在氯盐介质中同槽电解MnO_2和Mn
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决同槽电解锰和电解二氧化锰存在的电流效率低,能耗高等问题,本文进行了同槽电解锰和二氧化锰的研究。采用恒电流、循环伏安、线性扫描、恒电位等电化学方法,通过对比实验,为同槽电解中选择合适的电解质、电极材料以及电解槽提供了实验依据。论文采用了X-射线衍射法来鉴别和确定目标产物的结构和组成以及用SEM来观察阴极产物的表面形貌。采用正交实验研究了阴阳极电流密度、阴阳极室的pH、阴阳极室的锰离子浓度以及氯化铵浓度对同槽电解的影响。
     通过对比实验研究了在硫酸盐介质和氯盐介质中阳极电流效率和槽电压的差异,为选择合适的电解介质提供了实验依据。结果表明在小于65℃氯盐溶液比硫酸盐溶液具有高的电流效率。在相同温度下,氯盐溶液比硫酸盐溶液的初始槽压低,10h内达到10V槽压所用的时间长。在相同的实验条件下氯盐溶液比硫酸盐溶液达到稳定槽压的温度低。因此选择氯盐溶液作为同槽电解的电解液。在氯盐溶液中分别以钛钌板和钛板为阳极,通过对比实验发现,电解二氧化锰的电流效率差别不大,而钛钌板为阳极具有低且稳定的槽压,所以在氯盐溶液中选择钛钌板为阳极板。论文通过实验比较了在不锈钢和钛板上沉积锰的情况,发现在不锈钢上沉积的锰纯度高,而在钛板上沉积的锰含有杂质,所以选择不锈钢作同槽电解的阴极。
     为选择合适的电解槽本文采用循环伏安法和恒电流法研究了隔膜对电解锰和二氧化锰的影响。结果表明隔膜对沉积锰非常有利,在同槽电解中选用隔膜电解槽。
     在确定电解介质、电解槽、电极材料之后,在两极同温同槽条件下,采用恒电流法研究了时间对同槽电解锰和二氧化锰的影响。结果发现阴阳极室的pH、电流效率均随时间发生变化,而pH与电流效率的变化趋势无对应关系,由于实验采用的是固定溶液浓度的方法,时间的变化反映离子浓度的变化,说明η不只与pH有很大关系,而且与其他离子浓度有非常密切的联系。
     本文通过正交实验研究锰离子的浓度、pH、电流密度和氯化铵浓度对同槽电解锰和二氧化锰的槽压、电流效率以及能耗的影响。通过对实验结果分析,选择优化的实验条件电解,即C_(Mn)~(2+)),A取1.0mol/L,pH_A取1,JA取50 A/m~(-2),C_(Mn)~(2+),C取0.9 mol/L,CNH_4~+取1.8 mol/L,pH_C取7,JC取250 A/m~(-2),在该实验条件下恒电流电解2小时,得到的实验结果为:U=3.60v,η_A=90.07%,W_A=2464 kW_h/t, WC=3794 kWh/t,η_C =92.56%。
In order to solve the low current efficiency and high energy-consumption the simultaneous electrolysis of manganese metal and dioxide in the same cell, the simultaneous electrolysis of manganese metal and dioxide in the same cell was studied in this paper. Through contrast experiments,using electricity chemistry methods, such as constant potential,current density, cyclic voltammetry and line scanning, which provided experiment basis for the simultaneous electrolysis of manganese metal and dioxide in the same cell chosen the electrolyte , electrode material and electrolysis cell. The surface morphology and the crystal structure of manganese and manganese dioxide electrodeposits are analyzed by scanning electron microscope (SEM) and powder X-ray diffraction spectrometer (XRD), respectively. Cathode anode room current density, pH, concentration of manganese ion and concentration of ammonium chlorination to the influence of simultaneous electrolysis was studied in this paper by orthogonal experiments.
     The anode current efficiency and the cell electric voltage in chlorine and sulfate electrolysis was studied respectively in this paper, which provided an experiment basis for simultaneous electrolysis chosen the suitable electrolysis. Through contrast experiments, it was found that the current efficiency in chlorine electrolysis is higher than that in sulfate electrolysis below 65℃; Under the same temperature, the beginning cell electric voltage in chlorine electrolysis is lower than that in sulfate electrolysis, the cell electric voltage grow to 10 V consuming more time; under the same experiment condition ,the temperature of reaching the stable cell electric voltage in chlorine electrolysis is lower than that in sulfate electrolysis. Consequently chosen chlorine electrolysis as the same cell electrolysis.
     Through contrast experiments, it was found that the current efficiency of the electrolysis manganese dioxide is almost the same titanium ruthenium plank and titanium plank as anode in chlorine electrolysis. But titanium ruthenium as anode have low and stable cell electric voltage. So chosen titanium ruthenium as anode in chlorine electrolysis. Through contrast experiments, it was found that deposition manganese is high pure degree on the stainless, but the deposition on the titanium is imply impurities, so chosen the stainless steel as cathode in the same cell electrolysis.
     For choosing suitable electrolysis cell, membrane's effect for the electrolysis manganese and the manganese dioxide by cyclic voltammetry and constant current density was studied in this paper. The result discovered membrane is beneficial for deposition manganese. So chosen membrane cell in simultaneous electrolysis.
     After choosing electrolyte, electrode materials, electrolysis cell, the influence of the time to the same cell electrolysis manganese and manganese dioxide under the same anodic and cathodic temperatures was studied in this paper. The results indicated cathode anode room pH changed with time variety, but the pH variety trend was not corresponding with current efficiency . Because the experiment adopt electrolysis immovability, time of variety response ion density of variety. The experiments' results showed that theηis not only closely related to pH, but very closely contact with other ion densities.
     Current density, pH, concentration of manganese ion and concentration of ammonium chlorination to the influence of cell potential, current efficiency and energy consume of simultaneous electrolysis manganese and dioxide manganese was studied in this paper. Through a analytical of the experiment result, chosen an excellent experiment condition for electrolysis, namely C_(Mn)~(2+),A took 1.0mol/L,pH_A took 1,JA took 50 A/m~(-2),C_(Mn)~(2+),C took 0.9 mol/L,CNH_4~+ took 1.8 mol/L,pH_C took 7,J_C took 250 A/m~(-2). Constant current electrolysis for 2 hour under the experiment condition, the experiment result: U=3.60v,η_A=90.07%,W_A=2464kWh/t,W_C=3794kWh/t,η_C =92.56%.
引文
[1] [EB\OL] http://baike.baidu.com/view/1362792.htm.
    [2]胡德斌,秦兆秀.电流密度对电解产品MnO2的影响[J].重庆师专学报,1999:90-91.
    [3] Van Arsadale G,Maier C.The electrolitic behavior of manganese in sulphate solutions[J]. Transaction of Electrochemistry,1918,33:109-129.
    [4]钱伟文.中国电解二氧化锰工业的发展[J].湘潭师范学院学报,2004,26(2):16-18.
    [5]张文山,刘荣义,梅光贵,钟竹前.提高电解二氧化锰阳极电流效率的研讨[J].中国锰业,2001,19(4).
    [6] Prabhakar Rethinaraj J,Visvanathan S.Materials Chemistry and Physics,1991,(21):337.
    [7] Utomo S Donne.Electrochemical behaviour of titanium in H2SO4-MnSO4 electrolytes[J]. Electrochemica Acta,2006,51:3338-3345.
    [8]李同庆.电解二氧化锰生产技术的新进展[J].电池工业,2007,12(3).
    [9] Olenl. Anode material or electrolytic manganese dioxide cell,US 4 744 878,1988.
    [10]方平伟.电解MnO2用钛合金阳极,CN 1067 455 A, 1991.
    [11]王丽艳,王宝辉,吴红军,陈微,刘威,李佳.阳极涂层的研究进展[J].化学工业与工程,2009,26(2):176-182.
    [12]庞静,黄松涛,胡永海.电解二氧化锰用阳极材料的发展与应用[J].稀有金属,2001,25(5):371.
    [13] W.B.Utomo,S.W.Donne. Electrochimica Acta, 51(2006)3338-3345.
    [14]尹文新,韩跃新,刘瑶,舒方霞.用钛钌阳极从氯化锰溶液电解二氧化锰的研究[J].东北大学学报,2007,28(6).
    [15]寇建军,刘述平,吴萍.某地菱锰矿生产电解二氧化锰试验研究[j].矿产综合利用,2004,(4):18-22.
    [16]汪锦瑞,方刚,杨浙云.富锰渣制备工业硫酸锰的研究[J].中国锰业,2008,26(4):24-26.
    [17]胡国荣,周玉琳,彭忠东.用工业硫酸锰制取高纯碳酸锰的工艺研究[J].中国锰业,2007,25(2):14-17.
    [18]陈波,潘其经,钟本国.锰渣生产化学二氧化锰的研究[J].中国锰业,1996,14(1):32-36.
    [19]原金海,谭世语,贾云,龙彦辉.以富锰渣为原料制备碳酸锰[J].中国锰业,2007,16(2):90-92.
    [20]尹文新.韩跃新,舒方霞.电解二氧化锰制备技术的研究进展[J].金属矿山,2007,(3):11.
    [21]周元敏,梅光贵,刘荣义.从提Ag废液制取电解二氧化锰的研究[J].中国锰业,2002,20(3).
    [22]杨新科.制备硫酸锰最佳工艺条件的研究[J].中国锰业,2001,19(3):15-16.
    [23]张振伟,姜润田,宋敏,白玉兴.锰泥中二氧化锰富集方法的研究[J].无机盐工业,2004,36(4).:47.
    [24]杜军,刘晓波,刘作华,陶长元,孙大贵.菱锰矿浸取及除杂工艺的研究进展[J].中国锰矿,2008,26(2).
    [25]马志成.在电解二氧化锰生产中去除硫酸锰溶液中As、Sb、Mo等离子的方法[J].中国锰业,2003,21(4):39-41.
    [26]夏文堂,赵中伟,任正德.电解二氧化锰生产过程中硫酸锰溶液深度除钼的试验研究[J].中国锰业,2008, 26(4):30.
    [27]本多次德,大内念,中山日博,等.电解二氧化锰用硫酸锰溶液的纯化方法:中国, 1160777A[P]. 1997-10-01.
    [28]朱耀华,张其听.纤维态电解二氧化锰的研制[J].铁道师院学报,1990,27(2):76-78.
    [29] AmanoY, et a.l Process for electrolytic deposition of manganese dioxide:US, 3535217[P], 1970-10-20.
    [30] Rethinaraj J P, Chockalingam S C,Kulandaisamy S, et a.l Elec-trolytic manganese dioxide from chloride electrolyte[J].Hydromet-allurgy, 1993, 34: 119-13.
    [31] HIGGINS I R, eta.l .Simultaneous electrodeposition of manganese metal and di:oxide - in undivided cell, from low-grade ore by continuous removal of hydrochloric acid from electrolyte: US4707227-A[P], 1987-12-17.
    [32] Rutten,OWJS;Van Sandwijk,A;Van Weert,G. Electrolytic processing of manganifeous silver ores in acidic nitrate medium[J].1997-9-13:387.
    [33] MATSUAHITA ELEC IND CO LTD(MATU-C) Manganese dioxide prepn-by electrlysis for use in leclanche cells JP72035677-B[P].1968-12-5.
    [34] Joseph patrick tesene.Magnetically treated electrolytic maganese dioxide inalkaline electrolytic[D].Master’s Thesis,The university of lowa,2005.
    [35] Johna Laddy.Batteries and battery componelyte with magnetically modified maganese dioxide[P].WO2006/132682,2006-12-14.
    [36]李同庆.通过磁化提高电解二氧化锰放电性能[J].电池工业,2007, 12(1):54-56.
    [37]林乡伟,张延军,包玺琳.杂改性电解二氧化锰的研究现状[J].电池,2008,38(2):123.
    [38]经志宏,李诚芳.热处理对电解二氧化锰阴极性能的影响[J].复旦学报,1993,32(1).
    [39]何英,周曲律,李诚芳.热处理对电解二氧化锰性能的影响[J].电池,1999,29(3).
    [40] A.Brenner, ElectrodepositionofAlloys,Vol.I,p.137,AcademicPress,NewYork (1963).
    [41]王运敏.中国的锰矿资源和电解金属锰的发展.中国锰业[J],2004,7,22(3).
    [42]浅谈电解金属锰.湖南冶金,1990,11月,第六期.
    [43]熊素玉,张在峰.我国电解金属锰工业存在的问题与对策[J].中国锰业,2005,23(1).
    [44]魏莲.浅谈电解锰项目环境影响评价重点[J].铁道劳动安全卫生与环保,2005,32(1)48-50.
    [45]王聪寿.我国电解金属锰的现状、问题及对策[J].中国锰业,1995,15(5):43-47.
    [46]邹兴,侯丽娟,方克明.电解金属锰片清洁钝化工艺[J].中国锰业,2005,23(1):35-36.
    [47]谢放尖,黄炳龙,吴长年,何溯结,路云霞.电解金属锰工艺清洁生产初探[J].四川环境,2008,27(2):56-60.
    [48]谭柱中.中国电解金属锰工业可持续发展面临的问题及对策[J].中国锰业,2004,22(3):1-3.
    [49]陈孟军.季节变化与电解锰生产能耗[J].冶金能源,1994,9,13(5):18-20.
    [50]詹锡松.电解金属锰电解槽节能技术的探讨.中国锰业[J],2008,26(4):48-51.
    [51] BROWN GRAHAMEDARD,BELL DONALD K.SIMULTANEOUS REFINING OF ZINC AND MAGANESE DIOXIDE:US3438878[P].1969-04-15.
    [52] Nguyen,Thinh-Trong.Process for the simultaneous recovery of manganese dioxide zinc:EP409792[P].1991-01-23.
    [53] Guerriero,Renato;Vittadini,Italo.Method for extracting Mn metal and manganese dioxide from divalent Mn salt solutions:EP268319[P].1988-05-25.
    [54] Higgins,Irwin R.Simultaneous eletro-deposition of manganese and manganese dioxide:US4707227.
    [55]李谦,张元福。氯盐溶液中锌—二氧化锰同槽隔膜电解的研究[J].无机盐工业,31(6),1999.
    [56]李晓龙.硫酸体系中锌—二氧化锰同时电解的研究[D].西安建筑科技大学,2005.
    [57]张起听,陈安,朱则善,朱摧华,王玉玲.从氯化锰电解液电解金属锰的研究——电解条件的选择[J].福建师大学报,1981(2):73-80.
    [58]杜杰.离子膜电解同时制备金属锰与二氧化锰[D].哈尔滨工业大学,2007,07.
    [59]张颖.同槽电解锰和二氧化锰工艺条件及传质机理的研究[D].重庆大学,2006.
    [60]肖纪美著.不锈钢的金属学问题[M],2006年8月: 199-203.
    [61] PanaitescuE,Richter C,Menon L.J.Electrochem.Soc.,2008,155(1): 7-13.
    [62]罗申费尔德等。金属腐蚀及防护报告汇编,1959,165.
    [64] Qifeng Wei,Xiulian Ren,Jie Du,Sijie Wei,SuRong Hu. Minerals Engineering 23 (2010) 578-586.
    [65] S.M.Shelton and M.B.Royer,Trans.Electrochem.Soc.76,447(1939).
    [65]周敏元,梅光贵.电解金属锰阴、阳极过程的电化学反应及提高电流效率的探讨[J].中国锰业,2001,19(1):17-19.
    [66]张招贤等.钛电极学导论[M].北京:冶金工业出版社,2008:214.
    [67]郭鹤桐等.理论电化学[M].北京:宇航出版社,1984.
    [68]日根文男.安家驹等译.电解槽工学[M].北京:化学工业出版社,1985.
    [69] PanaitescuE,Richter C,Menon L.J.Electrochem.Soc.,2008,155(1): 7-13.
    [70] Chen Yezhang Zunbo, Zhang Wei, Shu Chang, Liu Liang. Synthesis Of Mno Powder By Molten Salt Method And Its Supercapacitor .Silicate Journal[J].36(8),2008:1054.
    [71]刘冰.电解锰复合添加剂的研究[D].重庆大学,2009:35.
    [72] Gonsalves M,Pletcher D.A study of the electrodeposition of manganese from aqueous chloride electrolytes[J].J.Elecrrounal.Chem.1990,285:185-193.
    [73] Ballesteros J C,Diaz-Aridta P,Meas Y, et al. Zinc electrodeposition in the presence of polythylene glycol 20000[J]. Electrochimica Acta, 2007,52(11):3686-3696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700