三维纳米结构电极的制备及作为锂离子电池负极的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有绿色无污染、功率密度大、循环寿命长等诸多优点,已广泛应用于手机、笔记本电脑等产品中,其发展对工业、科技有重要的影响。近年来,动力型、功率型设备的大量应用对锂离子电池提出了更高的要求,从而推动了锂离子电池向具有更高的能量密度与功率密度,更长的循环寿命和更宽广的工作温度范围等方向发展。
     三维纳米结构电极是近年来锂离子电池领域研究的一个热点,与传统的电极相比,它有更好的体积膨胀包容性、更强的电子与离子转移能力与更加稳定的机械结构等,因此在充放电过程中会表现出高得多的循环稳定性与倍率性能,被认为是下一代锂离子电池的理想选择之一
     本文从活性材料与集流体两方面入手,设计并制造了多种三维纳米结构电极并应用于锂离子电池的负极:在活性材料的结构设计方面,通过水热法制备在Ti衬底原位合成制备得到了Sn02纳米管阵列三维电极;在集流体结构的设计方面,提出了一种简单的大规模制备Cu多孔的纳米结构三维导电网络的方法,基于这种网络,分别合成得到了Si多孔三维纳米结构电极,Ge多孔三维纳米结构电极,Sn多孔三维纳米结构电极,SiGe多孔三维纳米结构电极。此外,通过引入一种Cu纳米线阵列集流体,利用不同合成方法制备得到了Cu-Ge, Cu-Sn, Cu-Si1-xGex, Cu-Mn3O4四种核壳结构纳米线阵列三维电极。上述三维纳米结构电极均表现了较好的电化学性能。
     本论文主要的创新点如下:
     (1)以ZnO纳米线阵列为模板,采用一种简单的水热法,制备得到了ZnO/SnO2复合物纳米线阵列,利用HCl去除ZnO模板后,首次成功地在金属衬底片上原位合成了Sn02纳米管阵列,其作为三维电极展现了很好的电化学性能。
     (2)引入一种Cu纳米线阵列集流体,通过射频溅射、直流溅射、电化学沉积等方法,分别合成得到了Cu-Ge, Cu-Sn, Cu-Si1-xGex, Cu-Mn3O4四种核壳结构纳米线阵列三维电极,这些三维纳米结构电极均表现出了很好的循环稳定性与大电流放电性能。
     (3)首次提出引入Ge改善Si活性材料电化学性能,并系统研究了Ge含量对Si负极材料电化学性能的影响。
     (4)通过在Cu片衬底上堆积Si02纳米颗粒模板,然后在Si02纳米颗粒的空隙间电化学沉积Cu,最后将模板去除,得到了一种新型的内部相通的三维导电网络,这种导电网络可以作为通用的锂离子电池集流体使用。
     (5)基于Cu多孔三维导电网络,通过不同的合成方法制备得到了Si多孔三维纳米结构电极,Ge多孔三维纳米结构电极,Sn多孔三维纳米结构电极,SiGe多孔三维纳米结构电极,在电化学测试中,上述四种三维纳米结构电极比对应的平板电极均表现出了更加优异的性能,具有在锂离子电池应用的潜力。
Lithium-ion batteries have been widely used in portable electronic devices and greatly affect the industry, science and technology due to many advantages such as enviromentally friendly, high power density and long cycle life. Recently, higher power density, longer cycle life, and wider range of working temperature are demanded in lithium-ion batteries because of the fast development of the power type applications.
     The three-dimensional (3D) nanostructured electrodes have received great interest for Lithium-ion batteries, which show significant advantages in their kinetics and electronic conduction during the charge-discharge process. Therefore,3D nanostructured electrodes are expected to show higher capacities, good cycling stability and rate capability, and thus have been considered as one of the promising choices for next generation lithium-ion batteries.
     In this dissertation, we prepare several kinds of3D nanostructured electrodes for lithium-ion batteries via different ways:we propose a nanoarray template assisted method to obtain SnO2nanotube arrays; we propose a facil template-engaged approach for Cu nanoporous3D current collect, which can support Si, Ge, SiGe and Sn to form porous3D nanostructured electrode; besides, we propose a template-assisted method for Cu nanwire arrays as current collector, which can support Ge, Sn, Si1-xGex and Mn3O4to form3D electrode. Owing to the unique structure, the above-mentioned3D nanostructured electrodes exhibit improved electrochemical performance. The main innovative results are listed as follows:
     (1) By using a pre-fabricated ZnO nanowire arrays as sacrificial templates, SnO2layer has been coated onto the surface of ZnO nanowires by a hydrothermal process. After HC1solution etching, SnO2nanotube arrays on titanium substrate are obtained. The as-synthesized SnO2nanotube arrays are applied as anode materials for Li-ion battery, which exhibit high capacity and good cycling performance.
     (2) By employing a Cu nanwire arrays as current collector, Cu-Ge, Cu-Sn, Cu-Si1-xGex and Cu-Mn3O4core-shell nanowire arrays3D electrode have been obtained. The four kinds of3D nanostructured electrodes all exhibit good cycling stability and rate capability.
     (3) We propose that alloying Ge with Si could improve the electrochemical performance of Si. The effect of Ge content on the electrochemical performance of Si-based materials has also been investigated.
     (4) We demonstrate the synthesis of Cu nanoporous three-dimensional network via a simple template-assisted method. The network could be used as a universal current collector for lithium-ion batteries.
     (5) By using this3D network as current collector, Si, Ge, SiGe and Sn porous3D nanostructured electrode have been prepared. The as-prepared four kinds of porous3D nanostructured electrodes exhibit improved cycling stability and rate capability compared to corresponding planar electrodes.
引文
[1]H. Gruenspecht, International Energy Outlook 2011:Center for Strategic and International Studies. U.S.:2010.
    [2]W. S. Harris, Electrochemical studies in cyclic ester. Thesis UCRL-8381, Ph. D. Berkeley, University of California,1958.
    [3]W. van schalkwijk and B. Scrosati. Advance in lithium ion batteries. Springer US,2002:1-2.
    [4]A. Colin Vincent. Lithium batteries:a 50-year perspective,1959-2009. Solid State Ionics, 2000,134:159-167.
    [5]B. C. H. Steele and Van Gool. Fast Ion Transport in Solids. North-Holland, Amsterdam,1973: 103-109
    [6]M. B. Armand and Van Gool. Fast Ion Transport in Solids. North-Holland, Amsterdam,1973: 665-673
    [7]M. S. Whittingham. U. S. Patent 4009052,1977.
    [8]M. S. Whittingham. Electrical energy storage and intercalation chemistry. Science,1976,192: 1226-1127.
    [9]M. B. Armand. Materials for Advanced Batteries. New York:Plenum Press,1980:145
    [10]J. J. Auburn and Y. L. Barberio.J. Electrochem. Soc.,1987,168:638
    [11]R. Teki et al. Nanostructured Silicon Anodes for Lithium Ion. Rechargeable Batteries. Small, 2009,20:2236-2242.
    [12]I. Mochida, C. H. Ku, Y. Korai. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon,2001.39:399-410.
    [13]M. Winter, J. O. Besenhard. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta,1999,45:31-50.
    [14]H. Arai, S. Okada, Y. Sakurai, J. Yamaki. Cathode performance and voltage estimation of metal trihalides. J. Power Sources,1997,68:716-719.
    [15]J. Hu, H. Li, X. J. Huang. Cr2O3-Based Anode Materials for Li-Ion Batteries Electrochem. Solid State Lett.,2005,8:A66-A69.
    [16]R. D. Apostolova, E. M. Shembe. I. Talyosef, J. Grinblat, B. Markovsky and D. Aurbach. Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. J. Electrochem.,2009,45:311-319.
    [17]Z. W. Fu, Y. Wang, X. L. Yue, S. L. Zhao and Q. Z. Qin. Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes. J. Phys. Chem. B,2004,108:2236-2244.
    [18]H. Li. G. Richter. Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries. Adv. Mater.2003,15:736-739.
    [19]Y. F. Zhukovskii, E. A. Kotomin and P. Balaya. Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O:Comparison of DFT calculations and experimental studies. Solid State Sci,2008,10:491-495.
    [20]Y. V. Mikhaylik, J. R. Aldridge, Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc,2004,151:A1969-A 1976.
    [21]D. C. S. Souza, V. Pralong, A. J. Jacobson and L. F. Nazar. A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox. Chemistry Science, 2002,296:2012-2015.
    [22]X. J. Liu, H. Yasuda and M. Yamachi, Solid solution of nickel oxide and manganese oxide as negative active material for lithium secondary cells. J. Power Sources,2005,146:510-515.
    [23]P. Poizot, S. Laruelle, S. Grugeon and J. M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li. J. Electrochem.Soc.,2002, 149:A1212-A1217.
    [27]B. Mauvernay, M. L. Doublet and L. Monconduit, Redox mechanism in the binary transition metal phosphide Cu3P. J. Phys. Chem. Solids,2006,67:1252-1257.
    [28]C. H. W. Jones, P. E. Kovacs, R. D. Sharma, R. S. McMillan, Iron-57 Moessbauer spectroscopy of reduced cathodes in the lithium/iron disulfide battery system:evidence for superparamagnetism. J. Phys. Chem.,1990,94:832-836.
    [29]1. Plitz. F. Badway, J. Al-Sharab, A. DuPasquier, F. Cosandey and G. G. Amatucci, Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction. J. Electrochem. Soc.,2005,152:A307-A315.
    [30]H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago. Preparation of α-Fe2O3 Electrode Materials via Solution Process and Their Electrochemical Properties in All-Solid-State Lithium Batteries, J. Electrochem. Soc.,2007,154:A725-A729.
    [31]J. W. Choi, G. Cheruvally, H. J. Ahn. K. W. Kim and J. H. Ahn. Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources,2006,163:158-165.
    [32]Y. Wang, Z. W. Fu, X. L. Yue and Q. Z. Qin. Electrochemical Reactivity Mechanism of Ni3N with Lithium., J. Electrochem. Soc.,2004.151:E162-E167.
    [33]P. Poizot. S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries Nature,2000, 407:,496-499.
    [34]J. M. Tarascon, S. Grugeon, S. Laruelle, D. Larcher, P. Poizot. in Lithium Batteries:Science and Technology, (Eds:G. A. Nazri G. Pistoia), Kluwer Academic Publishers, Dordrecht (Netherlands) 2004,220.
    [35]P. J. Masset, R. A. Guidotti. Thermal activated ("thermal") battery technology:Part Ⅲb. Sulfur and oxide-based cathode materials. J. Power Sources,2008,178:456-466.
    [36]D. Linden and T. B. Reddy. Handbook of batteries, McGraw-Hill, New York,2002.
    [37]H. Ikeda and S. Narukawa. Behaviour of various cathode materials for non-aqueous lithium cells. J. Power Sources,1983,9:329-334.
    [38]S. H. Lee, Y. H. Kim. R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie. K. M. Jones, A. H. Mahan, S. B. Zhang and A. C. Dillon. Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles. Adv. Mater.,2008,20:3627-36323.
    [39]M. F. Hassan, Z. P. Guo, Z. Chen and H. K. Liu. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources,2010,195:2372-2376.
    [40]J. H. Ku, Y. S. Jung, K. T. Lee, C. H. Kim and S. M. Oh. Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries. J. Electrochem.Soc.2009,156: A688-A693.
    [41]W. Luo, Y. Xie, C. Z. Wu, F. Zheng, Spherical CoS2@carbon core-shell nanoparticles: one-pot synthesis and Li storage property. Nanotechnology,2008:19
    [42]R. Jasinski and B. Burrows. Cathodic Discharge of Nickel Sulfide in a Propylene□Carbonate□□LiClO4. J. Electrochem. Soc.,1969,116:422-424.
    [43]F. W. Dampier. Insoluble Sulfide Positive Electrodes for Organic Electrolyte Lithium Secondary Batteries. J. Electrochem. Soc.,1981,128:2501-2506.
    [44]Y. Nishio, H. Kitaura, A. Hayashi and M. Tatsumisago. All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S-P2S5 electrolyte prepared via mechanochemical reaction. J. Power Sources,2009,189:629-632.
    [45]F. Bonino, M. Lazzari, B. Rivolta and B. Scrosati. Electrochemical Behavior of Solid Cathode Materials in Organic Electrolyte Lithium Batteries:Copper Sulfides, J. Electrochem. Soc.1984,131:1498-1502.
    [46]G. Eichinger and J. O. Besenhard. High energy density lithium cells:Part Ⅰ. Electrolytes and anodes. J. Electroanal. Chem.,1976,72:1-18.
    [47]C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo and H. Liu. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull.2009,44:1811-1815.
    [48]H. Li, L. Ma, W. X. Chen, J. M. Wang, Synthesis of MoS2/C nanocomposites by hydrothermal route used as Li-ion intercalation electrode materials. Mater. Lett.2009,63: 1363-1365.
    [49]J. Ma, L. Yu, Z. W. Fu, Electrochemical and theoretical investigation on the reaction of transition metals with Li3N.Electrochim. Acta,2006,51:4802-4814.
    [50]D. C. C. Silva, O. Crosnier, G. Ouvrard, J. Greedan, A. Safa-Sefat and L. F. Nazar. Reversible Lithium Uptake by FeP2. Electrochem. Solid-State Lett.,2003,6:A162-A165.
    [51]J. Y. Xiang, J. P. Tu, X. L. Wang, X. H. Huang, Y. F. Yuan, X. H. Xia, Z. Y. Zeng Electrochemical performances of nanostructured Ni3P-Ni films electrodeposited on nickel foam substrate. J. Power Sources,2008,185:519-525.
    [52]M. L. Doublet, F. Lemoigno, F. Gillot and L. Monconduit, The LixVPn4 Ternary Phases (Pn =P, As):Rigid Networks for Lithium Intercalation/Deintercalation Chem. Mater.,2002.14: 4126-4133.
    [53]S. Boyanov, F. Gillot and L. Monconduit. The electrochemical reactivity of the NiP3 skutterudite-type phase with lithium Ionics,2008,14:125-130.
    [54]K. Wang, J. Yang, J. Y. Xie, B. F. Wang and Z. S. Wen. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem. Commun.,2003,5: 480-483.
    [55]F. Badway, N. Pereira, F. Cosandey and G. G. Amatucci. Carbon-Metal Fluoride Nanocomposites:Structure and Electrochemistry of FeF3:C. J. Electrochem.Soc.,2003,150: A1209-A1218.
    [56]J. Cabana, L. Monconduit, D. Larcher and M. R. Palacin. Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater.,2010,22:E170-E192.
    [57]T. H. Kim, J. S. Park, S. K. Chang, S. G. Choi, Ji Heon Ryu and Hyun-Kon Song. The Current Move of Lithium Ion Batteries Towards the Next Phase. Adv. Energy Mater.,2012.7: 860-972.
    [58]F. Jiao, P. G. Bruce, Mesoporous Crystalline β-MnO2-a Reversible Positive Electrode for Rechargeable Lithium Batteries. Adv. Mater.,2007,19:657-660.
    [59]Y Piao, H. S. Kim, Y. E. Sung, T. Hyeon. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem. Commun.,2010.46:118-120
    [60]J. Hassoun, S. Panero, P. Simon, P. Louis Taberna and B. Scrosati. High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries. Adv. Mater.,2007,19: 1632-1635.
    [61]J. P. Liu, Y. Y. Li, X. T. Huang, R. M. Ding, Y. Y. Hu, J. Jiangand L, Liao. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem..2009,19: 1859-1864.
    [62]D. Liu, P. Xiao, Y.H. Zhang, B.B. Garcia, Q.F. Zhang, Q. Guo, R. Champion and G.Z. Cao, TiO2 Nanotube Arrays Annealed in N2 for Efficient Lithium-Ion Intercalation. J. Phys. Chem. C.2008,112:11175-11180.
    [63]Y. G. Li, B. Tan, and Y. Y. Wu. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett.,2008,8:265-270.
    [64]J. Jiang, J.P. Liu, R. M. Ding, X. X. Ji, Y. Y. Hu, X. Li, A. Z. Hu, F. Wu, Z. H. Zhu and X. T. Huang. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application asLithium-Ion Battery Electrodes. J. Phys. Chem. C 2010,114:929-932.
    [65]C. K. Chan, H.L. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, Y. Cui. High-performance lithium battery anodes using silicon nanowires Nat. Nanotechnol.2008,3: 31-35.
    [66]L. Shen, E. Uchaker, X. G. Zhang, and G. Z. Cao. Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries. Adv. Mater.2012,24:6502-6506.
    [67]P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G. U. Sumanasekera and M.K. Sunkara. MoO3 Nanowire Arrays As Stable and High-Capacity Anodes for Lithium Ion Batteries. Nano Lett. 2012,12:17841788.
    [68]B. Liu, J. Zhang, X. F. Wang. G. Chen, D. Chen, C. W. Zhou and G. Z. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Lett.,2012.12:3005-3011.
    [69]J. Liu, C. P. Liu, Y. L. Wan, W. Liu, Z. S. Ma, S. M. Ji, J. B. Wang, Y. C. Zhou, P. Hodgsonb and Y. C. Li. Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. CrystEngComm.2013, 15:1578-1585.
    [70]M. Tian, W. Wang, S. H. Lee, Y. C. Lee, R. G. Yang. Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. Journal of Power Sources. 2011,196:10207-10212.
    [71]J. P. Liu, Y. Y Li, H. J. Fan, Z. H. Zhu, J. Jiang, R. M. Ding, Y. Y. Hu and X. T. Huang, Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage. Chem. Mater.,2010,22:212-217.
    [72]T. Song, J. L. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, Jian Wu, S. Kwang Doo, H. Chang, W. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, John A. Rogers and U. Paik, Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Lett.,2010, 10:1710-1716.
    [73]T. Song, H. Y. Cheng, H. C. Choi, J. H. Lee, H. K. Han, D. H. Lee, D. S. Yoo, M. S. Kwon, J. M. Choi, S. G. Doo, H. Chang, J. L. Xiao, Y. G. Huang, W. Park, Y. C. Chung, H. Kim, J. A. Rogers and U. Paik. Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode. 2012,6:303-309.
    [74]Z. Wei, H. Mao, T. Huang, A. Yu. Facile synthesis of Sn/TiO2 nanowire array composites as superior lithium-ion battery anodes. Journal of Power Sources.2013,223:50-55.
    [75]L. Yu, Z. Y Wang, L. Zhang, H. B. Wu and X. W Lou. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A, 2013,1:122-127.
    [76]L. G. Xue, Z. Wei, R. S. Li, J. L. Liu, T. Huang and A. Yu. Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries. J. Mater. Chem.,2011,21:3216-3220.
    [77]W. Q. Zeng, F. P. Zheng, R. Z. Li, Y. Zhan, Y. Y. Lib and J. P. Liua. Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale,2012,4:2760-2765.
    [78]Z. W. Fu, Y. Wang, Y. Zhang, Q. Z. Qin. Electrochemical reaction of nanocrystalline Co3O4 thin film with Lithium. Solid State Ionics,2004,170:105-109.
    [79]J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S. H. Kang and J. Kim Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-lon Batteries. J. Electrochem. Soc.,2011,158:A275-A280.
    [80]H. G. Jung, S. T. Myung, C. S. Yoon, S. B. So, K. H. Oh, K. Amin, B. Scrosati and Y. K. Sun. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci.,2011,4,1345-1351.
    [81]L. F. Shen, C. Z. Yuan, H. J. Luo, X. G. Zhang, L. Chen, H. S. Li, Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteriesJ. Mater. Chem.2011,21,14414-14416.
    [82]Y. Q. Wang. G. Q. Hu, X. F. Duan,H. L. Sun and Q. K. Xue. Microstructure and formation mechanism of titanium dioxide nanotubes. Chem. Phys. Lett.,2002,365:427-431.
    [83]W. Zhen, L. Zheng Liu and J. Rongrong. TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries. J. Solid State Electrochem.,2010,14:1045-1050.
    [84]C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources,2009,189:34-39.
    [85]W. Wang, R. Epur and P. N. Kumta. Vertically aligned silicon/carbon nanotube (VASCNT) arrays:Hierarchical anodes for lithium-ion battery. Electrochemistry Communications,2011. 13:429-432.
    [86]P. Taberna, S. Mitra, P. Poizot, P. Simon. J. Tarascon. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature materials,2006,5: 567-573.
    [87]A. Finke, P. Poizot, C. Guery, L. Dupont, P. L. Taberna, P. Simon and J. Tarascona. Electrochemical Method for Direct Deposition of Nanometric Bismuth and Its Electrochemical Properties vs Li. Electrochemical and Solid-State Letters,2008,11(3): E5-E9.
    [88]W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee and R. Yang. Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. Nano Lett.,2012,12:655-660.
    [89]F. F. Cao, J. W. Deng, S. Xin, H. X.Ji, O. G. Schmidt, L. Wan and Y. Guo. Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries. Adv. Mater.,2011,23: 4415-4420.
    [90]Y. Wang, L. Huang, Y. Chang, F. Ke, J. Li and S. Sun Fabrication and electrochemical properties of the Sn-Ni-P alloy rods array electrode for lithium-ion batteries. Electrochemistry Communications,2010,12:1226-1229.
    [91]F. Ke, L. Huang, B. C. Solomon, G. Wei, L. Xue, B. Zhang, J. Li, X. Zhou and S. Sun Three-dimensional nanoarchitecture of Sn-Sb-Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem.,2012,22:17511-17517.
    [92]J. Chena, L. Yanga, S. Fanga, S. Hiranob and K. Tachibanac. Three-dimensional core-shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries. Journal of Power Sources.,2012,199,341-345.
    [93]S. Zhang, Z. Du, R. Lin, T. Jiang, G. Liu, X. Wu and D. Weng. Nickel Nanocone-Arrays Supported Silicon Anode for High-Performance Lithium-Ion Batteries. Adv. Mater.,2010, 22:5378-5382.
    [94]Z. Du and S. Zhang. Enhanced Electrochemical Performance of Sn-Co Nanoarchitectured Electrode for Lithium Ion Batteries. J. Phys. Chem. C,2011,115 (47):23603-23609.
    [95]N. Du, X. Fan. J. Yu, H. Zhang, D. Yang Ni3Si2-Si nanowires on Ni foam as a high-performance anode of Li-ion batteries. Electrochemistry Communications,2011,13: 1443-1446.
    [96]X. Fan, H. Zhang, N. Du, P. Wu, X. Xu, Y. Li and D. Yang Vertically ordered Ni3Si2/Si nanorod arrays as anode materials for high-performance Li-ion batteries. Nanoscale,2012,4: 5343-5347.
    [97]X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi and J. N. Culver Virus-Enabled Silicon Anode for Lithium-Ion Batteries. ACS nano,2010,4:5366-5372.
    [98]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka. Tin-based amorphous oxide:A high-capacity lithium-ion-storage material. Science,1997,276:1395-1397.
    [99]N. Li and C. R. J. Martin, A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis Electrochem. Soc.,2001,148:A164-A170.
    [100]J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang and D. Zhao. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material Adv. Mater.2004,16:1432-1436.
    [101]S. Han, B. Jang, T. Kim, S. Oh and T. Hyeon. Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes Adv. Funct. Mater., 2005,15:1845-1850.
    [102]X. M. Sun, J. F. Liu, Y. D. Li, Oxides@C Core-Shell Nanostructures:One-Pot Synthesis, Rational Conversion, and Li Storage Property. Chem. Mater.2006,18:3486-3494.
    [103]Z. H. Wen, Q. Wang, Q. Zhang and J. H. Li, In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes:A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries. Adv. Funct. Mater.2007,17:2772-2778.
    [104]G. Chen, Z. Y. Wang and D. G. Xia, One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability. Chem. Mater.2008, 20,6951-6956.
    [105]J. S. Chen, Y. L. Cheah, Y. T. Chen, N. Jayaprakash, S. Madhavi, Y. H. Yang and X. W. Lou, SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. J. Phys. Chem. C 2009,113,20504-20508.
    [106]Y. Wang, J. Y. Lee and H. C. Zeng. Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chem. Mater. 2005,17,3899.
    [107]X. W. Lou, Y. Wang. C. L. Yuan, J. Y. Lee, L. A. Archer. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18, 2325-2329.
    [108]N. Du, H. Zhang, J. R. Chen, J. Y. Sun, B. D. Chen and D.Yang, Metal Oxide and Sulfide Hollow Spheres:Layer-By-Layer Synthesis and Their Application in Lithium-Ion Battery. J. Phys. Chem. B 2008,112:14836-14842.
    [109]N. Du, H. Zhang, B. D. Chen, X. Y. Ma, X. H. Huang. J. P. Tu and D. Yang. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Mater. Res. Bull.2009,44:211-215.
    [110]H. Zhang, D. Yang, X. Y. Ma and D. L. Que, Synthesis and Field Emission Characteristics of Bilayered ZnO Nanorod Array Prepared by Chemical Reaction. J. Phys. Chem. B,2005, 109:17055-17059.
    [111]J. Goldberger, R. R. He, Y. F. Zhang, S. Lee, H. Q. Yan. H. Choi and P. D. Yang, Single-crystal gallium nitride nanotubes. Nature,2003,422:599-602.
    [112]X. W. Lou, C. Yuan, L. A. Archer. Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls:Cavity Size Tuning and Functionalization.Small,2007,3: 261-265.
    [113]X. Sun, J. Liu, and Y. Li. Oxides@C Core-Shell Nanostructures:One-Pot Synthesis, Rational Conversion, and Li Storage Property. Chem. Mater.,2006,18:3486-3494.
    [114]D. Deng and J. Y. Lee. Hollow Core-Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+Ion Storage. Chem. Mater.,2008,20:1841-1846.
    [115]G. L. Cui, L. Gu, L. J. Zhi, N. Kaskhedikar, P. A. van Aken, K. Mullen and J. Maier. A Germanium-Carbon Nanocomposite Material for Lithium Batteries. Adv. Mater.,2008,20: 3079-3083.
    [116]S. Yoon, C. M. Park and H. J. Sohn, Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries. Electrochem. Solid-State Lett.,2008.11:A42-A45.
    [117]C. K. Chan. X. F. Zhang and Y. Cui. High Capacity Li Ion Battery Anodes Using Ge Nanowires Nano Lett.,2008,8:307-309.
    [118]Y. S. Hu, R. D. Cakan, M. M. Titrici, J.-O. Mueller, R. Schloegl, M. Antonietti, J. Maier, Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angew. Chem. Int. Ed.,2008,47:1645-1649.
    [119]B. Gao, S. Sinha, L. Fleming, O. Zhou. Alloy Formation in Nanostructured Silicon. Adv. Mater.,2001,13:816-819.
    [120]C. M. Hwang and J. W. Park. Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries. Thin Solid Films,2009,518:6590-6597
    [121]T. D. Hatchard and J. R. Dahn Study of the Electrochemical Performance of Sputtered Si|.xSnx Films. J. Electrochem. Soc.,2004, 151:A1628-A1635.
    [122]E. V. Jelenkovic, K. Y. Tong and Z. Sun. Properties of crystallised Si1-xGex thin films deposited by sputtering. J. Vac. Sci. Technol.1997,15:2836-2841.
    [123]J. Olivaresa, A. RodroAgueza, J. Sangradora, T. RodroAgueza, C. Ballesterosb and A. Kling. Solid-phase crystallization of amorphous SiGe films deposited by LPCVD on SiO2 and glass. Thin Solid Film,1999,337:51-54.
    [124]M. Park, K. Kim, J. Kim and J. Cho. Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes:From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Adv. Mater.,2010,22:415-418.
    [125]L. Bazina, S. Mitraa, P. L.Tabernaa, P. Poizot, M. Gressier, M. J. Menua, A. Barnabea, P. Simon and J. M. Tarascon. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J. Power Sources.2009,188:578-582.
    [126]F. S. Ke, L. Huang,; J. S. Cai and J. S. Sun. Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries. Electrochimica Acta.2007,52:6741-6747.
    [127]Q. Y. Li, S. J. Hua, H. Q. Wang, F. W. Wang, X. X. Zhong and Wang, X. Y. Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochim. Acta.2009,54:5884-5888.
    [128]Y. Wang and G. Cao. Synthesis and electrochemical properties of InVO4 nanotube arraysJ. Mater. Chem.2007,17:894-899.
    [129]Y. Hu, L. Kienle and Y. Guo:High Lithium Electroactivity of Nanometer-Sized Rutile TiO2J. Maier. Adv. Mater.2006,18:1421-1426.
    [130]Q. Pan, H. Wang and Y. Jiang. J. Mater. Chem.2007,17:329-334. Natural graphite modified with nitrophenyl multilayers as anode aterials for lithium ion batteries. J. Mater. Chem.,2007,17:329-334.
    [131]N. Du, H. Zhang, B. Chen, J. Wu, X. Ma, Z. Liu,Y. Zhang, D. Yang, X. Huang and J. Tu. Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li-Battery Applications. Adv. Mater.2007,19:4505-4509.
    [132]L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P. Shen, Q. Gao, Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. Adv. Funct. Mater.,2010,20:617-623.
    [133]J. Gao, M. Lowe and H. Abruna. Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chem. Mater.,2011,23:3223-3227.
    [134]H. Wang, L. Cui, Y. Yang, H. Casalongue, J. Robinson, Y. Liang, Y. Cui and H. Dai. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc.2010,132,13978-13980.
    [135]D. Pasero, N. Reeves, A. West, Co-doped Mn3O4:a possible anode material for lithium batteries. J. Power Sources,2005,141:156-158.
    [136]X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, D. He, Nanostructured NiO electrode for high rate Li-ion batteries J. Mater. Chem.2011,21:3571-3573.
    [137]Q. Fan and M. Whittingham. Electrospun Manganese Oxide Nanofibers as Anodes for Lithium-Ion Batteries. Electrochem. Solid-State Lett.2007,10:A48-A51.
    [138]S. Grugeon, S. Laruelle and L. Dupon. An update on the reactivity of nanoparticles Co-based compounds towards Li J. Tarascon. Solid State. Sci.,2003,5:895-904.
    [139]G. Zhou, D. Wang, F. Li, L. Zhang, N. Li, Z. Wu, L. Wen, G. Lu, H. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chem. Mater.2010,22:5306-5313.
    [140]C. K. Chan, H. Peng, G. Lin, K. Mcllwrath, X. F. Zhang, R. A. Huggins and Y.Cui High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology.,2008,3:31-35.
    [141]H. G.Zhang, X. G.Yu and P. V.Braun. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nature nanotech.,2011,6:277-281.
    [142]B.Kang and Ceder. Battery materials for ultrafast charging and discharging. Nature,2009. 458:190-193.
    [143]S. Zhou, X. Q.Yang, Y. J. Lin, J. Xie and D. W. Wang. A Nanonet-Enabled Li Ion Battery Cathode Material with High Power Rate, High Capacity, and Long Cycle Lifetime. ACS. Nano.2012,6:919-924.
    [144]X. H. Wang, X. W. Li, X. L. Sun, F. Li, Q. M. Liu, Q. Wang and D. Y. He. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem.,2011.21: 3571-3573.
    [145]X. H. Wang, Z. B. Yang, X. L. Sun, X. L. Li, D. S. Wang, P.Wang and D. Y. He. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries J. Mater. Chem.2011,21:9988-9990.
    [146]Y. G. Li, B. Tan and Y. Y. Wu. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. Nano Lett.2008,8:265-270.
    [147]H. S. Kim, S. H. Kang, Y. H. Chung and Y. E. Sung, Conformal Sn Coated TiO2 Nanotube Arrays and Its Electrochemical Performance for High Rate Lithium-Ion Batteries. Electrochem. Solid-State Lett.,2010,13:A15-A18.
    [148]Q. Li, S. Hua, H. Wang, F. Wang, X. Zhong and X.Wang. Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochim. Acta.2009,54: 5884-5888.
    [149]W. Stober. A. Fink and E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range J. Colloid Interface Sci.,1968:62-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700