介质微结构与未来磁记录方式中记录过程的微磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在2004-2006年间,计算机硬盘中的数据记录方式逐渐由水平磁记录方式转向垂直磁记录方式。可是随着记录密度的进一步提高,垂直磁记录方式也在接近超顺磁性的限制,因此,对下一代磁记录方式的研究势在必行。能量辅助磁记录、比特图形磁记录和叠层瓦片式磁记录是记录密度有望超过1Tbit/in2的新型磁记录方式。这三种磁记录方式对介质的磁性参数和微结构的要求是各不相同的,相应的磁记录过程也有较大的差异。因此,在综合考虑介质的热稳定性、信噪比和可写入性的前提下,本文研究了比特图形磁记录和叠层瓦片式磁记录所采用的介质、记录过程及密度极限,同时还分析了能量辅助磁记录所使用的L10FePt介质中的孪晶结构对磁记录性能的影响。
     本文首先从实验中观察到的纳米颗粒中的五重孪晶结构出发,建立了一个解析的模型来理解孪晶结构的存在对磁晶各向异性场的影响。计算结果表明,孪晶结构的存在会大幅降低颗粒的磁晶各向异性场,同时造成磁晶各向异性场的分布,这会降低介质的热稳定性,增大反转场的分布宽度,降低信噪比。这个问题的研究对理解磁晶各向异性场的分布有普遍的意义。
     使用双颗粒模型对交换耦合(ECC)介质的反转特性进行了研究,分析了介质磁性参数与反转场的关系,为设计热稳定性和可写入性都良好的ECC介质提供了指导。随后,分别对垂直薄膜介质和ECC介质进行了叠层瓦片式磁记录过程的模拟,统计了不同记录密度下的信噪比,发现ECC介质具有更高的信噪比和密度极限,同时还对ECC介质的磁性参数作了进一步的优化。
     在对光刻法制备的比特图形介质(BPM)的磁记录过程的模拟中,研究了实现写入同步的时间窗口和对磁道偏移量的容忍度,发现降低由介质非均匀性造成的磁晶各向异性场的涨落有利于比特的正确写入。在对离子辐照法制备的BPM介质的磁记录模拟过程中发现,大幅降低比特之间被辐照区域的磁性质、对各个比特进行磁性隔离是实现正确写入的关键。通过优化系统参数和磁性参数,对不同密度的BPM介质的磁记录结果进行分析,可以预测离子辐照法制备的BPM介质的记录密度极限大约是3.0Tbit/in~2。
During2004to2006,the industry of hard disk drive switched from longitudinalmagnetic recording (LMR) to perpendicular magnetic recording (PMR). However, withthe continual increase of areal density, PMR will approach its superparamagnetic limit.The study of new magnetic recording modes is imperative. Energy assisted magneticrecording (EAMR), bit patterned magnetic recording (BPMR) and Shingled magneticrecording (SMR) are the three recording modes to achieve the density above1Tbit/in2.The three magnetic recording modes need different media designs with differentmagnetic parameters and microstructures, and their own recording processes are alsodifferent. In this thesis, under comprehensive consideration of thermal stability, signalto noise ratio (SNR) and writeability, the media, recording process and density limit ofBPMR and SMR are studied. The effect of twin structure in L10FePt medium used byEAMR on magnetic recording properties is also analyzed.
     Based on the measured five-fold twin structure in L10FePt nanoparticle, ananalytical model is established to study the effect of twin structure on the anisotropyfield of nanoparticle. The calculation indicates that the existence of twin structure willconsiderably reduce the anisotropy field and cause a wide distribution of the anisotropyfield, which will decrease the thermal stability of FePt medium, broaden the switchingfield distribution, and decrease SNR. This study has general significance on the Hkdistribution in HDD media.
     A Two-particle model is used to study the switching properties of exchangecoupled composites (ECC) media, and analyze the relationship between the switchingfield and the media magnetic parameters. The results will help the design of ECC mediawhich has both good thermal stability and writeabilty. Then, shingled magneticrecording is carried out on the conventional thin film media and ECC media,respectively. SNR of both media at different recording densities is studied, and it isfound that ECC media has a higher SNR and a higher density limit. The magneticparameters of ECC media are further optimized to attain a higher SNR.
     The recording processes in BPM fabricated by lithography or by ion irradiation aresimulated. In the lithography prepared BPM, the time window for the correct written-inand the tolerance of the offset margin can be attained. We find that the distribution of anisotropy field caused by the inhomogenity of thin film can deteriorate the correctwritten-in and should be reduced for optimum performance. For the recording processof BPM fabricated by ion irradiation, it is recognized that the significant reduction ofmagnetic properties in the irradiated area and the magnetic isolation among bits are thekeys to realize the correct written-in. Through optimizing the system and magneticparameters of BPMR, the recording density limit of BPM fabricated by ion irradiation ispredicted to be3.0Tbit/in~2.
引文
[1] Mellor C. WD bigshots spin superfast disk roadmap[OL].(2012-05-09)[2013-04-09].http://www.theregister.co.uk/2012/05/09/wd_disk_tech_views.
    [2] Iwasaki S, Nakamura Y. Analysis for magnetization mode for high-density magneticrecording. IEEE Trans Magn,1977,13:1272-1277.
    [3] Iwasaki S, Nakamura Y, Ouchi K. Perpendicular magnetic recording with a compositeanisotropy film. IEEE Trans Magn,1979,15:1456-1458.
    [4] Iwasaki S. Perpendicular magnetic recording. IEEE Trans Magn,1980,16:71-76.
    [5] Potter R I, Beardsley I A. Self-consistent computer calculations for perpendicular magneticrecording. IEEE Trans Magn,1980,16:967-972.
    [6] Potter R I. Lanx Corporation. J Magn Magn Mater,2012,324:344-350.
    [7] Cain W, Payne A, Baldwinson M, et al. Challenges in the practical implementation ofperpendicular magnetic recording. IEEE Trans Magn,1996,32:97-102.
    [8] Hamilton H. Looking back on Censtor and PMRC. J Magn Magn Mater,2012,324:363-364.
    [9] Hamilton H, Anderson R, Goodson K. Contact perpendicular recording on rigid media. IEEETrans Magn,1991,27:4921-4926.
    [10] Iwasaki S. Lessons from research of perpendicular magnetic recording. IEEE Trans Magn,2003,39:1868-1870.
    [11] Iwasaki S. Guiding principle for research on perpendicular magnetic recording. IEEE TransMagn,2005,41:683-686.
    [12] Iwasaki S. Past and present of perpendicular magnetic recording. J Magn Magn Mater,2008,320:2845-2849.
    [13] Iwasaki S. Perpendicular magnetic recording-Its development and realization. J Magn MagnMater,2012,324:244-247.
    [14] Oshiki M. Review of perpendicular magnetic recording research at Fujitsu. J Magn MagnMater,2012,324:351-354.
    [15] Tagami K. Looking back at perpendicular magnetic recording R&D in NEC. J Magn MagnMater,2012,324:355-362.
    [16] Weller D, Doerner M F. Extremely high-density longitudinal magnetic recording media. AnnuRev Mater Sci,2000,30:611-644.
    [17] Arnoldussen T C, Tong H C. Zigzag transition profiles, noise, and correlation statistics inhighly oriented longitudinal film media IEEE Trans Magn,1986,22:889-891.
    [18] Li J S, Mirzamaani M, Bian X P, et al.10Gbit/in2longitudinal media on a glass substrate(invited). J Appl Phys,1999,85:4286-4291.
    [19] Yogi T, Ching T, Nguyen T A, et al. Longitudinal media for1Gb/in2areal density. IEEE TransMagn,1990,26:2271-2276.
    [20] Thomson T, Abelmann L, Groenland H. Magnetic data storage: Past present and future//Azzerboni B, Asti G, Pareti L, et al. Magnetic Nanostructures in Modern Technology:Spintronics, Magnetic Mems and Recording.2008:237-306.
    [21] Wei D. Micromagnetics and Recording Materials. Berlin: Springer,2012.
    [22] Inaba N, Yamamoto T, Hosoe Y, et al. Microstructural segregation in CoCrTa and CoCrPtlongitudinal magnetic recording media. J Magn Magn Mater,1997,168:222-231.
    [23] McFadyen I R, Fullerton E E, Carey M J. State-of-the-art magnetic hard disk drives. MrsBulletin,2006,31:379-383.
    [24] Risner J D, Sinclair R, Bentley J. Observation of the effect of grain orientation on chromiumsegregation in longitudinal magnetic media. J Appl Phys,2006,99:033905.
    [25] Richter H J. The transition from longitudinal to perpendicular recording. J Phys D: Appl Phys,2007,40: R149-R177.
    [26] Oikawa S, Takeo A, Hikosaka T, et al. High performance CoPtCrO single layeredperpendicular media with no recording demagnetization. IEEE Trans Magn,2000,36:2393-2395.
    [27] Takeo A, Oikawa S, Hikosaka T, et al. A new design to suppress recording demagnetizationfor perpendicular recording. IEEE Trans Magn,2000,36:2378-2380.
    [28] Tanaka Y, Hikosaka T. Perpendicular recording with high squareness CoPtCrO media. J MagnMagn Mater,2001,235:253-258.
    [29] Oikawa T, Nakamura M, Uwazumi H, et al. Microstructure and magnetic properties ofCoPtCr-SiO2perpendicular recording media. IEEE Trans Magn,2002,38:1976-1978.
    [30] Zheng M, Acharya B R, Choe G, et al. Role of oxygen incorporation in Co-Cr-Pt-Si-Operpendicular magnetic recording media. IEEE Trans Magn,2004,40:2498-2500.
    [31] Kwon U, Sinclair R, Velu E M T, et al. Ru/Ru-oxide interlayers for CoCrPtO perpendicularrecording media. IEEE Trans Magn,2005,41:3193-3195.
    [32] Takahashi M, Saito S. Advanced granular-type perpendicular recording media. J Magn MagnMater,2008,320:2868-2873.
    [33] Shi Z P, Zhang J, Yang A, et al. Correlation of ATI and SNR decay in magnetic recording.IEEE Trans Magn,2012,48:3903-3906.
    [34] Wood R. Exact solution for a Stoner-Wohlfarth particle in an applied field and a newapproximation for the energy barrier. IEEE Trans Magn,2009,45:100-103.
    [35] Piramanayagam S N, Srinivasan K. Recording media research for future hard disk drives. JMagn Magn Mater,2009,321:485-494.
    [36] Sharrock M P. Time-dependence of switching fields in magnetic recording media. J Appl Phys,1994,76:6413-6418.
    [37] Bertram H N. Theory of magnetic recording. Cambridge: Cambridge University Press,1994.
    [38] Wang X B, Jin Z, Feng X B, et al. Physics based time domain simulation of magneticrecording signal and noise//Kong J A. Piers2008Hangzhou: Progress in ElectromagneticsResearch Symposium, Vols I and Ii, Proceedings.2008:522-526.
    [39] Bertram H N, Williams M. SNR and density limit estimates: A comparison of longitudinal andperpendicular recording. IEEE Trans Magn,2000,36:4-9.
    [40] Bertram H N, Zhou H, Gustafson R. Signal to noise ratio scaling and density limit estimatesin longitudinal magnetic recording. IEEE Trans Magn,1998,34:1845-1847.
    [41] Bertram N. Noise characteristics in magnetic recording media. IEEE International MagneticsConference,2006,1004-1004.
    [42] Moser A, Takano K, Margulies D T, et al. Magnetic recording: advancing into the future. JPhys D: Appl Phys,2002,35: R157-R167.
    [43] Nishida Y, Sawaguchi H, Kuroda A, et al. Noise characteristics of double-layeredperpendicular media. J Magn Magn Mater,2001,235:454-458.
    [44] Gao K Z, Heinonen O, Chen Y H. Read and write processes, and head technology forperpendicular recording. J Magn Magn Mater,2009,321:495-507.
    [45] Cooper E I, Bonhote C, Heidmann J, et al. Recent developments in high-momentelectroplated materials for recording heads. Ibm Journal of Research and Development,2005,49:103-126.
    [46] Yun E J, Win W, Walser R M. Magnetic properties of RF diode sputtered CoxFe100-xalloy thinfilms. IEEE Trans Magn,1996,32:4535-4537.
    [47] Shiroishi Y, Fukuda K, Tagawa I, et al. Future options for HDD storage. IEEE Trans Magn,2009,45:3816-3822.
    [48] Kryder M H, Gage E C, McDaniel T W, et al. Heat assisted magnetic recording. Proceedingsof the IEEE,2008,96:1810-1835.
    [49] Challener W A, Peng C B, Itagi A V, et al. Heat-assisted magnetic recording by a near-fieldtransducer with efficient optical energy transfer. Nat Photonics,2009,3:220-224.
    [50] Pan L, Bogy D B. Heat-assisted magnetic recording. Nat Photonics,2009,3:186-187.
    [51] Rottmayer R E, Batra S, Buechel D, et al. Heat-assisted magnetic recording. IEEE TransMagn,2006,42:2417-2421.
    [52] Stipe B C, Strand T C, Poon C C, et al. Magnetic recording at1.5Pb m-2using an integratedplasmonic antenna. Nat Photonics,2010,4:484-488.
    [53] Seagate Technology LLC. Seagate Reaches1Terabit Per Square Inch Milestone In HardDrive Storage With New Technology Demonstration[OL](2012-03-19)[2013-04-09].http://www.seagate.com/about/newsroom/press-releases/terabit-milestone-storage-seagate-master-pr.
    [54] Wu A Q, Kubota Y, Klemmer T, et al. HAMR areal density demonstration of1+Tbpsi onspinstand. IEEE Trans Magn,2013,49:779-782.
    [55] Rausch T, Trantham J D, Chu A S, et al. HAMR drive performance and integration challenges.IEEE Trans Magn,2013,49:730-733.
    [56] Heinonen O, Gao K Z. Extensions of perpendicular recording. J Magn Magn Mater,2008,320:2885-2888.
    [57] Igarashi M, Suzuki Y, Miyamoto H, et al. Mechanism of microwave assisted magneticswitching. J Appl Phys,2009,105:07B907
    [58] Nozaki Y, Ishida N, Soeno Y, et al. Room temperature microwave-assisted recording on500-Gbpsi-class perpendicular medium. J Appl Phys,2012,112:083912.
    [59] Okamoto S, Igarashi M, Kikuchi N, et al. Microwave assisted switching mechanism and itsstable switching limit. J Appl Phys,2010,107:123914
    [60] Zhu J G, Zhu X C, Tang Y H. Microwave assisted magnetic recording. IEEE Trans Magn,2008,44:125-131.
    [61] Greaves S J, Kanai Y, Muraoka H. Magnetic recording in patterned media at5-10Tb/in2.IEEE Trans Magn,2008,44:3430-3433.
    [62] Kikitsu A. Prospects for bit patterned media for high-density magnetic recording. J MagnMagn Mater,2009,321:526-530.
    [63] Terris B D, Thomson T. Nanofabricated and self-assembled magnetic structures as datastorage media. J Phys D: Appl Phys,2005,38: R199-R222.
    [64] Terris B D, Thomson T, Hu G. Patterned media for future magnetic data storage. MicrosystTechnol,2007,13:189-196.
    [65] White R L, New R M H, Pease R F W. Patterned media: A viable route to50Gbit/in2and upfor magnetic recording? IEEE Trans Magn,1997,33:990-995.
    [66] Albrecht T R, Hellwing O, Ruiz R, et al. Bit-patterned magnetic recording: nanoscalemagnetic islands for data storage.2009.
    [67] Yang J K W, Chen Y J, Huang T L, et al. Fabrication and characterization of bit-patternedmedia beyond1.5Tbit/in2. Nanotechnology,2011,22:385301
    [68] Dobisz E A, Bandic Z Z, Wu T W, et al. Patterned media: nanofabrication challenges of futuredisk drives. Proceedings of the IEEE,2008,96:1836-1846.
    [69] Albrecht T R, Bedau D, Dobisz E, et al. Bit patterned media at1Tdot/in2and beyond. IEEETrans Magn,2013,49:773-778.
    [70] Ross C A, Cheng J Y. Patterned magnetic media made by self-assembled block-copolymerlithography. Mrs Bulletin,2008,33:838-845.
    [71] Chappert C, Bernas H, Ferre J, et al. Planar patterned magnetic media obtained by ionirradiation. Science,1998,280:1919-1922.
    [72] Choi C, Noh K, Choi D, et al. Geometrically planar ion-implant patterned magnetic recordingmedia using block copolymer aided gold nanoisland masks. IEEE Trans Magn,2012,48:3402-3405.
    [73] Choi C, Noh K, Oh Y, et al. Fabrication and magnetic properties of nonmagnetic ionimplanted magnetic recording films for bit-patterned media. IEEE Trans Magn,2011,47:2532-2535.
    [74] Martin-Gonzalez M S, Briones F, Garcia-Martin J M, et al. Nano-patterning of perpendicularmagnetic recording media by low-energy implantation of chemically reactive ions. J MagnMagn Mater,2010,322:2762-2768.
    [75] Wood R, Willlams M, Kavcic A, et al. The feasibility of magnetic recording at10terabits persquare inch on conventional media. IEEE Trans Magn,2009,45:917-923.
    [76] Greaves S, Kanai Y, Muraoka H. Shingled Recording for2-3Tbit/in2. IEEE Trans Magn,2009,45:3823-3829.
    [77] Victora R H, Morgan S M, Momsen K, et al. Two-dimensional magnetic recording at10Tbits/in2. IEEE Trans Magn,2012,48:1697-1703.
    [78] Klemmer T, Hoydick D, Okumura H, et al. Magnetic hardening and coercivity mechanisms inL10ordered FePd ferromagnets. Scr Metall Mater,1995,33:1793-1805.
    [79] Weller D, Moser A, Folks L, et al. High K-u materials approach to100Gbits/in2. IEEE TransMagn,2000,36:10-15.
    [80] Richter H J, Harkness S I. Media for magnetic recording beyond100Gbit/in2. Mrs Bulletin,2006,31:384-388.
    [81] Chen J S, Lim B C, Hu J F, et al. Low temperature deposited L10FePt-C (001) films withhigh coercivity and small grain size. Appl Phys Lett,2007,91:132506
    [82] Klemmer T, Peng Y G, Wu X W, et al. Materials processing for high anisotropy L10granularmedia. IEEE Trans Magn,2009,45:845-849.
    [83] Perumal A, Takahashi Y K, Hono K. L10FePt-C nanogranular perpendicular anisotropy filmswith narrow size distribution. Appl Phys Express,2008,1:101301.
    [84] Yang E, Laughlin D E. L10FePt-oxide columnar perpendicular media with high coercivityand small grain size. J Appl Phys,2008,104:023904.
    [85] Goll D, Macke S, Kronmuller H. Exchange coupled composite layers for magnetic recording.Physica B: Condensed Matter,2008,403:338-341.
    [86] Shen X, Kapoor M, Field R, et al. Issues in recording exchange coupled composite media.IEEE Trans Magn,2007,43:676-681.
    [87] Tang K, Takano K, Choe G, et al. A Study of perpendicular magnetic recording media with anexchange control layer. IEEE Trans Magn,2008,44:3507-3510.
    [88] Victora R H, Shen X. Composite media for perpendicular magnetic recording. IEEE TransMagn,2005,41:537-542.
    [89] Victora R H, Shen X. Exchange coupled composite media for perpendicular magneticrecording. IEEE Trans Magn,2005,41:2828-2833.
    [90] Wang J P, Shen W K, Bai J M. Exchange coupled composite media for perpendicularmagnetic recording. IEEE Trans Magn,2005,41:3181-3186.
    [91] Wang J P, Shen W K, Hong S Y. Fabrication and characterization of exchange coupledcomposite media. IEEE Trans Magn,2007,43:682-686.
    [92] Fuji Electric Holdings Co. L Fuji electric device technology is the first in the industry to beginmass-production of exchange coupled composite (ECC) media[OL].(2008-07-30)
    [2013-04-09]. http://www.fujielectric.com/company/news/2008/08073001.html.
    [93] Landau L D, Lifshitz E M. On the theory of the dispersion of magnetic permeability offerromagnrtic bodies. Phys. Z. Sowj.,1935,8:153-169.
    [94] Brown W F. Micromagnetics. New York: Wiley,1963.
    [95]韦丹.材料的电磁光基础.北京:科学出版社,2009.
    [96] Fidler J, Schrefl T. Micromagnetic modelling-the current state of the art. J Phys D: ApplPhys,2000,33: R135-R156.
    [97] Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE TransMagn,2004,40:3443-3449.
    [98] Kruzik M, Prohl A. Recent developments in the modeling, analysis, and numerics offerromagnetism. Siam Review,2006,48:439-483.
    [99] Yuan S W, Bertram H N. Fast adaptive algorithms for micromagnetics. IEEE Trans Magn,1992,28:2031-2036.
    [100] Zhu J G, Bertram H N. Micromagnetic studies of thin metallic-films. J Appl Phys,1988,63:3248-3253.
    [101] Fredkin D R, Koehler T R. Numberical micromagnetics by the finite-element method. IEEETrans Magn,1987,23:3385-3387.
    [102] Fredkin D R, Koehler T R. Numberical micromagnetics by the finite-element method.2. JAppl Phys,1988,63:3179-3181.
    [103] Luskin M, Ma L. Analysis of the finite-element approximation of microstructure inmicromagnetics. SIAM J Numer Anal,1992,29:320-331.
    [104] Abert C, Exl L, Selke G, et al. Numerical methods for the stray-field calculation: Acomparison of recently developed algorithms. J Magn Magn Mater,2013,326:176-185.
    [105] Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys.Philos Trans Roy Soc A,1948,240:599-642.
    [106] Slonczewski J C. Theory of magnetic hysteresis in films and its application to computers.IEEE Trans Magn,2009,45:8-14.
    [107] Tannous C, Gieraltowski J. The Stoner-Wohlfarth model of ferromagnetism. European Journalof Physics,2008,29:475-487.
    [108] Gao K Z, Bertram H N. Dynamic switching in tilted and conventional perpendicular recordingmedia. J Appl Phys,2004,96:7753-7755.
    [109] Gao K Z, Boerner E D, Bertram H N. Fast switching in a single-domain particle undersub-Stoner-Wohlfarth switching fields. Appl Phys Lett,2002,81:4008-4010.
    [110] Gao K Z, Boerner E D, Bertram H N. Energy surface model of single particle reversal insub-Stoner-Wohlfarth switching fields. J Appl Phys,2003,93:6549-6551.
    [111] Porter D G, Glavinas E, Dhagat P, et al. Irregular grain structure in micromagnetic simulation.J Appl Phys,1996,79:4695-4697.
    [112] Zhu J G. Micromagnetic modeling-theory and applications in magnetic thin-films. MrsBulletin,1995,20:49-54.
    [113] Greaves S. Micromagnetic simulations of magnetic recording media//Resch M, Roller S,Lammers P, et al. High Performance Computing on Vector Systems2007.2008:229-244.
    [114] Lau J W, McMichael R D, Donahue M J. Implementation of two-dimensional polycrystallinegrains in object oriented micromagnetic framework. J Res Natl Inst Stan,2009,114:57-67.
    [115]佘圣贤.硬盘GMR读磁头的电、磁性质模拟分析[硕士学位论文].北京:清华大学材料系,2009.
    [116] Xu Y F, Sun Z G, Qiang Y, et al. Magnetic properties of L10FePt and FePt: Ag nanoclusterfilms. J Appl Phys,2003,93:8289-8291.
    [117] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagneticFePt nanocrystal superlattices. Science,2000,287:1989-1992.
    [118] Chen J S, Wang J P. Structural and magnetic properties of FePt film with Cu top layerdiffusion. J Magn Magn Mater,2004,284:423-429.
    [119] Shima T, Takanashi K, Takahashi Y K, et al. Coercivity exceeding100kOe in epitaxiallygrown FePt sputtered films. Appl Phys Lett,2004,85:2571-2573.
    [120] Peng Q S, Bertram H N, Fussing N, et al. Micromagnetic and experimental studies of CoPtCrpolycrystalline thin-film media with bicrystal microstructure. IEEE Trans Magn,1995,31:2821-2823.
    [121] Elkins K E, Vedantam T S, Liu J P, et al. Ultrafine FePt nanoparticles prepared by thechemical reduction method. Nano Lett,2003,3:1647-1649.
    [122] Hu X R, Xie L, Zhu J, et al. Observation of L10-like chemical ordering in a decahedral FePtnanoparticle by C-s-corrected high resolution transmission electron microscopy. J Appl Phys,2009,105:07A723.
    [123] Chen J S, Tan C Y, Chow G M. Microstructure and direct ordering of FePt nanoparticlesproduced by nanocluster beam technology. Nanotechnology,2007,18:435604
    [124] Rellinghaus B, Dmitrieva O, Stappert S. Destabilization of icosahedral structures in FePtmultiply twinned particles. J Cryst Growth,2004,262:612-619.
    [125] Elkins K, Li D, Poudyal N, et al. Monodisperse face-centred tetragonal FePt nanoparticleswith giant coercivity. J Phys D: Appl Phys,2005,38:2306-2309.
    [126] Li D R, Poudyal N, Nandwana V, et al. Hard magnetic FePt nanoparticles by salt-matrixannealing. J Appl Phys,2006,99:08E911.
    [127] Dai Z R, Sun S H, Wang Z L. Phase transformation, coalescence, and twinning ofmonodisperse FePt nanocrystals. Nano Lett,2001,1:443-447.
    [128] Dai Z R, Sun S H, Wang Z L. Shapes, multiple twins and surface structures of monodisperseFePt magnetic nanocrystals. Surf Sci,2002,505:325-335.
    [129] Bertram H N, Zhu J G. Fundamental magnetization processes in thin-film recording mediaSolid State Phys,1992,46:271-371.
    [130] Wei D, Liu B. Effect of anisotropy field magnitude distribution on signal-to-noise ratio. IEEETrans Magn,1997,33:4381-4384.
    [131] Rellinghaus B, Stappert S, Acet M, et al. Magnetic properties of FePt nanoparticles. J MagnMagn Mater,2003,266:142-154.
    [132] Bertram H N, Lengsfield B. Energy barriers in composite media grains. IEEE Trans Magn,2007,43:2145-2147.
    [133] Choe G, Ikeda Y, Ghaderi A, et al. Switching behavior and writeability in perpendicularmagnetic dual oxide media with capping layer. IEEE Trans Magn,2010,46:1802-1805.
    [134] Choe G, Park J, Ikeda Y, et al. Writeability enhancement in perpendicular magneticmultilayered oxide media for high areal density recording. IEEE Trans Magn,2011,47:55-62.
    [135] Gao K Z, Fernandez-De-Castro J. Energy surface model and magnetization switching forexchange coupled magnetic particles. J Appl Phys,2006,99.
    [136] Gao K Z, Fernandez-de-Castro J, Bertram H N. Micromagnetic study of the switching fieldsin polycrystalline magnetic thin-film media. IEEE Trans Magn,2005,41:4236-4241.
    [137] Belmeguenai M, Devolder T, Chappert C. Precessional switching on exchange biasedpatterned magnetic media with perpendicular anisotropy. J Appl Phys,2005,97.
    [138] d'Aquino M, Scholz W, Schrefl T, et al. Numerical and analytical study of fast precessionalswitching. J Appl Phys,2004,95:7055-7057.
    [139] d'Aquino M, Scholz W, Schrefl T, et al. Micromagnetic analysis of fast precessional switching.J Magn Magn Mater,2005,290:510-513.
    [140] Kanai Y, Jinbo Y, Tsukamoto T, et al. Finite-element and micromagnetic modeling of writeheads for shingled recording. IEEE Trans Magn,2010,46:715-721.
    [141] Miura K, Yamamoto E, Aoi H, et al. Estimation of maximum track density in shingled writing.IEEE Trans Magn,2009,45:3722-3725.
    [142] Teo K K, Elidrissi M R, Chan K S, et al. Analysis and design of shingled magnetic recordingsystems. J Appl Phys,2012,111:07B716.
    [143] Mallinson J C. A new theory of recording media noise. IEEE Trans Magn,1991,27:3519-3531.
    [144] Moon J. Signal-to-noise ratio definition for magnetic recording channels with transition noise.IEEE Trans Magn,2000,36:3881-3883.
    [145] Tarnopolsky G J, Pitts P R. Media noise and signal-to-noise ratio estimates for high arealdensity recording. J Appl Phys,1997,81:4837-4839.
    [146] Xie H L, Li H J, Wang Y, et al. Micromagnetic studies on exchange coupled compositerecording media. J Appl Phys,2012,111:07B719
    [147] Zhang K M, Han Z H, Wei D, et al. Switching phase diagrams of exchange coupled compositemedia using two-particle model. J Appl Phys,2012,111:07B726
    [148] Khizroev S, Litvinov D. Perpendicular magnetic recording: Writing process. J Appl Phys,2004,95:4521-4537.
    [149] Muraoka H, Sonobe Y, Miura K, et al. Analysis on magnetization transition of CGCperpendicular media. IEEE Trans Magn,2002,38:1632-1636.
    [150] Degawa N, Greaves S J, Muraoka H, et al. Characterization of a2Tbit/in2patterned mediarecording system. IEEE Trans Magn,2008,44:3434-3437.
    [151] Richter H J, Dobin A Y, Lynch R T, et al. Recording potential of bit-patterned media. ApplPhys Lett,2006,88:222512.
    [152] Ajan A, Sato K, Aoyama N, et al. Fabrication, magnetic, and R/W properties ofnitrogen-ion-implanted Co/Pd and CoCrPt bit-patterned medium. IEEE Trans Magn,2010,46:2020-2023.
    [153] Aoyama N, Ajan A, Sato K, et al. Reproduced dot image of nitrogen ion implanted Co/Pd bitpatterned media with flying head. IEEE Trans Magn,2010,46:3648-3651.
    [154] Devolder T, Chappert C, Chen Y, et al. Sub-50nm planar magnetic nanostructures fabricatedby ion irradiation. Appl Phys Lett,1999,74:3383-3385.
    [155] Gierak J, Mailly D, Hawkes P, et al. Exploration of the ultimate patterning potentialachievable with high resolution focused ion beams. Appl Phys A: Mater Sci Process,2005,80:187-194.
    [156] Parekh V, Smith D, E C S, et al. He+ion irradiation study of continuous and patterned Co/Pdmultilayers. J Appl Phys,2007,101:083904.
    [157] Sato K, Ajan A, Aoyama N, et al. Magnetization suppression in Co/Pd and CoCrPt bynitrogen ion implantation for bit patterned media fabrication. J Appl Phys,2010,107:123910.
    [158] Li Z H, Cao J W, Wei F L, et al. Micromagnetic analysis of L10ordered FePt perpendicularrecording media prepared by magnetron sputtering. J Appl Phys,2007,102:113918.
    [159] Hyndman R, Warin P, Gierak J, et al. Modification of Co/Pt multilayers by gallium irradiation-Part1: The effect on structural and magnetic properties. J Appl Phys,2001,90:3843-3849.
    [160] Warin P, Hyndman R, Glerak J, et al. Modification of Co/Pt multilayers by gallium irradiation-Part2: The effect of patterning using a highly focused ion beam. J Appl Phys,2001,90:3850-3855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700