新型三亚吡嗪衍生物荧光传感器的设计与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于金属离子在生命活动及环境体系中的重要影响,对于特定金属离子的检测和选择性识别已成为阳离子识别领域的热点课题之一。荧光探针因其能够实现对金属离子快速、准确的检测而广泛应用于环境监测及生物体研究中。设计合成灵敏度高、选择性好的荧光传感器就成为实现对金属离子选择性识别的关键。三亚吡嗪衍生物中心为平面π共轭结构且具有多个金属结合位点,通过改变其外围六个取代基得到具有不同结合位点的衍生物,可以实现对不同金属离子的选择性结合。
     本论文基于1,2-二胺和1,2-二酮的缩合反应设计合成了一系列吡啶基/苯基/甲基取代的三亚吡嗪衍生物,并考察了这些化合物在溶液中对不同金属阳离子的荧光识别行为,实现了在乙腈和含少量水的乙腈溶液中分别对Zn2+、Cd2+、A13+的选择性识别。此外,初步研究了这些化合物与金属离子的自组装性质。本论文研究的具体内容如下:
     1.设计合成了两个基于吡啶基/苯基取代的具有不同螯合位点的三亚吡嗪衍生物L1和L2。在乙腈溶剂和含5%水的乙腈溶液中,基于分子内电荷转移(ICT)机理,L1和L2均对Zn2+具有比率荧光识别性质。加入Zn2+前后,L1和L2的溶液颜色由无色变为黄色,同时其荧光颜色由蓝色变为黄色,因此,L1和L2还可对Zn2+进行比色识别。荧光滴定数据拟合曲线、Job曲线、核磁滴定及X-射线单晶衍射结构的研究结果证明,L1和L2与Zn2+配位后分别形成稳定的1:3和1:2的配合物。竞争实验及检测限的测定表明,L1和L2与Zn2+结合能力强,受其它金属离子的干扰小,且对Zn2+检测限最低达到0.095μM。因而L1、L2是理想的Zn2+比色比率荧光传感器。此外,对含有不同个数苯基及吡啶取代基的一系列三亚吡嗪衍生物的电化学及光学变化规律的研究表明,改变苯基/吡啶基的数目可有规律得调节三亚吡嗪衍生物的带隙及轨道能级。
     2.设计合成了两个基于吡啶基/甲基取代的具有不同螯合位点的三亚吡嗪衍生物L3和L4。在乙腈溶剂和含5%水的乙腈溶液中,基于螯合荧光增强(CHEF)机理,L3和L4均对Cd2+具有显著的荧光关/开识别效果,L3和L4与Cd2+作用后,其溶液由原先无荧光分别发射出青色和蓝色的荧光。荧光滴定数据拟合曲线、Job曲线、核磁滴定及X-射线单晶衍射结构的研究结果证明,L3和L4与Cd2+配位后分别形成稳定的1:2和1:3的配合物。密度泛函理论计算结果进一步从理论上解释了L3和L4与Cd2+的作用机理。竞争实验及检测限的测定表明,L3和L4与Cd2+结合能力强,受其它金属离子的干扰小,对Cd2+检测限最低达到0.645μM,是理想的Cd2+的荧光传感器。此外,通过对L3与部分过渡金属的自组装研究得到了结构丰富的金属配合物。
     3.设计合成了一个类似三亚吡嗪衍生物结构的化合物L5。化合物L5在乙腈溶液中对Al3+有显著的荧光关/开识别效应,当L5与Al3+作用后,L5溶液由原先无荧光变为发射出蓝色的荧光。竞争实验及检测限的测定表明,L5与Al3+结合能力强,受其它金属离子的干扰小,且灵敏度高,因而可发展成为Al3+的荧光传感器。
     总之,本论文丰富了三亚吡嗪衍生物的设计与合成,得到了新型基于三亚吡嗪衍生物的Zn2+、Cd2+、Al3+荧光传感器,为基于三亚吡嗪衍生物的金属自组装性质的进一步研究提供了素材。
In recent years, the detection and recognition of metal ions have become a focus of intense research activities in the fields of cation recognition. Due to the operability and fast-speed, fluorescence sensors are powerful tools for the detection of metal ions, which are widely used not only in environmental monitoring but also in biological studies. The key for selective recognition of metal ions is to design a fluorescence sensor with high sensitivity and specific selectivity. Hexaazatriphenylene (HAT) and its derivatives, which are based on π-conjugated hexaazatriphenylene core and can be readily modified by their six substituent groups, have potential ability to coordinate with specific metal ion.
     In this dissertation, a serious of phenyl-/pyridyl-/methyl-substituent HAT derivatives were designed and synthesized by the condensation reaction of1,2-diamines and1,2-diketones. The recognition behaviors of these compounds to different metal ions in solution were investigated, and the results indicated that the compounds have fluorescence selectivity to Zn2+, Cd2+, Al3+, respectively. The self-assembly of the compounds with the metal ions were further studied. The main points are summarized as follows:
     1. Two phenyl-/pyridyl-substituent HAT derivatives L1and L2with different chelating sites were designed and synthesized. Both compounds L1and L2exhibit sensitive, ratiometric and colorimetric fluorescent selectivity for Zn2+ion over alkali ions, alkaline earth ions and a wide range of transition metal ions based on intramolecular charge-transfer (ICT) mechanism in acetonitrile and in5%aqueous acetonitrile. The interaction between L1or L2and Zn2+can be observed by naked eyes with an obvious color change of the solution from colorless to yellow and fluorescence color change from blue to yellow. The stoichiometry and coordination mode of L1-Zn2+and L2-Zn2+were determined with fluorescence titration fit, job's plot analysis,1H NMR titration and X-ray crystallography. The results show that L1and L2have potential applications in Zn2+fluorescence sensors. Furthermore, the photophysical and electrochemical properties of a serious of HAT derivatives with different number of phenyl and pyridyl were also studied.
     2. Two phenyl-/methyl-substituent HAT derivatives L3and L4with different chelating sites were designed and synthesized. Both L3and L4exhibit high off-on fluorescent selectivity for Cd2+over many other metal ions based on the chelation enhanced fluorescence (CHEF) mechanism in acetonitrile and in5%aqueous acetonitrile. The stoichiometry of L3-Cd2+and L4-Cd2+were determined with fluorescence titration fit, job's plot analysis,1H NMR titration and X-ray crystallography to be1:2and1:3, respectively. The recognition mechanism of sensors L3and L4to Cd2+was further analyzed with density functional theory calculation. Since the high sensitivity and selectivity to Cd2+, L3and L4are ideal Cd2+fluorescence chemsensor. What's more, we also studied the self-assembly of the compounds with transition metal ions.
     3. A compound analogous to HAT derivatives L5was designed and synthesized. L5shows high off-on fluorescent selectivity for Al3+over many other metal ions in acetonitrile. The competition experiments and the detection limit of L5to Al3+indicated that L5can recognition Al3+sensitively and without interference by other metal ions.
     Above all, the studies increase the knowledge of design and synthesis of HAT derivatives and provide novel Zn2+, Cd2+, Al3+fluorescence chemsensors based on HAT derivatives.
引文
[1]De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.1997,97,1515.
    [2](a) Bissell, R. A.; Silva, R. A. P.; Gunaratne, H. O. N. Chem. Soc. Rev.1992,1,187. (b) Suksai, C.; Tuntulani, T. Chem. Soc. Rev.2003,32,192.
    [3]Wang, J.; Qian, X. Org. Lett.2006,8,3721.
    [4]Valeur, B.; Leray, I. Chem. Soc. Rev.2000,205,3.
    [5]Valeur, B. Molecular fluorescence principles and applications. Berlin:Wiley-VCH VerlagGmbH,2001,113.
    [6]Hancock, R. D. Chem. Soc. Rev.2013,42,1500.
    [7]Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M., Chem. Soc. Rev.2012,256,170.
    [8]Nolan, E. M.; Lippard, S. J. Acc. Chem. Res.2009,42,193.
    [9]Buccella, D.; Horowitz, J. A.; Lippard, S. J. J. Am. Chem. Soc.2011,133,4101.
    [10]Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc.2002,124,6555.
    [11]He, Q.; Miller, E. W.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc.2006,128,9316.
    [12]Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubot, T.; Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuk, K. J. Am. Chem. Soc.2004,126,16353.
    [13]Swamy, K. M. K.; Kim, H. N.; Soh, J. H.; Kim, Y.; Kim, S. J.; Yoon, J. Chem. Commun. 2009,1234.
    [14]Liu, W.; Xu, L.; Sheng, R.; Wang, P.; Li, H.; Wu, S. Org. Lett.2007,9,3829.
    [15](a) Ando, S.; K. Koide, J. Am. Chem. Soc.2011,133,2556. (b) Santra, M.; Ryu, D.; Chatterjee, A.; Ko, S. K.; Shin, I.; Ahn, K. H. Chem. Commun.2009,2115. (c) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc.2007,129,5910.
    [16]Wan, Y.; Guo, Q.; Wang, X.; Xia, A. Anal. Chim. Acta.2010,665,215.
    [17]Zhou, Z.; Yu, M.; Yang, H.; Huang, K.; Li, F.; Yi, T.; Huang, C. Chem. Commun.2008,29, 3387.
    [18]Lee, Y. H.; Lee, M. H.; Zhang, J. F.; Kim, J. S. J. Org. Chem.2010,75,7159.
    [19]Shi, W.; Sun, S.; Li, X. H.; Ma, H. M. Inorg. Chem.2010,49,1206.
    [20]Mizukami, S.; Okada, S.; Kimura, S.; Kikuchi, K. Inorg. Chem.2009,'48,7630.
    [21](a) Farruggia, G.; Iotti, S.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Savage, P. B.; Trapani, V.; Sale, P.; Wolf, F. I. J. Am. Chem. Soc.2006,128,344. (b) Ray, D.; Bharadwaj, P. K. Inorg. Chem.2008,47,2252.
    [22](a) Avirah, R. R.; Jyothish, K.; Ramaiah, D. Org. Lett.2007,9,121. (b) Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. Org. Lett.2008,10, 1481.
    [23](a) Taki, M.; Desaki, M.; Ojida, A.; Iyoshi, S.; Hirayama, T.; Hamachi, I.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 12564. (b) Yao, J.; Dou, W.; Qin, W.; Liu, W. Inorg. Chem. Commun. 2009, 12, 116. (c) Chuang, R. R.; Chen, Y. L.; Yang, D. Y. Sensor Lett. 2010, 8 607.
    [24]Zhou, X.; Yu, B.; Guo, Y.; Tang, X.; Zhang, H.; Liu, W. Inorg. Chem. 2010, 49,4002.
    [25]Mameli, M.; Aragoni, M. C; Area, M.; Caltagirone, C; Demartin, F; Farruggia, G; De Filippo, G; Devillanova, F. A.; Garau, A.; Isaia, F.; Lippolis, V.; Murgia, S.; Prodi, L.; Pintus, A.; Zaccheroni, N. Chemistry 2010, 16, 919.
    [26]Maity, D.; Govindaraju, T. Chem. Commun. 2012,48, 1039.
    [27](a) Praveen, L.; Ganga, V. B.; Thirumalai, R.; Sreeja, T.; Reddy, M. L. P.; Varma, L. Inorg. Chem. 2007,46, 6277. (b) Mac, M.; Uchacz, T.; Wrobel, T.; Danel, A.; Kulig, E.; J. Fluoresc. 2010, 20, 525. (c) Mac, M.; Uchacz, T.; Danel, A.; Danel, K.; Kolek, P.; Kulig, E. J. Fluoresc. 2011,21,375.
    [28](a) Rogers, D. Z. J. Org. Chem. 1986, 51, 3904. (b) Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. J. Organomet. Chem. 1981, 217, 179. (c) Kohne, B.; Praefcke, K. Liebigs Ann. Chem. 1985, 522.
    [29](a) Rademacher, J. T.; Kanakarajan, K.; Czamik, A. W. Synthesis 1994, 378. (b) Kanakarajan, K.; Czarnik, A. W. J. Org. Chem. 1986, 51, 5241. (c) Kanakarajan, K.; Czarnik, A. W. Polymer Commun. 1989, 30, 171. (d) Sarma, M. S. P.; Czamik, A. W. Synthesis 1988, 72.
    [30](a) Kaafarani, B. R.; Kondo, T.; Yu, J.; Zhang, Q.; Dattilo, D.; Risko, C; Jones, S. C.; Barlow, S.; Domercq, B.; Amy, F.; Kahn, A.; Bredas, J. L.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2005, 127, 16358. (b) Ishi-i, T.; Murakami, K.; Imai, Y; Mataka, S. Org. Lett. 2005, 7, 3175. (c) Ishi-i, T.; Yaguma, K.; Kuwahara, R.; Taguri Y; Mataka, S. Org. Lett. 2006, 8, 585.
    [31](a) Mahoney, S. J.; Ahmida, M. M.; Kayal, H.; Fox, N.; Shimizu, Y; Eichhorn, S. H. J. Mater. Chem. 2009, 19, 9221. (b) Chang, T. H.; Wu, B. R.; Chiang, M. Y.; Liao, S. C; Ong, C. W.; Hsu, H. F.; Lin, S. Y. Org. Lett. 2005, 7, 4075. (c) Lehmann, M.; Kestemont, G; Aspe, R. G.; Buess-Herman, C; Koch, M. H. J.; Debije, M. G.; Piris, J.; de Haas, M. P.; Warman, J. M.; Watson, M. D.; Lemaur, V.; Cornil, J.; Geerts, Y. H.; Gearba, R.; Ivanov, D. A., Chem. Eur. J. 2005, 11, 3349. (d) Marshall, S. R.; Rheingold, A. L.; Dawe, L. N.; Shum, W. W.; Kitamura, C.; Miller, J. S. Inorg. Chem. 2002, 41, 3599.
    [32](a) Marshall, S. R.; Rheingold, A. L; Dawe, L. N.; Shum, W. W.; Kitamura, C.; Miller, J. S. Inorg. Chem. 2002, 41, 3599. (b) Galan-Mascaros, J. R.; Dunbar, K. R. Chem. Commun. 2001, 217. (c) Grove, H.; Sletten, J.; Julve, M.; Lloret. F. J. Chem. Soc. Dalton Trans. 2001, 1029.
    [33](a) Zhao, Q.; Liu, X. M.; Song, W. C.; Bu, X. H. Dalton Trans. 2012, 41, 6683. (b) D'Alessandro, D. M.; Davies, M. S.; Keene, F. R. Inorg. Chem. 2006,45, 1656. (c) Bu, X. H.; Tanaka, K.; Shionoya, M.; Biradha, K.; Yamaguchi, T.; Nishimura, M.; Ito, T. Chem. Commun. 2000, 1953.
    [34](a) Xiao, Z. Y.; Zhao, X.; Jiang, X. K.; Li, Z. T. Chem. Mater. 2011,23, 1505. (b) Xiao, Z. Y.; Zhao, X.; Jiang, X. K.; Li, Z. T. Langmuir 2010, 26, 13048. (c) Palma, M.; Levin, J.; Lemaur, V.; Liscio, A.; Palermo, V.; Cornil, J.; Geerts, Y.; Lehmann, M.; Samori, P. Adv. Mater. 2006, 18,3313.
    [35](a) Gao, B. X.; Liu, Y. L.; Geng, Y. H.; Cheng, Y. X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Tetrahedron Lett. 2009, 50, 1649. (b) Ishi-i, T.; Murakami, K,; Imai, Y; Mataka, S. J. Org. Chem. 2006,71, 5752.
    [36]Zhao, Q.; Li, R. F.; Xing, S. K.; Liu, X. M.; Hu, T. L.; Bu, X. H. Inorg. Chem. 2011, 50, 10041.
    [37]F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380; Cambridge Structure Database, Version 53,2011.
    [38](a) Hancock, R. D.; Martell, A. E. Chem. Rev. 1989, 89, 1875. (b) Hancock, R. D. Chem. Soc. Rev. 2013,42,1500.
    [39]D'Alessandro, D. M.; Davies, M. S.; Keene, F. R., Inorg. Chem. 2006,45, 1656.
    [40]Herrera, J. M.; Colacio, E.; Mathoniere, G.; Choquesillo-Lazarte, D.; Ward, M. D., Chem. Commun. 2008,37,4460.
    [41]Roy, S.; Sarkar, B.; Duboc, C.; Fiedler, J.; Sarper, O.; Lissner, F.; Mobin, S. M.; Lahiri, G K.; Kaim, W. Chem. Eur. J. 2009,15, 6932.
    [42]Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Mullen, K., J. Am. Chem. Soc. 2011,133,10372.
    [43]Fraser, M. G.; Clark, C. A.; Horvath, R.; Lind, S. J.; Blackman, A. G.; Sun, X. Z.; George, M. W; Gordon, K. C, Inorg. Chem. 2011, 50,6093.
    [44]Marquis-Rigault, A.; Dupont-Gervais, A.; Baxter, P. N. W.; Dorsselaer, A. V.; Lehn, J. M. Inorg. Chem. 1996, 35,2307.
    [45]Baxter, P. N. W.; Lehn, J. M.; Knersel, B. O.; Baum, G.; Feske, D. Chem. Eur. J. 1999, 5, 113.
    [46]Masaoka, S.; Furukawa, S.; Chang, H. G.; Mizutani, T.; Kitagawa, S. Angew. Chem. Int. Ed. 2001,40,3817.
    [47]Abrahams, B. F.; Jackson, P. A.; Robson, R. Angew. Chem. Int. Ed. 1998, 37,2656.
    [1](a) Kaafarani, B. R.; Kondo, T.; Yu, J.; Zhang, Q.; Dattilo, D.; Risko, C.; Jones, S. C.; Barlow, S.; Domercq, B.; Amy, F.; Kahn, A.; Bredas, J. L.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2005,127, 16358. (b) Ishi-i, T.; Murakami, K.; Imai, Y; Mataka, S. Org. Lett. 2005, 7, 3175. (c) Ishi-i, T.; Yaguma, K.; Kuwahara, R.; Taguri Y.; Mataka, S. Org. Lett. 2006, 8, 585.
    [2](a) Mahoney, S. J.; Ahmida, M. M.; Kayal, H.; Fox, N.; Shimizu, Y; Eichhorn, S. H. J. Mater. Chem. 2009,19, 9221. (b) Chang, T. H.; Wu, B. R.; Chiang, M. Y.; Liao, S. C.; Ong, C. W.; Hsu, H. F.; Lin, S. Y. Org. Lett. 2005, 7,4075. (c) Lehmann, M.; Kestemont, G.; Aspe, R. G.; Buess-Herman, C.; Koch, M. H. J.; Debije, M. G.; Piris, J.; de Haas, M. P.; Warman, J. M.; Watson, M. D.; Lemaur, V.; Cornil, J.; Geerts, Y. H.; Gearba, R.; Ivanov, D. A., Chem. Eur. J. 2005, 77, 3349.Marshall, S. R.; Rheingold, A. L.; Dawe, L. N.; Shum, W. W.; Kitamura, C.; Miller, J. S.Inorg. Chem. 2002, 41, 3599.
    [3](a) Marshall, S. R.; Rheingold, A. L.; Dawe, L. N.; Shum, W. W.; Kitamura, C.; Miller, J. S. Inorg. Chem. 2002, 41, 3599. (b) Galan-Mascaros, J. R.; Dunbar, K. R. Chem. Commun. 2001, 217. (c) Grove, H.; Sletten, J.; Julve, M.; Lloret. F. J. Chem. Soc. Dalton Trans. 2001, 1029.
    [4](a) Zhao, Q.; Liu, X. M.; Song, W. C.; Bu, X. H. Dalton Trans. 2012, 41, 6683. (b) D'Alessandro, D. M.; Davies, M. S.; Keene, F. R. Inorg. Chem. 2006, 45, 1656. (c) Bu, X. H.; Tanaka, K.; Shionoya, M.; Biradha, K.; Yamaguchi, T.; Nishimura, M.; Ito, T. Chem. Commun. 2000, 1953.
    [5](a) Xiao, Z. Y; Zhao, X.; Jiang, X. K.; Li, Z. T. Chem. Mater. 2011,23, 1505. (b) Xiao, Z. Y.; Zhao, X.; Jiang, X. K.; Li, Z. T. Langmuir 2010, 26, 13048. (c) Palma, M.; Levin, J.; Lemaur, V; Liscio, A.; Palermo, V; Cornil, J.; Geerts, Y; Lehmann, M.; Samori, P. Adv. Mater. 2006, 75,3313.
    [6](a) Kitagawa, S.; Masaoka, S. Coord. Chem. Rev. 2003, 246, 73. (b) Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. J. Organomet. Chem. 1981, 217, 179.
    [7](a) Gao, B. X.; Liu, Y L.; Geng, Y. H.; Cheng, Y. X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Tetrahedron Lett. 2009, 50, 1649. (b) Ishi-i, T.; Murakami, K.; Imai, Y; Mataka, S. J. Org. Chem. 2006, 71, 5752.
    [8](a) Zhao, Q.; Li, R. F; Xing, S. K.; Liu, X. M.; Hu, T. L.; Bu, X. H. Inorg. Chem. 2011, 50,10041.(b)赵强 南开大学博士论文,2011.
    [9](a) Helal,A.; Rashid, M. H. O.; Choi, C. H.; Kim, H. S. Tetrahedron 2012, 68, 647. (b) Zheng, Q.; Chen, S.; Wang, Z.; Cui, Y. Talanta 2011, 85, 824. (c) Shi, L.; Li, Y; Liu, Z. P.; James, T. D.; Long, Y. T. Talanta 2012, 100, 401. (d) Vallee, B. L.; Falchuk, K. H. Physiol. Rev. 1993, 73, 79. (e) Koh, J. Y; Suh, S. W.; Gwag, B. L.; He, Y. Y; Hsu, C. Y; Choi, D. W. Science 1996, 272, 1013.
    [10](a) Maity, D.; Govindaraju, T. Chem. Commun. 2012, 48, 1039. (b) Zhu, X.; He, C; Dong, D. P.; Liu, Y; Duan, C. Y Dalton Trans. 2010, 39, 10051. (c) Li, H. R.; Cheng, W. J.; Wang, Y; Liu, B. Y; Zhang, W. J.; Zhang, H. J. Chem. Eur. J. 2010,16, 2125. (d) Li, Y P.; Yang, H. R.; Zhao, Q.; Song, W. C.; Han J.; Bu, X. H. Inorg. Chem. 2012, 57, 9642. (e) Tufan, B.; Akkaya, E. U. Org. Lett. 2002, 4, 2857.
    [11](a) Rogers, D. Z. J. Org. Chem. 1986, 57, 3904. (b) Hill, M. E.; Taylor, F. J. Org. Chem. 1960,25, 1037.
    [12](a) Bruker, A. X. S. SAINT Software Reference Manual Madison, WI, 1998. (b) Sheldrick, G M. SHELXTL NT: Program for Solution and Refinement of Crystal Structures Version 5.1 University of Gottingen: Gottingen, Germany, 1997.
    [13](a) Spek, A. L. PLATON, Utrecht University: Utrecht, The Netherlands, 2008. (b) Tan, C. H.; Yang, S. H.; Champness, N. R.; Lin, X.; Blake, A. J.; Lewis, W.; Schroder, M. Chem. Commun.2011,47,4487. (c) Spek, A. L. Acta Crystallogr. Sect. D 2009,65,148. (d) Yang, W. B.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schroder, M.J. Am. Chem. Soc.2010,132,14457.
    [14](a) Parker, C. A.; Rees, W. T. Analyst,1960,85,587. (b) Casey, K. G.; Quitevis, E. L. J. Phys. Chem.1988,92,6590.
    [15](a) Dmas, J. N.;; Crobys, G. A. J. Phys. Chem.,1971,75,991. (b) Casey, K. G.; Quitevis, E. L. J. Phys. Chem.1988,92,6590.
    [16]Tong, C.; Zhao, W.; Luo, J.; Mao, H.; Chen, W.; Chan, H. S.; Chi, C. Org. Lett.2012,14, 494.
    [17](a) Juarez, R.; Oliva, M. M.; Ramos, M.; Segura, J. L.; Aleman, C.; Rodriguez-Ropero, F.; Curco, D.; Montilla, F.; Coropceanu, V.; Bredas, J. L.; Qi, Y.; Kahn, A.; Ruiz Delgado, M. C.; Casado, J.; Lopez Navarrete, J. T. Chem. Eur. J.2011,17,10312. (b) Jia, C. Y.; Liu, S. X.; Tanner, C.; Leiggener, C.; Sanguinet, L.; Levillain, E.; Leutwyler, S.; Hauser, A.; Decurtins, S. Chem. Commun.2006,17,1878. (c) Juarez, R.; Ramos, M.; Segura, J. L.; Orduna, J.; Villacampa, B.; Alicante, R. J. Org. Chem.2010,75,7542.
    [18](a) Yang, Z. H.; Yan, C. C.; Chen, Y. C.; Zhu, C. C.; Zhang, C. L.; Dong, X. D.; Yang, W. Q.; Guo, Z. J.; He, W. J. Dalton Trans.2011,40,2173. (b) Xu, Z.; Baek, K. H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc.2010,132,601. (c) Resch-Genger, U.; Li, Y.Q.; Bricks, J. L.J. Phys. Chem. A,2006,110,10956.
    [19](a) Zhang, L. Y.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Cryst. Growth Des.2006,6,1684. (b) Zheng, S. L.; Yang, J. H.; Yu, X. L.; Chen, X. M.; Wong, W. T. Inorg. Chem.2004,43,830. (c) Jiang, T.; Zhao,Y.F.; Zhang, X. M. Inorg. Chem. Commun.2007,10,1194. (d) Li, J. R. Tao, Y.Yu, Q.; Bu, X. H. Chem. Commun.2007,15,1527.
    [20](a) Sabatini, A.; Vacca, A.; Gans, P. Coord. Chem. Rev.1992,120,389. (b) J. W. Wang, J. Wu, Y. M. Chen, H. P. Wang, Y. R. Li, W. S. Liu, H. Tian, T. Zhang, J. Xu and Y Tang, Dalton Trans.2012,41,12936.
    [21]Hancock, R. D. Chem. Soc. Rev.2013,42,1500.
    [22](a) Wang, L.; Qin, W.; Tang, X.; Dou, W.; Liu, W.; Teng, Q.; Yao, X., Org. Biomol. Chem. 2010,8,3751. (b) Joshi, B. P.; Lohani, C. R.; Lee, K. H. Org. Biomol. Chem.2010,8,3320. (c) Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, R., Org. Lett.2011,13,4922.
    [23](a) Juarez, R.; Oliva, M. M.; Ramos, M.; Segura, J. L.; Aleman, C.; Rodriguez-Ropero, F.; Curco, D.; Montilla, F.; Coropceanu, V.; Bredas, J. L.; Qi, Y.; Kahn, A.; Ruiz Delgado, M. C.; Casado, J.; Lopez Navarrete, J. T. Chem. Eur. J.2011,17,10312. (b) Jia, C. Y.; Liu, S. X.; Tanner, C.; Leiggener, C.; Sanguinet, L.; Levillain, E.; Leutwyler, S.; Hauser, A.; Decurtins, S. Chem. Commun.2006,17,1878.
    [1](a) Pari, L.; Murugavel, P.; Sitasawad, S. L.; Kumar, K. S. Life Sci.2007,80,650. (b) Patrick, L.; Altern, N. D. Med. Rev.2003,8,106. (c) Chaney, R. L.; Ryan, J. A.; Li, Y. M.; Brown, S. L. Cadmium in Soils and Plants McLaughlin, M. J.; Singh, B. R. Eds., Kluwer, Boston,1999, 219.
    [2]Nordberg, G. F.; Herber, R. F. M.; Alessio, L. Cadmium in the Human Environment Oxford University Press, Oxford, UK,1992.
    [3](a) Bridges, C. C.; Zalups, R. K. Toxicol. Appl. Pharmacol.2005,204,274. (b) Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Toxicology 2003,192,95. (c) Zalups, R. K.; Ahmad, S. Toxicol. Appl. Pharmacol.2003,186,163.
    [4](a) Safin, D. A.; Babashkina, M. G.; Garcia,Y. Dalton Trans.2013,42,1969. (b) Li, H. R.; Cheng, W. J.; Wang, Y.; Liu, B. Y.; Zhang, W. J.; Zhang, H. J. Chem. Eur. J.2010,16,2125. (c) Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.; Watkinson, MF. Inorg. Chem. 2009,48,319. (d) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. J. Am. Chem. Soc.2007, 129,13447. (e) Lin, Z. H.; Ou, S. J.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Chem. Commun. 2006,624.
    [5](a) Wang, W.; Wen, Q.; Zhang, Y.; Fei, X.; Li, Y; Yang Q.; Xu, X. Dalton Trans.2013,42, 1827. (b) Liu, Y.; Dong, X.; Sun, J.; Zhong, C.; Li, B.; You, X.; Liu, B.; Liu, Z. Analyst 2012, 137,1837. (c) Tian, H.; Li, B.; Zhu, J. L.; Wang, H. P.; Li, Y. R.; Xu, J.; Wang, J. W.; Wang, W.; Sun, Z. H.; Liu, W. S.; Huang, X. G.; Yan, X. H.; Wang, Q.; Yao, X. J.; Tang, Y Dalton Trans.2012,41,2060. (c) Cheng, T.; Xu, Y.; Zhang, S.; Zhu, W.; Qian, X.; Duan, L. J. Am. Chem. Soc.2008,130,16160.
    [6](a) Liu, X.; Zhang, N.; Zhou, J.; Chang, T.; Fang, C.; Shangguan, D. Analyst 2013,138,901. (b) Li, M.; Lu, H. Y.; Liu, R. L.; Chen, J. D.; Chen, C. F.; J. Org. Chem.2012,77,3670. (c) Pourghaz, Y.; Dongare, P.; Thompson, D. W.; Zhao, Y.M. Chem. Commun.2011,47,11014. (d) Hu, Y.; Li, Q. Q.; Li, H.; Guo, Q. N.; Lu, Y. G.; Li, Z. Y. Dalton Trans.2010,39,11344.
    [7](a) Li, Y.P.; Yang, H. R.; Zhao, Q.; Song, W. C.; Han, J.; Bu, X. H. Inorg. Chem.2012,51, 9642. (b) Burdette, S. C.; Lippard, S. J. Coord. Chem. Rev.2001,216,333.(c) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.2000,100,2537.
    [8](a) Ravikumar, I.; Ghosh, P. Inorg. Chem.2011,50,4229. (b) Drewry, J. A.; Gunning, P. T. Coord. Chem. Rev.2011,255,459. (c) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol.2008,4,168.
    [9](a) Thomas Ⅲ, S. W. Joly, G. D.; Swager, T. M. Chem. Rev.2007,107,1339. (b) Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev.2007,36,993. (c) Yang, J. S.; Swager, T. M. J. Am. Chem. Soc.1998,120,5321.
    [10](a) Zhao, Q.; Li, R. F.; Xing, S. K.; Liu, X. M.; Hu, T. L.; Bu, X. H. Inorg. Chem.2011,50, 10041. (b) Liu, X. M.; Zhao, Q.; Song, W. C.; Bu, X. H. Chem. Eur. J.2012,18,2806.
    [11]Kitagawa, S.; Masaoka, S. Coord. Chem. Rev.2003,246,73.
    [12](a) Rogers, D. Z. J. Org. Chem.1986,51,3904. (b) Hill, M. E.; Taylor, F. J. Org. Chem. 1960,25,1037.
    [13](a) Bruker, A. X. S. SAINT Software Reference Manual Madison, WI,1998.(b) Sheldrick, G. M. SHELXTL NT:Program for Solution and Refinement of Crystal Structures Version 5.1 University of Gottingen: Gottingen, Germany, 1997.
    [14](a) Spek, A. L. PLATON, Utrecht University: Utrecht, The Netherlands, 2008. (b) Tan, C. H.; Yang, S. H.; Champness, N. R.; Lin, X.; Blake, A. J.; Lewis, W.; Schroder, M. Chem. Commun. 2011, 47, 4487. (c) Spek, A. L. Acta Crystallogr. Sect. D 2009, 65, 148. (d) Yang, W. B.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.; Wilson, C; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schroder, M. J. Am. Chem. Soc. 2010, 132, 14457.
    [15](a) Parker, C. A.; Rees, W. T. Analyst, 1960, 85, 587. (b) Casey, K. G; Quitevis, E. L. J. Phys. Chem. 1988,92,6590.
    [16](a) Dmas, J. N.; Crobys, G. A. J. Phys. Chem. 1971, 75, 991. (b) Casey, K. G.; Quitevis, E. L. J. Phys. Chem. 1988, 92, 6590.
    [17]Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. R; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T; Honda, Y; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
    [18](a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (c) Lee, C; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
    [19]Hay, P. J.; Wadt, W. R.; J. Chem. Phys. 1985, 82, 299.
    [20](a) Aliaga-Alcalde, N.; Rodriguez, L.; Ferbinteanu, M.; Hofer, P.; Weyhermuller, T. Inorg. Chem. 2012, 57, 864. (b) Mameli, M.; Aragoni, M. C; Area, M. ; Caltagirone, C; Demartin, F; Farruggia, G; Filippo, G. D.; Devillanova, F. A.; Garau, A.; Isaia, R; Lippolis, V.; Murgia, S.; Prodi, L.; Pintus, A.; Zaccheroni, N. Chem. Eur. J. 2010, 16, 919. (c) Cockrell, G. M.; Zhang, G.; VanDerveer, D. G.; Thummel, R. P.; Hancock, R. D. J. Am. Chem. Soc. 2008, 130, 1420.
    [21](a) Sabatini, A.; Vacca, A.; Gans, P. Coord. Chem. Rev. 1992, 120, 389. (b) Wang, J. W.; Wu, J.; Chen, Y. M.; Wang, H. P.; Li, Y. R.; Liu, W. S.; Tian, H.; Zhang, T.; Xu, J.; Tang, Y. Dalton Trans. 2012, 41, 12936.
    [22](a) Wang, L.; Qin, W.; Tang, X.; Dou, W.; Liu, W.; Teng, Q.; Yao, X., Org. Biomol. Chem. 2010, 8, 3751. (b) Joshi, B. P.; Lohani, C. R.; Lee, K. H. Org. Biomol. Chem. 2010, 8, 3320. (c) Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, R., Org. Lett. 2011, 13,4922.
    [23]Xiao, Z. Y.; Zhao, X.; Jiang, X. K.; Li, Z. T. Chem. Mater. 2011, 23, 1505.
    [1](a) Miller, W. S.; Zhuang, L.; Bottema, J.; Wittebrood, A. J.; De Smet, P.; Haszler, A.; Vieregge, A. Mater. Sci. Eng., A 2000, 280, 37. (b) Doherty, R. E. Environ. Forensics 2000, 1, 83. (c) Ciardelli, G; Ranieri, N. Water Res. 2001, 35, 567.
    [2](a) Humphreys, S.; Bolger, P. M.; Zatta, P. F.; Alfrey, A. C. A Public Health Analysis of Dietary Aluminium World Scientific, Singapore, 1997, 226. (b) Yokel, R. A. Food Chem. Toxicol. 2008, 46, 2261. (c) Shi, X.; Wang, H.; Han, T.; Feng, X.; Tong, B.; Shi, J.; Zhi, J.; Dong, Y. J. Mater. Chem. 2012, 22, 19296. (d) Greger, J. L. Crit. Rev. Clin. Lab. Sci. 1997, 34,439.
    [3]Flaten, T. P. Brain Res. Bull. 2001, 55, 187.
    [4]Sorenson, J. R. J.; Campbell, I. R.; Tepper, L. B.; Lingg, R. D. Environ. Health Perspect. 1974,8,3.
    [5](a) Baral, M.; Sahoo, S. K.; Kanungo, B. K. J. Inorg. Biochem. 2008, 102, 1581. (b) Gupta, V. K.; Jain, A. K.; Maheshwari, G. Talanta 2007, 72, 1469.
    [6](a) Alvarez, E.; Fernandez, M. L.; Monterroso, C; Fernandez, S. M. Forest Ecol. Manage. 2005, 211,227. (b) Barcelo, J.; Poschenrieder, C. Environ. Exp. Bot. 2002,48, 75.
    [7]Alstad, N. E. W.; Kjelsberg, B. M.; L. Vollestad, A.; Lydersen, E.; Poleo, A. B. S. Environ. Pollut. 2005, 133,333.
    [8](a) Saleh, M. B.; Hassan, S. S. M.; Gaber, A. A. A.; Kream, N. A. A. Anal. Chim. Acta 2001, 434, 247. (b) Downard, A. J.; O'Sullivan, B.; Powell, K. J. Anal. Chim. Acta 1997, 345, 5. (c) Lian, H.; Kang, Y; Bi, S.; Arkin, Y; Shao, D.; Li, D.; Chen, Y; Dai, L.; Gan, N.; Tian, L. Talanta 2004, 62,43.
    [9](a) Lakowicz, J. R. Topics in Fluorescence Spectroscopy, in Probe Design and Chemical Sensing Kluwer Academic Publishers, New York, 2002, 4. (b) de Silva, A. P.; Fox, D. B.; Huxley, J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41. (c) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000,205, 3.
    [10](a) Upadhyay, K. K.; Kumar, A. Org. Biomol. Chem. 2010, 8, 4892. (b) Lu, Y; Huang, S.; Liu, Y; He, S.; Zhao, L.; Zeng, X. Org. Lett. 2011, 13, 5274. (c) Maity, D.; Govindaraju, T. Inorg. Chem. 2010, 49, 7229. (d) Chen, S.; Fang, Y. M.; Xiao, Q.; Li, J.; Li, S. B.; Chen, H. J.; Sun, J. J.; Yang, H. H. Analyst 2012, 137, 2021.
    [11](a) Arduini, M.; Felluga, F; Mancin, F; Rossi, P.; Tecilla, P.; Tonellato, U.; Valentinuzzi, N. Chem. Commun. 2003, 1606. (b) Zhao, Y; Lin, Z.; Liao, H.; Duan, C; Meng, Q. Inorg. Chem. Commun. 2006, 9, 966. (c) Othman, A. B.; Lee, J. W.; Huh, Y.-D.; Abidi, R.; Kim, J. S.; Vicens, J. Tetrahedron 2007, 63, 10793. (d) Kim, S. H.; Choi, H. S.; Kim, J.; Lee, S. J.; Quang, D. T; Kim, J. S. Org. Lett. 2010, 12, 560.
    [12](a) Sen, S.; Sarkar, S.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Dhara, K; Chattopadhyay, P. Analyst 2012, 137, 3335. (b) Saha, U. C; Chattopadhyay, B.; Dhara, K.; Mandal, S. K; Sarkar, S.; Khuda-Bukhsh, A. R.; Mukherjee, M.; Helliwell, M.; Chattopadhyay, P. Inorg. Chem.2011,50,1213. (c) Dhara, K.; Saha, U. C.; Dan, A.; Manassero, M.; Sarkar, S.; Chattopadhyay, P. Chem. Commun.2010,46,1754.
    [13](a) Rogers, D. Z. J. Org. Chem.1986,51,3904. (b) Hill, M. E.; Taylor, F. J. Org. Chem.1960, 25,1037.
    [14]Bruker, A. X. S. SAINT Software Reference Manual Madison, WI,1998.
    [15]Sheldrick, G M. SHELXTL NT:Program for Solution and Refinement of Crystal Structures Version 5.1 University of Gottingen:Gottingen, Germany,1997.
    [16](a) Parker, C. A.; Rees, W. T. Analyst 1960,85,587. (b) Casey, K. G.; Quitevis, E. L. J. Phys. Chem.1988,92,6590.
    [17](a) Dmas, J. N.;; Crobys, G A. J. Phys. Chem.1971,75,991. (b) Casey, K. G.; Quitevis, E. L. J. Phys. Chem.1988,92,6590.
    [18]Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J.; Chattopadhyay, P., Analyst 2012,137,3975.
    [19](a) Kim, S. H.; Choi, H. S.; Kim, J.; Lee, S. J.; Quang, D. T.; Kim, J. S., Organic letters 2010, 12,560. (b) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org. Lett.2003,5,4065. (c) Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. J. Org. Chem.2003,68,597.
    [20](a) Wang, L.; Qin, W.; Tang, X.; Dou, W.; Liu, W.; Teng, Q.; Yao, X., Org. Biomol. Chem. 2010,8,3751. (b) Joshi, B. P.; Lohani, C. R.; Lee, K. H. Org. Biomol. Chem.2010,8,3320. (c) Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, R. Org. Lett.2011,13,4922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700