污水的土壤渗滤法处理工艺运行与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤渗滤法是一种充分利用土壤中的动物、植物、微生物以及土壤的物理、化学特性的污水就地处理技术。本课题通过现场试验与实验室模拟相结合,旨在研究不同工况条件下的运行效果,根据碳、氮、磷去除效果的影响因素和去除机理,建立反应动力学模型,并探讨最佳的工艺设计和运行条件,提出工艺运行中的保障措施。
     现场试验结果表明,土壤渗滤系统经过3个月的启动调试后逐渐成熟。“太阳能曝气-沉淀”的预处理工艺起到初步降解有机物的作用,其去除率低于35.2%。各工况条件下系统最终出水的化学需氧量(COD)浓度均小于40 mg l~(-1),总去除率为50.6%~75.8%,其中水温是影响COD总去除率的一个主要因素。总磷(TP)、酚类和邻苯二甲酸酯类物质的去除率分别达到57.7%~100.0%、35.2%~100.0%和36.4%~59.6%。溶解氧提高为进水的1~3倍、UV_(254)下降了13.5%~67.2%,有利于水生生物生存、繁衍以及生态系统的恢复。
     实验室试验结果表明,除温度的影响以外,复合土壤的组成及本身的理化性质、废水的水质情况、水力负荷、土壤层有效高度等都会影响碳、氮、磷的去除效果。其中,复合土壤本身的性质对COD和TP去除效果的影响最大;随着复合土壤碳氮比的增大,反硝化作用也会显著增强。废水的水质情况是影响总氮(TN)去除效果的最主要因素;而在高浓度COD和TP进水条件下,各自出水始终能够维持在较低范围内。水力负荷对COD和TP去除效果的影响不大;但是高水力负荷比低水力负荷对TN去除的影响更大。较高的水力负荷还会引起硝态氮(NO_3~--N)和亚硝态氮(NO_2~--N)出水浓度剧增,本研究中土壤渗滤系统的最佳水力负荷为8.0×10~(-2) m~3 m~(-2) d~(-1)。0.50 m的土壤层有效高度完全可以满足去除COD的需要;但并不足以保证完全的反硝化进程和TP的高效去除。另外,土壤渗滤系统对氨氮(NH_4~+-N)的吸附作用很强,去除率受到以上因素的影响很小。
     各污染物去除机理的研究表明,COD的降解包括非生物吸附和生物降解作用,其中非生物吸附过程满足Temkin吸附等温式,生物降解作用占COD总去除率的57.7%~71.9%。NH_4~+-N的非生物吸附和生物降解作用所占比重因进水浓度的高低而异;NO_2~--N的积累和不足均会影响硝化反应进程,其出水浓度应尽量控制在0.10 mg l~(-1)~0.25 mg l~(-1)范围内;土壤碳氮比是反硝化作用的限制性因素。TP的静态吸附过程满足Freundlich吸附等温式,氢氧化合物铁(Fe_0)的含量与TP去除率之间存在很大的相关性。
     以Eckenfelder一级反应动力学模型为基础,通过添加或修正温度、水力负荷、进水浓度、土壤层有效高度和复合土壤性质等影响因素项,建立COD、TN和TP的去除模型,可以预测土壤渗滤系统的出水水质,模拟值与实测值的误差可以分别控制在5 mg l~(-1)、5.0 mg l~(-1)和0.15 mg l~(-1)以内。从模型的角度分析,系统降解能力的极限值是决定COD去除率的关键,水力负荷对TN和TP出水浓度的影响很大。另外,通过对上述关键因素的调控,土壤渗滤系统对污染物的去除效果可以明显提高。
Soil Infiltration Treatment (SIT) is a kind of in-situ wastewater treatment technique, making full use of animals, plants, microorganisms in soil and the physico-chemical characteristics of soil. The purpose of this thesis was to focus on the purification performance under different operation conditions through both field and laboratory experiments. The kinetics models were established according to the influence factors on carbon, nitrogen and phosphorus removals and their removal mechanisms. At last, the optimal parameter designs and operation conditions were proposed for the guarantee of effective performance.
     The results from field experiments showed that SIT systems became gradually maturation during the first 3 month start-up periods. The pretreatment process including solar energy aeration and sedimentation could remove less than 35.2 % of organics. All the final effluent CODs were less than 40 mg l~(-1) under various conditions with accumulative COD removal rates ranged from 50.6 % to 75.8 %., on which water temperature was one of the important factors. The removal rates of total phosphorus, phenolic and phthalate pollutants could reach 57.7 %-100.0 %, 35.2 %-100.0 % and 36.4 %-59.6 %, respectively. And the effluent DOs were 1-3 times of the influent values with UV254 decreased by 13.5 %-67.2 %, which was in favor of the survival and procreation of hydrophilous creatures and the recovery of ecosystem.
     The results from laboratory experiments demonstrated that besides temperature, the constituent and physico-chemical characteristic of artificial soil, wastewater quality of the influent, hydraulic loading rate and effective depth of soil layer, etc. affected carbon, nitrogen and phosphorus removals. The characteristic of artificial soil was the most important factor on COD and TP removals, and the denitrification process was remarkably improved with the increase of C:N ratio in artificial soil. Wastewater quality was the most important factor on TN removal but the impact of it on COD and TP removals seemed rather less. So did the hydraulic loading rate. From the experiment results, an optimal hydraulic loading rate, 8.0×10~(-2) m~3 m~(-2) d~(-1) was obtained. The effective depth of soil layer of 0.50 m could be satisfied with COD removal, but not enough for denitrification and higher TP removal requirements. In addition, the removal of ammonia nitrogen was not affected by the above influence factors due to the large adsorption capability of soil matrix applied.
     The researches on pollutant removal mechanisms disclosed that COD removal consisted of abiological adsorption and biodegradation processes. The abiological process followed Temkin adsorption isothermal, and the proportion of biological COD removal occupied 57.7 %-71.9 %. The abiological and biological removals of ammonia nitrogen changed with the variance of influent concentration. Both accumulation and shortage of nitrite nitrogen could affect nitrification efficiency and the effluent nitrite concentrations should be controlled within 0.10 mg l~(-1)-0.25 mg l~(-1) with the consideration of maintaining the sustainable operation of SIT. The results indicated that C:N ratio in artificial soil was the limiting factor on denitrification. And the static adsorption of TP followed Freundlich isothermal, in which Fe oxyhydroxide (Fe_o) content had a close relationship with TP removal rate.
     Based on Eckenfelder first order kinetic model, COD, TN and TP removal models were established by adding or modifying several influence factors, for example, temperature, hydraulic loading rate, influent concentration, effective depth of soil layer and the characteristic of artificial soil, etc. These models could be used to forecast the effluent COD, TN and TP concentrations from SIT systems, with the errors between simulated and experimental values less than 5 mg 1~(-1)、5.0 mg l~(-1) and 0.15 mg l~(-1), respectively. The results implied that COD removal rates were determined by the removal potential of SIT system. Besides, the simulation resutlts indicated that TN and TP effluent concentrations were significantly affected by hydraulic loading rate. Furthermore, the pollutant removal efficiencies of SIT systems could be remarkably improved by optimizing these key factors mentioned above.
引文
[1]张自杰.排水工程(下册)[M],第四版.北京:中国建筑工业出版社,1999:282-291.
    [2]张自杰.废水处理理论与设计[M].北京:中国建筑工业出版社,2003:778-829.
    [3]Van Cuyk S,Siegrist R,Logan A,et al.Hydraulic and Purification Behaviors and their Interactions during Wastewater Treatment in Soil Infiltration Systems[J].Water Res.,2001,35(4):953-964.
    [4]田宁宁,杨丽萍,彭应登.土壤毛细管渗滤处理生活污水[J].中国给水排水,2000,16(5):12-15.
    [5]成徐洲,吴天宝,陈天柱,等.土壤渗滤处理技术研究现状与进展[J].环境科学研究,1999,12(4):33-36.
    [6]Sun T,He Y,Ou Z,et al.Treatment of Domestic Wastewater by an Underground Capillary Seepage System[J].Ecol.Eng.,1998,11:111-119.
    [7]Viswanathan M N,AI Senafy M N,Rashid T,et al.Improvement of Tertiary Wastewater Quality by Soil Aquifer Treatment[J].Water Sci.Technol.,1999,40:159-163.
    [8]Reemtsma T,Gnirb R,Jekel M.Infiltration of Combined Sewer Overflow and Tertiary Municipal Wastewater:An Integrated Laboratory and Field Study on Nutrients and Dissolved Organics[J].Water Res.,2000,34:1179-1186.
    [9]Quanrud D M,Arnold R G,Wilson L G,et al.Effect of Soil Type on Water Quality Improvement during Soil Aquifer Treatment[J].Water Sci.Technol.,1996,33:419-431.
    [10]Quanrud D M,Hafer J,Karpiscak M M,et al.Fate of Organics during Soil-aquifer Treatment:Sustainability of Removals in the Field[J].Water Res.,2003,37:3401-3411.
    [11]洞沢勇.排水の生物学的处理[M].张自杰译.北京:中国建筑工业出版社,1980:45-53.
    [12]郭迺琦,孙宇,安钢,等.苯酚在土壤内吸附过程数学模型的研究[J].天津理工学院学报,1998,14(增刊 1):40-42.
    [13]刘庆余,李悦,齐英,等.邻苯二甲酸酯类在土柱模拟试验中的微生物降解[J].环境卫生工程,1997,4:3-6.
    [14]Brown J M,Drewes J E,Fox P,et al.Behavior of Alkylphenol Polyethoxylate Metabolites during Soil Aquifer Treatment[J].Water Res.,2003,37:3672-3681.
    [15]Zhang W,Bouwer E,Wilson L,et al.Biotransformation of Aromatic Hydrocarbons in Subsurface Biofilms[J].Water Sci.Tech.,1995,31(1):1-14.
    [16]宋春霞,项学敏,李彦生.植物在污水土地处理中的作用研究[J].化工装备技术,2004,2:56-58.
    [17]Vymazal J.Removal of Nutrients in Various Types of Constructed Wetlands[J].Sci.Total Environ.,2007,380(1-3):48-65.
    [18]Mclaren A D,Peterson G H,Skujins J,et al.闵九康,关松荫,王维敏,等译.土壤生物化学[M].北京:农业出版社,1984:131-135.
    [19]何江涛,张达政,陈鸿汉,等.污水渗滤土地处理系统中的复氧方式及效果[J].水文地质工程地质,2003,1:103-106.
    [20]张建,黄霞,施汉昌,等.地下渗滤系统在污水处理中的应用研究进展[J].环境污染治理技术与设备,2002,3(4):47-51.
    [21]Guo H M,Li G H,Zhang D Y,et al.Effects of Water Table and Fertilization Management on Nitrogen Loading to Groundwater[J].Agri.Water Manage.,2006,82:86-98.
    [22]Pitt R,Clark S,Field R.Groundwater Contamination Potential from Stormwater Infiltration Practices[J].Urban Water,1999,1:217-236.
    [23]Aelion C M,Shaw J N,Wahl M.Impact of Suburbanization on Groundwater Quality and Denitrification in Coastal Aquifer Sediments[J].J.Exp.Mar.Biol.Ecol.,1997,213:31-51.
    [24]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003:176-183.
    [25]Correll D L.The Role of Phosphorus in the Eutrophication of Receiving Waters:A Review [J].J.Environ.Qual.,1998,27:261-266.
    [26]Poll M,Nyberg F.Infiltration of Wastewater in a Newly Started Pilot Sand Filter System:Reduction of Organic Matter and Phosphorus[J].Environ.Qual.,1989,18(4):452-457.
    [27]Spiteri C,Slomp C P,Regnier P,et al.Modeling the Geochemical Fate and Transport of Wastewater-derived Phosphorus in Contrasting Groundwater Systems[J].J.Contam.Hydrol.,2007,92:87-108.
    [28]Zhou W J,Wang K R,Zhang Y Z,et al.Phosphorus Transfer and Distribution in a Soybean-citrus Intercropping System[J].Pedosphere,2006,16(4):435-443.
    [29]Sharma N C,Starnes D L,Sahi S V.Phytoextraction of Excess Soil Phosphorus[J].Environ.Pollut.,2007,146(1):120-127.
    [30]郑艳侠,冯绍元,刘培斌.土壤渗滤系统处理微污染水的研究现状与进展[J].水资源与水工程学报,2004,15(2):29-32.
    [31]Russell L C,George M W,Gordon L C.城市污水高级处理手册[M].张中和译.北京:中国建筑工业出版社,1991:330-379.
    [32]Brissand F.Infiltration Percolation for Reclaimed Pond[J].Water Sci.Tech.,1991,24(9):185-193.
    [33]Kanarek A,Michail M.Groundwater Recharge with Municipal Effluent:Dan Region Reclamation Project,Israel[J].Water Sci.Tech.,1996,34(11):227-233.
    [34]贾宏宇,孙铁珩,李培军,等.污水土地处理技术研究的最新进展[J].环境污染治理技术与设备,2001,2(1):62-65.
    [35]Kristiansen R.Sand-filter Trenches for Purification of Septic Tank Effluent Ⅰ.The Clogging Mechanism and Soil Physical Environment[J].Environ.Qual.,1981,10(3):353-357.
    [36]Quanrud D M,Carroll S M,Gerba C P,et al.Virus Removal during Simulated Soil-aquifer Treatment[J].Water Res.,2003,37:753-762.
    [37]Nema P,Ojha C S P,Kumar A,et al.Techno-economic Evaluation of Soil-aquifer Treatment Using Primary Effluent at Ahmadabad,India[J].Water Res.,2001,35:2179-2190.
    [38]陈玉成,陈小龙,皮广洁.城市生活垃圾渗滤液土地处理的模拟研究[J].城市环境与城市生态,2001,14(2):19-21.
    [39]Aulenbach D B,Nie Meisheng.Studies on the Mechanism of Phosphorus Removal from Treated Wastewater by Sand[J].J.WPCF,1988,60(12):2089-2094.
    [40]Platzer C,Mauch K.Soil Clogging in Vertical Flow Reed Beds--Mechanisms,Parameters,Consequences and Solutions[J].Water Sci.Tech.,1997,35(5):175-181.
    [41]Baveye P,Vandevivere P.Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials[J].Critical Rev.Environ.Sci.Tech.,1998,28:123-191.
    [42]Johansen C,Falholt P.Gram L Enzymatic Removal and Disinfection of Bacterial Biofilms [J].Appl.Environ.Microb.,1997,63:3724-3728.
    [43]Li G H,Tang Z W.New Methodology for Optimal Operation of Soil Aquifer Treatment Systems[J].Water Res.Manage.,2000,14:13-33.
    [44]崔理华,汤连茂,朱夕珍,等.城市污水人工土快滤床运行方式的实验研究[J].农业环境保护,2002,21(1):37-40.
    [45]Green M,Friedler E,Ruskol Y,et al.Investigation of Alternative Method for Nitrification in Constructed Wetlands[J].Water Sci.Tech.,1997,35(5):63-70.
    [46]Drewes J E,Jekel M.Behavior of DOC and AOX Using Advanced Treated Wastewater or Groundwater Recharge[J].Water Res.,1998,32(10):3125-3133.
    [47]Amy G,Debroux J F,Arnold R,et al.Preozonation for Enhancing the Biodegradability of Wastewater Effluent in a Potable-recovery Soil Aquifer Treatment System[J].J.Water Sci.,1996,9(3):365-380.
    [48]宋伟民,卢纯惠,李锦梅.土壤渗滤处理三格化粪池粪液的可行性论证[J].上海环境科学,1997,16(3):36-37.
    [49]Prasad R,Power J F.Nitrification Inhibitors for Agriculture,Health and the Environment [J].Adv.Agron.,1995,54:233-281.
    [50]Kong H N,Kimochi Y,Mizuochi M,et al.Study of the Characteristics of CH_4 and N_2O Emission and Methods of Controlling their Emission in the Soil-trench Wastewater Treatment Process[J].Sci.Total Environ.,2002,290:59-67.
    [51]封克,王子波,王小治,等.土壤pH对硝酸根还原过程中N_2O产生的影响[J].土壤学报,2004,41(1):81-86.
    [52]Woosuk C,Jungwoo K,Heechul C.Evaluation of Steel Slag for Organic and Inorganic Removals in Soil Aquifer Treatment[J].Water Res.,2006,40:1034-1042.
    [53]Williams T R,Drewes J E.Using Soil Biomass as an Indicator for the Biological Removal of Effluent-derived Organic Carbon during Soil Infiltration[J].Water Res.,2006,40:961-968.
    [54]Czajka D R,Lion L W,Shuler M L,et al.Evaluation of the Utility of Bacterial Extracellular Polymers for Treatment of Metal- contaminated Soils:Polymer Persistence,Mobility and the Influence of Lead[J].Water Res.,1997,31(11):2827-2839.
    [55]秦麟源.废水生物处理[M].上海:同济大学出版社,1989:210-240.
    [56]蒋展鹏.环境工程学[M].北京:高等教育出版社,1992:154-155.
    [57]董泽琴.Eckenfelder生物滤池模式在土壤地下渗滤净化沟工艺中的应用研究[D].贵阳:贵州师范大学,2003:41-52.
    [58]Chung P G,Kwak D H,Kim Y.Application of a Simple Empirical Fixed-film Model to the Fluidized Biofilter Process[J].Water Sci.Tech.,1996,34(3-4):427-433.
    [59]Gromiec M J,Roman M.Application of Correlation-regression Method for Determination of Coefficients for the Eckenfelder Trickling Filter Models[J].Water Res.,1979,13:1105-1110.
    [60]刘旦初.多相催化原理[M].上海:复旦大学出版社,1997:30-83.
    [61]杨智宽,韦进宝.污染控制化学[M].武汉:武汉大学出版社,1998:111-115.
    [62]何江涛,马振民,张金灿,等.污水渗滤土地处理系统中的堵塞问题[J].中国环境科学,2003,23(1):85-89.
    [63]水建高,张瑜芳,沈荣开.不同渗漏强度下淹水土壤中NH_4~+~-N转化运移的数值模拟[J].水利学报,1996,3:57-63.
    [64]何江涛,段光杰,张金炳等.污水渗滤土地处理系统中水力停留时间与出水效果的讨论[J].地球科学--中国地质大学学报,2002,27(2):203-208.
    [65]Gardner P J,Maltby N F.郑其格译.田间土壤反硝化试验的温度修正方程[J].水土保持科技情报,2001,4:28-30.
    [66]段永蕙,张祖锡.强化污水人工土快滤处理系统除氮效果的研究[J].中国环境科学,1997,17(1):83-86.
    [67]吕家珑,张一平,苏仕平.应用吸附等温线斜率推求磷素运移参数初探[J].土壤通报,1998,29(5):214-217.
    [68]李天安,王玉,刘芳,等.不同剖面层次土壤磷素运移研究[J].土壤与环境,2002,11(3):290-293.
    [69]隋红建,杨邦杰,张金炳.入渗条件下土壤中磷离子迁移的数值模拟[J].环境科学学报,1996,16(3):302-308.
    [70]周建平,曹凤珍.COD在包气带地层中自净能力的试验研究[J].勘察科学技术,1996,4:17-20.
    [71]曹文炳,段保需,张诚.包气带中造纸废水COD天然生物降解作用[J].环境科学,2000,21(1):102-105.
    [72]祝万鹏,杨津湘,杨志华,等.氨氮在饱水粉砂土和亚砂土层中吸附过程及其模拟[J].环境科学,1996,17(2):9-11.
    [73]王红旗,舒艳,王亚男.污水土地处理磷污染物迁移转化模拟讨论分析[J].城市环境与城市生态,2002,15(4):36-38.
    [74]王亚男,王红旗,舒艳.含磷污水淋滤条件下土壤中磷迁移转化模拟实验[J].环境科学学报,2001,21(6):737-741.
    [75]李桂花,李保国.细菌在土壤中运移模型的研究进展[J].应用生态学报,2003,14(6):1012-1014.
    [76]张大庚,依艳丽,郑西来,等.土壤对石油烃吸附及其释放规律的研究[J].沈阳农业大学学报,2005-02,36(1):53-56.
    [77]王超,阮晓红,朱亮.污染物在非饱和土壤中迁移规律的试验研究[J].河海大学学报,1996,24(2):7-13.
    [78]郭迺琦,孙宇,安钢,等.苯酚在土壤内吸附过程数学模型的研究[J].天津理工学院学报,1998,14(增刊1):40-42.
    [79]李绪谦,商书波,林亚菊,等.石油类污染物在包气带土层中的水化学迁移率测定[J].吉林大学学报(地球科学版),2005,35(4):501-504.
    [80]黄冠华,黄权中,詹红兵,等.均质介质中污染物迁移的分数微分对流-弥散模拟[J].中国科学D辑地球科学,2005,35(增刊1):249-254.
    [81]高太忠,黄群贤,刘野,等.有机污染物在包气带中迁移转化试验研究[J].环境污染治理技术与设备,2004,5(2):42-45.
    [82]阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51-55.
    [83]王超.氮类污染物在土壤中迁移转化规律试验研究[J].水科学进展,1997,8(2):176-182.
    [84]Hantush M M,Marino M A,Islam M R.Models for Leaching of Pesticides in Soils and Groundwater[J].J.Hydrol.,2000,227:66-83.
    [85]Yamaguchi T,Moldrup P,Rolston D E,et al.Nitrification in Porous Media during Rapid Unsaturated Water Flow[J].Water Res.,1996,30(3):531-540.
    [86]Hunter K S,Wang Y,Van Cappellen P.Kinetic Modeling of Microbially -driven Redox Chemistry of Subsurface Environments[J].J.Hydrol.,1998,209:53-80.
    [87]Chan S Y,Tsang Y F,Chua H,et al.Performance Study of Vegetated Sequencing Batch Coal Slag Bed Treating Domestic Wastewater in Suburban Area[J].Bioresour.Technol.,2008,99(9):3774-3781.
    [88]国家环保总局.2005年中国环境状况公报[EB/OL].:http://www.zhb.gov.cn/plan/zkgb/05hjgb/200607/t20060727_91443.htm,2006-7-27.
    [89]中国建设部.中国城市污水处理率达52%[EB/OL].:http://news.xinhuanet.com/newscenter/2006-07/24/content_4873467,htm,2006-7-24.
    [90]Piet L,Grietje Z,Gatze L.Decentralized Sanitation and Reuse Concepts,Systems and Implementation[M].London:IWA Publishing,2001:1-36.
    [91]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002:117-120.
    [92]Bouwer H.Role of Groundwater Recharge in Treatment and Storage of Wastewater for Reuse[J].Water Sci.Tech.,1991,24:295-302.
    [93]Herman.Role of Groundwater Recharge in Treatment and Storage of Wastewater for Reuse [J].Water Sci.Tech.,1991,24(9):267-275.
    [94]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991:251-273.
    [95]徐祖信,谢海林,叶建峰,等.模拟煤灰渣垂直潜流人工湿地的除磷性能分析[J].环境污染与防治,2007,29(4):241-243.
    [96]张志峰,吴浩汀.赤泥处理含磷废水的试验研究[J].安全与环境工程,2005,12(4):49-55.
    [97]邓雁希,许虹,钟佐燊,等.钢渣对废水中磷的去除[J].金属矿山,2003,323(5):49-51.
    [98]黄玲,邓雁希.钢渣吸附除磷性能的试验研究[J].四川环境,2005,24(6):5-13.
    [99]郭强,柴晓利,赵由才.矿化垃圾除磷特性及其影响因素的研究[J].环境污染与防治,2006,28(2):93-95.
    [100]邓雁希,许虹,黄玲,等.炉渣处理含磷废水的实验研究[J].岩石矿物学杂志,2003,22(3):290-292.
    [101]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356.
    [102]何杰,刘玉林,谢同凤.天然沸石对含酚废水的处理[J].矿产综合利用,1999,1:39-43.
    [103]郝志涛,吴静,陆正禹,等.粉煤灰对采油废水中污染物质的吸附研究[J].化工环保,2004,24(增刊):341-344.
    [104]孙家寿,刘羽,鲍世聪,等.交联粘土矿物的吸附特性研究(Ⅴ)--硅钛交联膨润土对废水中有机物的吸附[J].武汉化工学院学报,1999,21(1):30-33.
    [105]Bagarello V,Elrick D E,Iovino M,et al.A Laboratory Analysis of Falling Head Infiltration Procedures for Estimating the Hydraulic Conductivity of Soils[J].Geoderma,2006,135:322-334.
    [106]Abekoe M K,Sahrawat K L.Phosphate Retention and Extractability in Soils of the Humid Zone in West Africa[J].Geoderma,2001,102:175-187.
    [107]奚旦立,孙裕生,刘秀英.环境监测[M].第二版.北京:高等教育出版社,1996:219.
    [108]徐蒲生.土壤农化分析[M].第二版.北京:农业出版社,1992:32.
    [109]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:183-189.
    [110]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第三版. 北京:中国环境科学出版社,1989:246-359.
    [111]Zhou Q,Zhu Y.Potential Pollution and Recommended Critical Levels of Phosphorus in Paddy Soils of the Southern Lake Tai Area,China[J].Geoderma,2003,115:45-54.
    [112]Wang G,Liu J,Wang J,et al.Soil Phosphorus Forms and their Variations in Depressional and Riparian Freshwater Wetlands(Sanjiang Plain,Northeast China)[J].Geoderma,2006,132:59-74.
    [113]Zhang Y,Lin X.Relation between Fe-oxides Transformation and Phosphorus Adsorption in the Oxic and Anoxic Layers of two Paddy Soils as Affected by Flooding[J].J.Zhejiang Univ.(Agric.Life Sci.),2002,28(5):485-491.
    [114]Shariatmadari H,Shirvani M,Jafari A.Phosphorus Release Kinetics and Availability in Calcareous Soils of Selected Arid and Semiarid Toposequences[J].Geoderma,2006,132:261-272.
    [115]Bouwer E J,McCarty P L,Lance J C.Trace Organic Behavior in Soil Columns during Rapid Infiltration of Secondary Wastewater[J].Water Res.,1981,15(1 ):151-159.
    [116]张建,黄霞,施汉昌,等.掺加草炭的地下渗滤系统处理生活污水[J].中国给水排水,2004,20(6):41-43.
    [117]娄金生,谢水波,何少华,等.生物脱氮除磷原理与应用[M].湖南:国防科技大学出版社,2002:75-94,171-172.
    [118]王海丽,孔海南,吴德意,等.生态土壤深度处理系统启动周期的研究[J].环境科学研究,2004,17(5):60-63.
    [119]邹联沛,张立秋,王宝贞,等.MBR中DO对同步硝化反硝化的影响[J].中国给水排水,2001,17(6):10-14.
    [120]Camargo J A,Alonso A.Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems:A Global Assessment[J].Environ.Inter,2006,32:831-849.
    [121]Poach M E,Hunt P G,Reddy G B,et al.Effect of Intermittent Drainage on Swine Wastewater Treatment by Marsh-pond-marsh Constructed Wetlands[J].Ecol.Eng.,2007,30:43-50.
    [122]Mhlum T,Stlnacke P.Removal Efficiency of three Cold-climate Constructed Wetlands Treating Domestic Wastewater:Effects of Temperature,Seasons,Loading Rates and Input Concentrations[J].Water Sci.Tech.,1999,40(3):273-281.
    [123]张建,黄霞,魏杰,等.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学,2002,22(5):438-441.
    [124]Chang W,Hong S,Park J.Effect of Zeolite Media for the Treatment of Textile Wastewater in a Biological Aerated Filter[J].Process Biochem.,2002,37:693-698.
    [125]Carlson R R,Linstedt K D,Bennett E R,et al.Rapid Infiltration Treatment of Primary and Secondary Effluent[J].J.Water Pollut.Control Fed.,1992,54:270-280.
    [126]Thomas R E,Bendixen.Degradation of Wastewater Organics in Soil[J].J.Water Pollut.Control Fed.,1969,41:808.
    [127]Gao C,Zhang T,Wu W.Phosphorus Sorption and Release of Paddy Soils:Effect of Alternation of Oxidized and Reduced Conditions[J].Acta Pedol.Sinica,2002,39(4):542-549.
    [128]Foster P M D,Cattley R C,Mylchreest E.Effects ofDi-n-butyl phthalate(DBP) on Male Reproductive Development in the Rat:Implications for Human Risk Assessment[J].Food Chem.Toxicol.,2000,38:97-99.
    [129]Gary L E,Ostby J,Furr J,et al.Prenatal Exposure to the Phthalates DEHP,BBP and DINP,but not DEP,DMP or DOTP,Alters Sexual Differentiation of the Male Rat[J].Toxicol.Sci.,2000,58:350-365.
    [130]Hutchins S R,Tomson M B,Wilson J T.Fate of Trace Organics during Rapid Infiltration of Primary Wastewater at Fort Devens,Massachusetts[J].Water Res.,1984,18:1025-1036.
    [131]Marttinen S K,Ruissalo M,Rintala J A.Removal of Bis(2-ethylhexyl) phthalate from Reject Water in a Nitrogen-removing Sequencing Batch Reactor[J].J.Environ.Manage.,2004,73:103-109.
    [132]Oudot J,Ambles A,Bourgeois S.Hydrocarbon Infiltration and Biodegradation in a Land-farming Treatment[J].Environ.Pollut.,1989,59:17-40.
    [133]Birch G F,Fazeli M S,Matthai C.Efficiency of an Infiltration Basin in Removing Contaminants from Urban Stormwater[J].Environ.Monit.Assess.,2005,101:23-38.
    [134]Tyrrel S F,Leeds-Harrison P B,Harrison K S.Removal of Ammoniacal Nitrogen from Landfill Leachate by Irrigation onto Vegetated Treatment Planes[J].Water Res.,2002,36:291-299.
    [135]Bigambo T,Mayo A W.Nitrogen Transformation in Horizontal Subsurface Flow Constructed Wetlands Ⅱ:Effect ofBiofilm[J].Phys.Chem.Earth,2005,30:668-672.
    [136]Adelman D D,Tabidian M A.The Potential Impact of Soil Carbon Content on Groundwater Nitrate Contamination[J].Water Sci.Tech.,1996,33(4-5):227-232.
    [137]Lance J C,Rice R C,Gilbert R G.Renovation of Wastewater by Soil Columns Flooded with Primary Effluent[J].J.Water Pollut.Control Fed.,1980,52(2):381-387.
    [138]Anderson E L,Pepper I L,Kneebone W R.Reclamation of Wastewater with a Soil-turf Filter Ⅰ:Removal of Nitrogen[J].J.Water Pollut.Control Fed.,1981,53:1402-1407.
    [139]李寿田,周健民,王火焰,等.不同土壤磷的固定特征及磷释放量和释放率的研究[J].土壤学报,2003,40(6):908-914.
    [140]Sakadevan K,Bavor H J.Phosphate Adsorption Characteristics of Soils,Slags and Zeolite to be Used as Substrates in Constructed Wetland Systems[J].Water Res.,1998,32:393-399.
    [141]Xu D F,Xu J M,Wu J J,et al.Studies on the Phosphorus Sorption Capacity of Substrates Used in Constructed Wetland Systems[J].Chemosphere,2006,63:344-352.
    [142]Styles D,Coxon C.Laboratory Drying of Organic-matter Rich Soils:Phosphorus Solubility Effects,Influence of Soil Characteristics and Consequences for Environmental Interpretation [J].Geoderma,2006,136(1-2):120-135.
    [143]晋艳,尉庆丰.土壤基质组成与磷吸附动力学的关系[J].土壤通报,1994,25(2):74-77.
    [144]卢少勇,桂萌,余刚,等.人工湿地中沸石和土壤的氮吸附与再生试验研究[J].农业工程学报,2006,22(11):64-68.
    [145]Casado-Vela J,Selles S,Diaz-Crespo C,et al.Effect of Composted Sewage Sludge Application to Soil on Sweet Pepper Crop(Capsicum annuum var.annuum) Grown under two Exploitation Regimes[J].Water Manage.,2007,27(11):1509-1518.
    [146]Liang Z,Liu J X.Landfill Leachate Treatment with a Novel Process:Anaerobic Ammonium Oxidation(ANAMMOX) Combined with Soil Infiltration System[J].J.Hazard.Mater.,2008,151(1):202-212.
    [147]Wang H Q,Chen J J.Modeling Nitrogen Removal in Soil-crop System under the Condition of Urban Wastewater Land Treatment[J].J.Beijing Normal Univ.(Natur.Sci.),1998,34(3):414-420.
    [148]董泽琴.土壤地下渗滤净化沟污水除磷脱氮工艺及影响因素初探[J].贵州环保科技,2002,8(3):18-20.
    [149]孔刚,许昭怡,李华伟,等.地下土壤渗滤法净化生活污水研究进展[J].土壤,2005,37(3):251-257.
    [150]关小满,张笑一,彭润芝.污水土地生态处理脱氮技术的中型试验研究[J].生态学报,2005,25(4):854-860.
    [151]Balks M R,McLay C D A,Harfoot C G.Determination of the Progression in Soil Microbial Response and Changes in Soil Permeability,Following Application of Meat Processing Effluent to Soil[J].Appl.Soil Ecol.,1997,6:109-116.
    [152]Magesan G N,Williamson J C,Yeates G W,et al.Wastewater C:N Ratio Effects on Soil Hydraulic Conductivity and Potential Mechanisms for Recovery[J].Biores.Tech.,2000,71:21-27.
    [153]Nahlik A M,Mitsch W J.Tropical Treatment Wetlands Dominated by Free-floating Macrophytes for Water Quality Improvement in Costa Rica[J].Ecol.Eng.,2006,28:246-257.
    [154]邱立平,杜茂安,马军,等.单级曝气生物滤池处理生活污水的动力学特性[J].哈尔滨工业大学学报,2006,38(2):203-207.
    [155]Vymazal J.Horizontal Sub-surface Flow and Hybird Constructed Wetlands Systems for Wastewater Treatment[J].Ecol.Eng.,2005,25:478-490.
    [156]王焕校.污染生态学[M].北京:高等教育出版社;海德堡:施普林格出版社,2000:161.
    [157]刘超翔,胡洪营,张建,等.不同深度人工复合生态床处理农村生活污水的比较[J].环境科学,2003,24(5):92-96.
    [158]林玉锁.Langmuir,Temkin 和 Freundlich 方程应用于土壤吸附锌的比较[J].土壤,1994,26:269-272.
    [159]Sun G Z,Zhao Y Q,Allen S.Enhanced Removal of Organic Matter and Ammoniacal-nitrogen in a Column Experiment of Tidal Flow Constructed Wetland System [J].J.Biotechnol.,2005,115:189-197.
    [160]伊利亚列特季诺夫 A H.含氮化合物在土壤中的转化[M].张耀栋,孙维纶译.北京:农业出版社,1995:103-238.
    [161]Anthonisen A C,Loehr R C,Prakasam T B S.Inhibition of Nitrification by Ammonia and Nitrous Acid[J].J.Water Pollut.Control Fed.,1976,48(5):835-850.
    [162]Tanner C C,Kadlec R H,Gibbs M M,et al.Nitrogen Processing Gradients in Subsurface-flow Treatment Wetlands -- Influence of Wastewater Characteristics[J].Ecol.Eng.,2002,18:499-520.
    [163]张之崟,雷中方,张振亚,等.土壤渗滤系统中亚硝态氮的变化与系统运行性能的关系[J].复旦学报(自然科学版),2006,45(6):755-761.
    [164]Reddy K R,Diaz O A,Scinto L J,et al.Phosphorus Dynamics in Selected Wetlands and Streams of the Lake Okeechobee Basin[J].Ecol.Eng.,1995,5:183-207.
    [165]Li W,Recknagel F.Balancing Phosphorus Adsorption and Consumption Processes in Experimental Treatment Ponds for Agricultural Drainage Water[J].Ecol.Eng.,2006,28(1):14-24.
    [166]Heredia O S,Cirelli A F.Environmental Risks of Increasing Phosphorus Addition in Relation to Soil Sorption Capacity[J].Geoderma,2007,137(3-4):426-431.
    [167]Carreira J A,Vinegla B,Lajtha K.Secondary CaCO_3 and Precipitation of P-Ca Compounds Control the Retention of Soil P in Arid Ecosystems[J].J.Arid Environ.,2006,64:460-473.
    [168]Tarafdar J C,Gharu A.Mobilization of Organic and Poorly Soluble Phosphates by Chaetomium Globosum[J].Appl.Soil Ecol.,2006,32:273-283.
    [169]Qiu S,McComb A J,Bell R W.A Mass-balance Approach to Measuring Microbial Uptake and Pools of Phosphorus in Nutrient-amended Soils[J].Soil Biol.Biochem.,2007,39(1):187-193.
    [170]Chacon N,Flores S,Gonzalez A.Implications of Iron Solubilization on Soil Phosphorus Release in Seasonally Flooded Forests of the Lower Orinoco River,Venezuela[J].Soil Biol.Biochem.,2006,38:1494-1499.
    [171]Zhang Z Y,Zhang Z Y,Lei Z F,et al.COD Removal Model and its Application in Shallow Soil Infiltration Treatment System[J].Jap.J.Water Treat.Biol.,2007,43(4):169-179.
    [172]徐元勤,韩月玲.好氧生物膜滤床去除COD及NH_3-N的研究[J].大连水产学院学报,1997,12(1):43-50.
    [173]刘英,李国学,崔理华.不同配水周期人工土快滤系统对城市污水的净化效果[J].农业环境保护,2000,19(6):332-335.
    [174]王书文,刘庆玉,焦银珠,等.生活污水土壤渗滤就地处理技术研究进展[J].水处理技术,2006,32(3):5-10.
    [175]盛骤,谢式千,潘承毅.概率论与数理统计[M].第三版.北京:高等教育出版社,2001:447-454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700