, therefore ,the means using it to treat the absorbed dilute SQ solution is suitable.
    Shanxi Aluminium Plant not only needs a great deal of water, but also discharges a great deal of waste water .The amount of discharge industrial waste water is 0.4million m3/d. Reutilization of waste water is crucial to the future of the plant. In the second part of this paper, applying the membrane technique to deal with waste water and gain different industry-grade water for the plant has been studied.
    Through Reverse Osmosis (RO) preprocessing experiment, propressing flow being coagulte-sandfilter is made. The turbidity of the wastewater after preprocessing is less than 0.1NTU, without Fe and free chloric, the average pH-value is about 7, and all of the data are suitable for the requirement of hyper-filtration f
引文
[1] 硫酸工业编辑部.低浓度二氧化硫烟气脱硫[M].上海:上海科学技术出版社,1981.139~152.
    [2] 李春虎,郭汉贤,李彦旭,等.煤气化—蒸汽联合循环发电,高温煤气热脱硫.煤炭转化,1995,(4):26~31.
    [3] 晏玉清,范安祥.半干法烟气脱硫.四川电力技术,2000,(4):17~18.
    [4] 赵君科,任先文,王保健等.脉冲电晕等离子体法烟气脱硫脱硝技术进展.四川环境,2000,(4):6~9.
    [5] 邰德荣,韩宾兵.中日合作成都电厂电子束烟气脱硫示范工程.环境保护,1998,(12):11~13.
    [6] 张沛,葛道才.辊涂法制备均相阴、阳离子交换膜的研究初报[J].海水淡化,1977,(2):28.
    [7] 周曼利.国产炭素管开发、运行和鉴定[J].氯碱工业,1998,(7):11.
    [8] 程殿彬.离子膜法烧碱生产技术进展与展望[J].氯碱工业,1999,(4):7~19.
    [9] 施绍章.离子交换膜[J].中国氯碱,1998,(7):5~8.
    [10] 赵国瑞.离子交换膜电解槽的国产化[J].氯碱工业专辑,1994,(3):10~18.
    [11] 肖连生,张启修,张贵清.膜电解法回收钨酸钠溶液中游离碱[J].膜科学与技术,2000.(6):16~19.
    [12] 郑竹林等.草酸钠为原料制取草酸和烧碱[J].盐湖研究,1997,(2):36~50.
    [13] 翟玉春,翟秀静,祝立英.壳聚糖膜分离氟、氯、砷的研究[J].过程工程与科学,1996,(3):210~231.
    [14] 李春旺.膜分离技术在金银生产应用[A].中南工业大学.《膜分离技术在冶金中应用研讨会论文集》.长沙:1999.125.
    [15] 周康根等.膜法处理氧化铝厂工业外排水研究[J].中南工业大学.《膜分离技术在冶金中应用研讨会论文集》.长沙:1999.142.
    [16] Bauer B, Gerner F J,Strathmann H. Development of bipolar membranes. Desalination, 1988, (68):279~292.
    [17] 彭琴秀等.电解贫液中算得回收[A].中南工业大学.《膜分离技术在冶金中应用研讨会论文集》.长沙:1999.114.
    [18] 莫剑雄.双极膜制酸碱实验[J].水处理技术,1998,24(2):78~82.
    [19] 李青刚,周康根,张启修.离子膜元电池法还原钛液中的三价铁[J].膜科学与技术,2001,(3):42~46.
    [20] 张维润.赤泥碱液的电渗析浓缩与工业用水回收[J].水处理技
    
    术,1994,20(1):27~31.
    [21] 张维润.电渗析处理赤泥碱性废水[J].水处理技术,1996,22(5):271~276.
    [22] 宋德政.西沙日产2百吨淡水电渗析海水淡化装置现场运转报告[J].水处理技术,1993,19(2):93~97.
    [23] 马保安,张宏西,周国雨.电渗析法回收碱性蓄电池废液[J].水处理技术,1991,17(6):409~411.
    [24] 陈玉莲,周广俊,张和.电渗析治理糠醛废水回收乙酸[J].水处理技术,1992,18(5):314~319.
    [25] 宋德政.电渗析处理化纤厂去酸水的研究[J].水处理技术,1999,25(5):262~265.
    [26] 徐铜文.膜法回收钛白废液中硫酸的实验研究[J].水处理技术,1999,25(4):204~208.
    [27] 葛体掌.杀灭菊酯农药废水的电渗析脱盐实验[J].水处理技术,1990,16(6):428~432.
    [28] 曲敬绪.第三届全国膜和膜过程学术报告会论文集[C].北京:1999.534~537.
    [29] 徐铜文.均相离子交换膜及双极膜的制备及其水解离机理研究.博士后出站报告,南开大学,1997.
    [30] 廖尚志,莫剑雄.双极膜的发展和应用.水处理技术,1999,21(6):311~318
    [31] Liu K J,Lee H L.Bipolar membranes.US, patent,4584246,1986, 4~22.
    [32] Mueller Hans,Puetter H.Production of bipolar membrane.US, Patent,4670125,1987, 6~2.
    [33] Francesco P, Rosignano S L.method for making a bipolar membrane.US,Patent,5849167,1998, 12~15.
    [34] 徐铜文,孙树声,刘兆明,等.双极膜电渗析的组装方式及其功用.膜科学与技术,2000,20(1):53~59.
    [35] Xu tongwen ,Yang Weihua and He Binglin.Water dissociation phenomena in a bipolar membrane,The configurations and theoretical voltage analysis.Science in China(Series B),1999,42(6):589~598.
    [36] 徐铜文,杨伟华,何炳林.双极膜水解离现象——极限电流密度确定与电场增强效应.中国科学,B辑,2000.
    [37] Nagsubramanian K,Chlanda F.P and Liu K J.Use of bipolar membrane for generation of acid and base,An engineering and economic analysis.J Membr.Sci.,1977, (2):109~124.
    [38] Kedem O,Warshawsky.a Supported mechnically stabale bipolar membrane for
    
    electrodialysis.US; Patent,5288385,1994, 2~22.
    [39] Kimura T, Suzuki M and Uchibori T.Bipolar type ion exchange membrane electrolydic cell.EP,Patent,0704556A1,1996, 3~4.
    [40] Mani K N.Electrodialysis water splitting technology.J.Membr.Sci, 1991, (58):117~138.
    [41] Gineste J L,Pourcelly G, Lorrain Y, et al.Analysis of factors limiting the use of bipolar membranes;a simplifield model to determine trands.J.Membr.Sci,1996, (112) :199~208.
    [42] Chao Y.C.,chlanda F.P.and Mani K.N.Bipolar membranes for purification of acds and bases,J.Membr.Sci.,1991,(61):239~252.
    [43] Mani K M,Cglanda F P and Byszewski C H.Aquatech membrane technology for recovery of acid/bases values from salt streams.Desalination,1988,(68):149~166.
    [44] U.S.EPA, Technology Transfer,"Process Design Manual for Upgrading Existing wastewater Treatment plants",(October1974).
    [45] Troure E.Treatment of municipal wastewater by a membrane bioreactor [J].Water Sci.Technol, 1994,30(40): 151~157.
    [46] 蔡建安等.三相气提升循环流化床处理焦化废水[J].水处理技术,1997,23(2):119~121.
    [47] 朱伟等.农药工业三废处理技术的现状与发展[J].化工环保,1996,12(2):383.
    [48] 余刚等.超临界水氧化技术及其应用[J].上海环境科学,1997,16(5):24~27.
    [49] 赵少陵等.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学,1997,16(5):24~27.
    [50] 张芳西等.聚铁絮凝澄清工艺在焦化废水处理中的应用[J].水处理技术,1995,21(6):353~358.
    [51] 熊英健.一种新型水处理技术——絮凝床法现状及展望[J].工业水处理,1996,16(3):33~37
    [52] Al-Malack M H,Anderson G K.Grossflow microfiltration with dynamic membranes. WatRes, 1997,31(8):1969~1979
    [53] Labrorie S,Cabassud C,Durand-Bourlier L,etal.Fluxenhancement by actionstagential gasflowinultrafiltration hollowfibers for drinkingwaterproduction:Effects of slugflow on cakestructure.Filtration
    
    Sep,1997,34(8):887~891.
    [54] Pupnunat L,Rios G M,Jouli E R,etal.Electronanafiltration:A new process for ionseparation.Sep Sci Tech, 1998,33(1):67~81.
    [55] Pontius F W.Small system compliance technology for the SWTR.JAWWA,1997,89(10): 16~24.
    [56] Ventresque C,Tumer G,Bablon G.Nanofiltration:From prototypetofull scale.JAWWA,1997,89(10):65~76.
    [57] Lan J M.Membrane technology and its application to drinking water production.Wat Sep, 1998,16(1-2):318~322.
    [58] Reising A R, shroeder E D.Denitrification incorporating microporousmembranes.J Environ Eng, 1996,122(7):599~604.
    [59] Waypa J J,Elimelech M,Hering J G.Arsenic removal by RO and NF membranes. JAWWA, 1997,89(10): 102~116.
    [60] Genn I,Doyen W, Adriansens W, etal.Organo-mineral ultrafiltration membranes. Filtration Sep, 1997,34(9):964~966.
    [61] Tabatabai A, Scamehom J F, Christian S D.Water softening using polyelectrolyte-enhanced ultrafiltration.Sep Sci Tech, 1995,30(2):211~224.
    [62] 杭州大学化学系分析化学教研室编.分析化学手册(第二分册).北京:化学工业出版社,1989.404~421.
    [63] 中国科学院青海盐湖研究所分析室编.卤水和盐的分析方法.北京:科学出版社,1988.39~41.
    [64] Dawson J L, in Kuhn A T(Ed.),the Electrochemistry of Lead, London: Academic Press, 1979:309
    [65] Pavlov D in Menicol B D and Rand D A J(Eds.),Power sources for Electric Tehicles, Amsterdam:Elsevier, 1984:111
    [66] Ellis S R, Hampson N A, Ball M C, Wilkinson F, the lead dioxide electrode, J. App. Electrochem, 1986,16:159
    [67] Bullock K R, Electrochemical and spectroscopic methods of characterization of lead corrosion films,J.Electroanal chem.,1987,222:347
    [68] Fleischmann M, Thirsk H R, An investigation of electrochemical kinetics at constant overvoltage the behaviour of the lead dioxide electrode ,Traus. Faraday Soc.,1955,51:71
    [69] Pavlov D, Poulieff C N, Klaja E, Iordanov N, Dependence of the composition
    
    of the anodic layer on the oxidation potential of lead in sulfuric acid ,J. Electrochem Soc.,1969,116:316
    [70] 何卓立.阳极氧化膜的光电流频谱曲线随膜增厚而位移的研究.化学学报,1992,50:118
    [71] 韩峻,光电流频谱法研究Pb(Ⅱ)阳极膜:硕士论文.上海:复旦大学,1993
    [72] Han J, Pu C, Zhou W F. Determination of the phase composition of anodic lead film formed in sulfuric acid solution. J. Electroamal chem.,1994,368:43
    [73] Peter L M. Photocurrent spectroscopy of anodic films on metal electrodes. Ber Bunsenges Phys Chem.,1987,91:419
    [74] Wei C, Rajeshwar K. In situ characterization of lead corrosion films by combined voltammetry, coulometry and electrochemical qurtz crystal microgravimetry. J. Electrochem. Soc.,1993,140:L128
    [75] 柳厚田,王群洲,周伟舫,等.硫酸溶液中铅阳极膜研究的几个问题(二).电化学,1996,2(2):125
    [76] 李宁,黎德育,翟淑芳,等.铅阳极的制造方法与性能.材料工程,2000,(17):36~39.
    [77] 黄永昌.钛基二氧化铅电极[J].无机盐工业,1980,2:14~19.
    [78] Giz M J, Bento S C, Gonzalez E R, NiFeZncodeosit as a cathode material for the production of hydrogen by water electrolysis[J], International Journal of Hydrogen Energy, 2000,25:621~625.
    [79] Yoshida N, Yoshitake M, Endoh E, et al. development of Highly durable low hydrogen overvoltage cathode in chlor alkali cels[J].Int J Hydrogen Energy, 1989,14:137~140.
    [80] MA Jie, JiangXiong,Jiang Lincai, et al.球磨形成的NiMo纳米晶复合镀层上的析氢反应[J].J of Physical Chemistry(物理化学学报),1996,(12):22~28.
    [81] Crousier J, Eyraud M, Arvia C.Influence of substrate on the electrodeposition of nickel-molybdenum alloys[J].Jappl Electrochem, 1992,(22):749~753.
    [82] Hu Weikang, Zhang Yong Yongsheng, Song Deyin, Etal. Amorphous Ni-Mo-Fe alloy as the electrode for hydrogen evolution reaction of alkaline water electrolysis. Gongneng Cailiao/Journal of Functional-Materials, 1995,25(5):456~458.
    
    
    [83] Arul Raj I, Vasu K I.transition metal based cathodes for hydrogen evolution in alkaline solution, electrcatalysis on nickel based ternary electrolytic codeposits[J].J appl Electrocem, 1992, (22):471~478.
    [84] Arul R I. On the catalytic activity of NiMoFe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen[J].Applied Surface Science, 1992, (59):245~249.
    [85] Fan Chonglun, Piron D L,Paradis P. Hydrogen evolution on electrodeposited nickel-cabalt-molybdenum in alkaline water elctrolysis[J]. Electrochemica Acta,1994,(39):2715~2722.
    [86] Norsk Hydro, Oslo. Electrolyte Cell Active Cathode with Low Overvoltage[P].Ntherlands,Patent,7801955,1978.
    [87] Sabela Rand Paseka I.Properties of NiS, electrodes for hydrogen evolution from alkaline mediun[J].J Appl Electrochem, 1990, (20): 500~505.
    [88] Paseka I. Sorption of hydrogen and kinetics of hydrogen evolution on amorphous NiS,electrodes[J].Electrochemica Acta, 1993, (38):2449~2454.
    [89] Hine F, Yasuda M. Studies of the nickelsulphur electrodeposited cathode[J].Denki Kagaku, 1979, (47):401~407.
    [90] Chung Shih Chang,Gary T. Rochelle, Ind. Eng. Chem. Funda,1985,24(1):7~11.
    [91] Kang Jen Liu, K. Nagasubramanian , F. P. Chlanda. Membrane electrdialysis process for recovery of sulfur dioxide from power plant stack gases[J]. Journal of Membrane Science, 1978, (3):71~83.
    [92] Robert.E,De La Rue,Charles W.Tobias. On the conductivity of dispersions. J.Electrochem. Soc.,1959, (106):827~832.
    [93] Jerzy Buzek and Manfred Jaschik. Gas-Liquid equilibria in the system SO_2-aqueous solutions of NaHSO_2/Na_2SO_3/Na_2SO_4.Chem. Eng. Sci.,1995,50(19):3067~3075.
    [94] 徐铜文,何炳林.扩散型膜控制释放技术的进展[J].世界科技研究与发展,2001,22:19.
    [95] Onsager L.deviations from Ohm's Law in weakelectrolytes. J Chem
    
    Phys.1934,(2):599~612.
    [96] Simons R.Strong electric fieldseffects on proton transfer between membrone-bound amines and water. Nature, 1979, (280):824~826.
    [97] Mafe S, Manzanare J A.Model for ion transport in bipolar membranes. Phys Rev A. 1990, (42):6245~6248.
    [98] 莫剑雄.双极膜工作电压的理论分析.水处理技术[J],1998,24(4):187~194.
    [99] Stranthmann H, Krol J J, Rapp H J, et al. Limitting current density and water dissociation in bipolar membranes. J Membr Sci. 1997,125:123~142.
    [100] K N Mani, F P Chlanda.Recovery of spent mineral acids by electrodialytic water splitting, International, Technical Conference on membrane separation processes. Brighton, U K, 24~26 May, 1989 G2:235~250.
    [101] Aguilella, V.M. (Univ Valencia), Mafe, S, Manzanares, J.A, etal. Current-voltage curves for ion-exchange membranes. Contributions to the total potential drop.Journal of Membrane Science, 1991, 61:177-190.
    [102] 程殿彬.离子膜法制碱生产技术.北京:化学工业出版社,1997.103~124.
    [103] 李维华,段玉然,李淑玲.二氧化硫溶于水和酸性溶液的化学状态研究[J].无机化学学报,1997,13(4):442~444.
    [104] Sata T.Transport properties of ion exchange membranes which adsorbed or exchanged surface-active agents. Kolloid-Z.polym.1971,(243):157~59.
    [105] 堂野礼三,安积敬嗣,高屿四郎.交换透析选择交换透过性.日本化学会志,1968,89(3):245~247.
    [106] Kang-Jen Liu, K.Nagsubramanian, Membrane electrdialysis process for recovery of sulfur dioxide from power plant stack gases, Journal of Membrane Science, 1978, (3):71~83.
    [107] Bauer B.Gerner F J Strathman H.Development of biplar membranes. Desalination, 1988, (68):279~292.
    [108] R.B. MacMullin. Electrolysis of Brines in Mercury Cells. Chlorine, edited by J.S. Sconce, ACS monograph 154, Reinhold Publ, New York. 1962.
    [109] Manzanares Jose A, Mafe Salvador, Pellicer Julio. Transport
    
    phenomena and asymmetry effects in membranes with asymmetric fixed charge distributions.Joumal of Physical Chemistry,1991,95(14):5620.
    [110] Mueller Hans, Puetter H. Production of bipolar membrane.US, Patent, 4670125,1987-6-2.
    [111] 尾上廉治,水谷幸雄,首鸟亘等.交换膜选择透过性改良电气化学,1961,(29):468~470.
    [112] 余利新,孟昭辉,林爱光等.双极膜电渗析法在脱硫废液NaHSO_3再生过程中的应用研究.环境科学,1996,17(6):42~45.
    [113] 李仲钦.我国离子膜和树脂技术的发展.水处理技术,1985,11(5):15~18.
    [114] Solt G S.Design of the World' s Largest Electrodialysis Installation .3rd Inter.Symp.on Rresh Water from the Sea,1970, (2):267.
    [115] Henryc. Valcour, Jr.,Recent Applications of EDR. Desalination, 1985,(54):163.
    [116] Takuo Kawahara.The Development of a New Electrodialyzer. Desalination, 1977, (23):213~221.
    [117] 安积敬嗣,白子忠男.阴交换膜对水酸,硫酸选择透过性.日本工业化学志,1964,(67):887~889.
    [118] Tsunda, Y., Kato, M. Compact apparatus for Sea water desalination by electrodialysis using ion exchange membranes.Desalination,1967, 3(1):66~81.
    [119] 姚允斌等.物理化学手册[M].上海:上海科学技术出版社,1985.784~786.
    [120] Jerzy Buzer,Manfred Iaschik. Gas-Liquid equilibria in the system SO_2-aqueous Solutions of NaHSO_3/Na_2SO_3/Na_2SO_4. Chemical. Chemical Engineering Science,1995,50(19):3067~3075.
    [121] Chung-Shih Chang, Gary T. Rochelle. SO_2 Absorption into NaOH and Na_2SO_3 Aqueous Solution. Ind. Eng. Chem. Fundam, 1985, (24):7~11.
    [122] 施亚钧等著.气体脱硫[M].上海:上海科学技术出版社,1984.
    [123] Butt F H, Rahman F,Baduruthama I U. Characterization of foulants byautopsy of RO desalination membranes[J].Desolination, 1997, (114):51~64.
    [124] Chakravorty B, Layson A.Ideal feed pretreatment for reverseosmosis by continuous microfiltration[J].Desalination, 1997, (110):143~
    
    150.
    [125] Bou Hamad S, Abel Jawad M, Ebrahim S, Al Mansour M, Al Hijji A.Performance evaluation of three different petreatmentsystems for seawater reverseosmosis technique[J].Desalination, 1997, (110):85~95.
    [126] Dudley L Y, Darton E G. Pretreatment Procedures to control biogrowth and scale formation in membranesystems[J].Desalination, 1997, (110):11~20.
    [127] Wilf M, Klinko K.Effective new pretreatment for seawater reverseosmosissystems[J].Desalination, 1998, (117):323~331.
    [128] Durham B. Membrane pretreatment of reverseosmosis long termexperience on difficult waters[J].Desalination, 1997, (110):49~58.
    [129] 顾国维.水污染治理技术研究.上海:同济大学出版社,1997.82~87.
    [130] Wilson, J.R.,1960, Demineralization by Electrodialysis, Butterworths, Scientific Publication, London.
    [131] 石松.防止电渗析海水淡化器内部产生沉淀的研究.海军医学研究所论文汇编[C].1964.233~237.
    [132] 宋序彤等.应用电导率测定天然水含盐量的研究.水处理技术,8(3),1981:13~26.
    [133] 张维润著.电渗析工程学.北京:科学出版社,1995.250~276.
    [134] 冯逸仙,杨世纯编.反渗透水处理工程.北京:中国电力出版社,2000.74~112.
    [135] 金熙等.工业水处理技术问答及常用数据(第二版).北京:化学工业出版社,200.141~150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700