双磷酸酯型开链冠醚螯合剂的合成及在超临界二氧化碳体系的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO2螯合萃取金属离子作为新兴的绿色工艺,具有传统工艺无法比拟的优越性。其速率快、萃取效率高、无毒无污染等优点,在环境保护、核工业、湿法冶金、材料科学、食品医药等领域有着广阔的应用前景。在超临界CO2螯合萃取工艺中,螯合剂成为决定萃取效率高低的核心因素,不仅要在超临界CO2中有足够高的溶解度,还要能够选择性的与金属离子形成稳定的、有较好溶解度的螯合物。传统的螯合剂很难同时满足萃取效率与选择性的要求,所以本文开发设计了一类有高溶解性的双磷酸酯型开链冠醚类螯合剂。通过采用实验研究与量子化学计算结合的方法,从宏观和分子水平解释双磷酸酯型开链冠醚螯合剂分子结构与其在超临界CO2中的溶解度及萃取选择性之间的相互关系,研究了螯合机理,并分别对镧系、重金属、碱土金属离子等实际体系进行萃取分离,取得了良好的分离效果。
     通过溶剂催化法合成了双磷酸酯型开链冠醚螯合剂初产物,经硅胶柱层析分离并以元素分析、IR. ESI-MS和1H NMR等表征手段对目标产物进行表征,确定了化合物结构。
     通过浊点法测定了313.15~333.15K.9-20MPa条件下螯合剂的溶解度,所测螯合剂的溶解度均能都达到10-3数量级,与文献报道含氟螯合剂的溶解度相当;采用半经验的Bartle模型、Chrastil模型拟合溶解度数据,结果良好,平均绝对相对偏差(AARD)分别为3.4%-5.2%与1.23%-2.15%。通过基团贡献法计算得到的六种螯合剂溶解度参数按EG2TP     以对金属螯合物表征的手段,研究了螯合剂的配位机理。同时通过Gauss量化计算,研究单磷酸酯分子、不同烷基结构的双磷酸酯分子及本文合成的多种螯合剂分子的Mulliken电荷分布规律。讨论了螯合剂支链结构对金属螯合物稳定性的贡献,并以EG2IPE为例,计算了螯合剂与镧系金属离子的相互作用能,预测了螯合剂对镧系金属离子的选择性。
     优化了螯合萃取工艺,并在最佳工艺条件下(P=20MPa,T=313.15K,搅拌1h,添加10μL水,15μL螯合剂)展开混合金属离子萃取实验。镧系金属离子的萃取率均能达到60%以上(除EG2Ben),最高可达90%。螯合剂萃取金属离子的效率与其溶解度相关,螯合剂溶解度大,萃取效率越高。研究了螯合剂侧链对金属离子选择性的影响规律,空间位阻小有利于重镧系金属离子的萃取。同时侧链对中心金属离子有掩蔽效应,掩蔽越好,金属螯合物的稳定性越高,相应萃取效率越高。此外,在最优条件下,重金属离子pb2+、Cd2+、Hg2+也能够被高效脱除(pb2+,萃取效率最高89%;Cd2+,萃取效率最高78%;Hg2+,萃取效率最高75%)。同样,碱土金属离子Ca2-、Sr2+、Ba2+也有较好的脱除效果(Ca2+,萃取效率有49-74%;Sr2+,萃取效率有50-73%;Ba2+,萃取效率有16-64%)。
As a green technology, supercritical CO2chelating extraction (SCCE) of metal ions has obvious superiority to the traditional extraction methods. With its fast speed, high extraction efficiency and non-toxic properties, SCCE has great application prospects in the field of environmental protection, nuclear industry, hydrometallurgy, materials science, food and medicine. Chelating agents affect a lot in the SCCE process. Higher solubility in SCCO2and the ability to form more stable metal complex are the essential demands. It is difficult to satisfy the requirements of the high extraction efficiency and also the metal extraction selectivity using these traditional chelating agents, thus we designed a serious of open chain crown ether like diphosphate chelating agents which have good solubility in scCO2. The ligands' structure effect on their solubility and their selectivity to the metals were studied through the extraction experiments and also the quantum chemical calculations. The mechanism was also considered and good separation results were obtained in the extractions of lanthanides, heavy metals and alkaline earth metals.
     These open chain crown ether like diphosphate chelating agent were synthesized and purified by silica column. The ligands were characterized by elemental analysis, IR, ESI-MS and1H NMR spectra to identify the structures. Also the reaction mechanism was discussed.
     The solubilities (cloud point pressure) of the ligands in scCO2were determined at313.15~333.15K and9-20MPa. The solubilities of these ligands were found to reach10'3orders of magnitude, which were in the same order of fluorine-containing chelating agents. These data were well correlated with Bartle model and Chrastil model and the fitting results are satisfactory with AARD of3.4%-5.2%and1.23%~2.15%respectively. Also the solubility order of the ligands was in good agreement with the solubility parameter calculated by the group contribution method. The molecular connectivity index0χ was calculated and correlated with solubility of the ligands and the correlation coefficient is0.97in the case of EG2TP, EG2TH and EG2Oct. The interaction between the chelating agent and CO2were calculated by COSMO-RS method and the order of EG2Oct≈EG2IPE     The mechanism of the coordination was discussed by characterization of the metal complex. The Mulliken charge of monophosphate, diphosphate with different designed alky side chain and the ligands prepared in this article were all calculated by Gauss software. Also the interaction energy ΔE between the ligands and the metal ions were estimated and selectivity to metals was predicted in the case of EG2IPE to the lanthanide metal ions.
     The operation conditions of the SCCE were optimized (P=20MPa, T=313.15K, stirring for1h,10μL of water and10μL chelating agent added). In the extraction of lanthanide ions, all the chelating ligands exhibited higher metal ion extraction capability (except EG2Ben), and the extraction efficiency could reach60%~90%without any modifier. The extraction efficiency of these ligands was consistent with their solubility order in scCO2. Better solublity of the ligands resulted in higher extraction efficiency of the metals. The side chain of ligand could influence the extraction process by the steric hindrance effect. Small steric hindrance favors for extraction of small radius ions and large side chain volume gives a better masking effect of the central metal ion resulting more stable metal complex. Heavy metal ions of Pb2+, Cd2+and Hg2+could be well removed under optimal condition. The extraction efficiency could be89%of Pb2+,78%of Cd2+and75%of Hg2+. Alkaline earth metal ions Ca2+, Sr2+and Ba2+could be extracted with49%-74%,50%-73%and16%-64%, respectively.
引文
[1]Wang S, Elshani S, Wai C M. Selective extraction of mercury with ionizable crown ethers in supercritical carbon dioxide [J]. Analytical Chemistry,1995,67(5):919-23.
    [2]Wai C M, Lin Y H, Brauer R, et al. Supercritical-Fluid Extraction Of Organic And Inorganic Mercury From Solid Materials [J]. Talanta,1993,40(9):1325-30.
    [3]Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions:a review [J]. Journal of Supercritical Fluids,2000,17(3):259-87.
    [4]Herlinger A W, Mcalister D R, Chiarizia R, et al. Aggregation, metal ion extraction, and solubility properties of silyl-substituted alkylenediphosphonic acids [J]. Separation Science and Technology,2003,38(12-13):2741-62.
    [5]Cui Z J, Zhang G Y, Gao L C. Technology and advances of supercritical fluid chelating extraction of metal ions [J]. Chinese Journal of Analytical Chemistry,2004,32(6):827-33.
    [6]Mochizuki S, Wada N, Smith R L, et al. Perfluorocarboxylic acid counter ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide [J]. Analyst,1999, 124(10):1507-11.
    [7]Mochizuki S, Wada N, Smith R L, et al. Supercritical fluid extraction of alkali metal ions using crown ethers with perfluorocarboxylic acid from aqueous solution [J]. Analytical Communications, 1999,36(2):51-2.
    [8]Mochizuki S, Smith R L, Inomata H. Quantitative extraction of aqueous alkali metal ions using supercritical carbon dioxide and polyethylene glycol ligands [J]. Chemical Communications, 2000(15):1381-2.
    [9]Chang F, Kim H, Joo B, et al. Novel CO2-soluble pyridine derivatives and the extraction of heavy metals into Sc-CO2 [J]. Journal of Supercritical Fluids,2008,45(1):43-50.
    [10]Bai Y, Yang H-J. Metal ion extraction using newly-synthesized bipyridine derivative as a chelating reagent in supercritical CO2 [J]. Analytical Sciences,2006,22(11):1469-71.
    [11]Wai C M, Waller B. Dissolution of metal species in supercritical fluids-Principles and applications [J]. Industrial & Engineering Chemistry Research,2000,39(12):4837-41.
    [12]Yates M Z, Apodaca D L, Campbell M L, et al. Metal extractions using water in carbon dioxide microemulsions [J]. Chemical Communications,2001,01):25-6.
    [13]Stallone K B, Bonner F J. A low cost environmentally benign CO2 based hydrometallurgical process [J]. Green Chemistry,2004,6(6):267-70.
    [14]Campbell M L, Apodaca D L, Yates M Z, et al. Metal Extraction from Heterogeneous Surfaces Using Carbon Dioxide Microemulsions [J]. Langmuir,2001,17(18):5458-63.
    [15]Wang J S, Chiu K. Extraction of chromated copper arsenate from wood wastes using green solvent supercritical carbon dioxide [J]. Journal of Hazardous Materials,2008,158(2-3):384-91.
    [16]Laintz K E, Wai C M, Yonker C R, et al. Solubility of fluorinated metal diethyldithiocarbamates in Supercritical carbon dioxide [J]. The Journal of Supercritical Fluids, 1991,4(3):194-8.
    [17]Laintz K E, Yu J J, Wai C M. Separation of metal ions with sodium bis(trifluoroethyl) dithiocarbamate chelation and supercritical fluid chromatography [J]. Analytical Chemistry,1992, 64(3):311-5.
    [18]Lin Y, Smart N G, Wai C M. Supercritical fluid extraction and chromatography of metal chelates and organometallic compounds [J]. TrAC Trends in Analytical Chemistry,1995,14(3): 123-33.
    [19]Wai C M. Supercritical-Fluid Extraction Of Trace-Metals From Solid And Liquid Materials For Analytical Applications [J]. Analytical Sciences,1995,11(1):165-7.
    [20]Wai C M, Lin Y, Brauer R, et al. Supercritical fluid extraction of organic and inorganic mercury from solid materials [J]. Talanta,1993,40(9):1325-30.
    [21]Wai C M, Wang S, Yu J-J. Solubility Parameters and Solubilities of Metal Dithiocarbamates in Supercritical Carbon Dioxide [J]. Analytical Chemistry,1996,68(19):3516-9.
    [22]Wang S, Lin Y, Wai C M. Supercritical Fluid Extraction of Toxic Heavy Metals from Solid and Aqueous Matrices [J]. Sep Sci Technol,2003,38(10):2279-89.
    [23]Wang J S F, Chiu K H. Mass balance of metal species in supercritical fluid extraction using sodium diethyldithiocarbamate and dibutylammonium dibutyldithiocarbamate [J]. Analytical Sciences,2006,22(3):363-9.
    [24]Du S, Zhang G, Cui Z. Supercritical Fluid Extraction of Hazardous Metals from Urban Total Suspended Particles [J]. Journal of Liquid Chromatography & Related Technologies,2005,28(10): 1487-95.
    [25]Ashraf-Khorassani M, Combs M T, Taylor L T. Solubility of metal chelates and their extraction from an aqueous environment via supercritical CO2 [J]. Talanta,1997,44(5):755-63.
    [26]Laintz K E, Wai C M, Yonker C R, et al. Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide [J]. Analytical Chemistry,1992,64(22):2875-8.
    [27]Laintz K E, Tachikawa E. Extraction of lanthanides from acidic solution using tributyl phosphate modified supercritical carbon dioxide [J]. Analytical Chemistry,1994,66(13):2190-3.
    [28]Chou W-L, Yang K-C. Effect of various chelating agents on supercritical carbon dioxide extraction of indium(Ⅲ) ions from acidic aqueous solution [J]. Journal of Hazardous Materials, 2008,154(1-3):498-505.
    [29]Wai C M, Wang S. Supercritical fluid extraction:metals as complexes [J]. Journal of Chromatography A,1997,785(1-2):369-83.
    [30]Lagalante A F, Hansen B N, Bruno T J, et al. Solubilities of Copper(Ⅱ) and Chromium(Ⅲ) β-Diketonates in Supercritical Carbon Dioxide [J]. Inorganic Chemistry,1995,34(23):5781-5.
    [31]Lin Y, Wai C M. Supercritical Fluid Extraction of Lanthanides with Fluorinated β-Diketones and Tributyl Phosphate [J]. Analytical Chemistry,1994,66(13):1971-5.
    [32]Ozel M Z, Burford M D, Clifford A A, et al. Supercritical fluid extraction of cobalt with fluorinated and non-fluorinated β-diketones [J]. Analytica Chimica Acta,1997,346(1):73-80.
    [33]Lin Y, Brauer R D, Laintz K E, et al. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone [J]. Analytical Chemistry,1993, 65(18):2549-51.
    [34]Lin Y, Wai C M, Jean F M, et al. Supercritical Fluid Extraction of Thorium and Uranium Ions from Solid and Liquid Materials with Fluorinated β-Diketones and Tributyl Phosphate [J]. Environmental Science & Technology,1994,28(6):1190-3.
    [35]Iwao S, Abd El-Fatah S, Furukawa K, et al. Recovery of palladium from spent catalyst with supercritical CO2 and chelating agent [J]. The Journal of Supercritical Fluids,2007,42(2):200-4.
    [36]Wu C-C, Liu H-M. Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry [J]. Journal of Hazardous Materials,2009,163(2-3):1239-45.
    [37]Abd El-Fatah S, Goto M, Kodama A, et al. Supercritical fluid extraction of hazardous metals from CCA wood [J]. The Journal of Supercritical Fluids,2004,28(1):21-7.
    [38]Arancibia V, Valderrama M, Silva K, et al. Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography [J]. Journal of Chromatography B,2003,785(2):303-9.
    [39]Arancibia V, Alarcon L, Segura R. Supercritical fluid extraction of cadmium as Cd-oxine complex from human hair:Determination by square wave anodic or adsorptive stripping voltammetry [J]. Analytica Chimica Acta,2004,502(2):189-94.
    [40]Murphy J M, Erkey C. Copper(II) Removal from Aqueous Solutions by Chelation in Supercritical Carbon Dioxide Using Fluorinated P-Diketones [J]. Industrial & Engineering Chemistry Research,1997,36(12):5371-6.
    [41]Dehghani F, Wells T, Cotton N J, et al. Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di(2-ethyl hexyl)phosphoric acid [J]. The Journal of Supercritical Fluids,1996,9(4):263-72.
    [42]Tomioka O, Enokida Y, Yamamoto I. Solvent Extraction of Lanthanides from Their Oxides with TBP in Supercritical Carbon Dioxide [J]. Journal of Nuclear Science and Technology,1998, 35(7):515-6.
    [43]Yamini Y, Saleh A, Khajeh M. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(IV) and rhenium(Ⅶ) from a solid matrix using cyanex 301 [J]. Separation and Purification Technology,2008,61(1):109-14.
    [44]Mochizuki S, Wada N, L. Smith Jr R, et al. Perfluorocarboxylic acid counter ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide [J]. Analyst,1999, 124(10):1507-11.
    [45]Keiper J S, Simhan R, Desimone J M, et al. New Phosphate Fluorosurfactants for Carbon Dioxide [J]. Journal of the American Chemical Society,2002,124(9):1834-5.
    [46]Cece A, Jureller S H, Kerschner J L, et al. Molecular Modeling Approach for Contrasting the Interaction of Ethane and Hexafluoroethane with Carbon Dioxide [J]. The Journal of Physical Chemistry,1996,100(18):7435-9.
    [47]Dardin A, Desimone J M, Samulski E T. Fluorocarbons Dissolved in Supercritical Carbon Dioxide. NMR Evidence for Specific Solute-Solvent Interactions [J]. The Journal of Physical Chemistry B,1998,102(10):1775-80.
    [48]Raveendran P, Wallen S L. Exploring CO2-Philicity:Effects of Stepwise Fluorination [J]. The Journal of Physical Chemistry B,2003,107(6):1473-7.
    [49]Mertdogan C A, Dinoia T P, Mchugh M A. Impact of Backbone Architecture on the Solubility of Fluorocopolymers in Supercritical CO2 and Halogenated Supercritical Solvents:Comparison of Poly(vinylidene fluoride-co-22 mol hexafluoropropylene) and Poly(tetrafluoroethylene-co-19 mol hexafluoropropylene) [J]. Macromolecules,1997,30(24):7511-5.
    [50]Rindfleisch F, Dinoia T P, Mchugh M A. Solubility of Polymers and Copolymers in Supercritical CO2 [J]. The Journal of Physical Chemistry,1996,100(38):15581-7.
    [51]Mchugh M A, Park I-H, Reisinger J J, et al. Solubility of CF2-Modified Polybutadiene and Polyisoprene in Supercritical Carbon Dioxide [J]. Macromolecules,2002,35(12):4653-7.
    [52]Mchugh M A, Garach-Domech A, Park I-H, et al. Impact of Fluorination and Side-Chain Length on Poly(methylpropenoxyalkylsiloxane) and Poly(alkyl methacrylate) Solubility in Supercritical Carbon Dioxide [J]. Macromolecules,2002,35(17):6479-82.
    [53]Fried J R, Hu N. The molecular basis of CO2 interaction with polymers containing fluorinated groups:computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)phosphazene] [J]. Polymer,2003,44(15):4363-72.
    [54]Dalvi V H, Srinivasan V, Rossky P J. Understanding the Effectiveness of Fluorocarbon Ligands in Dispersing Nanoparticles in Supercritical Carbon Dioxide [J]. The Journal of Physical Chemistry C,2010,114(37):15553-61.
    [55]Diep P, Jordan K D, Johnson J K, et al. CO2-Fluorocarbon and C02-Hydrocarbon Interactions from First-Principles Calculations [J]. The Journal of Physical Chemistry A,1998,102(12): 2231-6.
    [56]Costa Gomes M F, Padua A a H. Interactions of Carbon Dioxide with Liquid Fluorocarbons [J]. The Journal of Physical Chemistry B,2003,107(50):14020-4.
    [57]Wai C M, Wang S, Liu Y, et al. Evaluation of dithiocarbamates and β-diketones as chelating agents in supercritical fluid extraction of Cd, Pb, and Hg from solid samples [J]. Talanta,1996, 43(12):2083-91.
    [58]Wang J, Marshall W D. Recovery Of Metals From Aqueous-Media By Extraction With Supercritical Carbon-Dioxide [J]. Analytical Chemistry,1994,66(10):1658-63.
    [59]Tan B, Cooper A I. Functional Oligo(vinyl acetate) CO2-philes for Solubilization and Emulsification [J]. Journal of the American Chemical Society,2005,127(25):8938-9.
    [60]Fan X, Potluri V K, Mcleod M C, et al. Oxygenated Hydrocarbon Ionic Surfactants Exhibit CO2 Solubility [J]. Journal of the American Chemical Society,2005,127(33):11754-62.
    [61]Beckman E J. A challenge for green chemistry:designing molecules that readily dissolve in carbon dioxide [J]. Chemical Communications,2004,17):1885-8.
    [62]Tan B, Woods H M, Licence P, et al. Synthesis and CO2 Solubility Studies of Poly(ether carbonate)s and Poly(ether ester)s Produced by Step Growth Polymerization [J]. Macromolecules, 2005,38(5):1691-8.
    [63]Wick C D, Siepmann J I, Theodorou D N. Microscopic Origins for the Favorable Solvation of Carbonate Ether Copolymers in CO2 [J]. Journal of the American Chemical Society,2005,127(35): 12338-42.
    [64]Shen Z, Mchugh M A, Xu J, et al. CO2-solubility of oligomers and polymers that contain the carbonyl group [J]. Polymer,2003,44(5):1491-8.
    [65]Hong L, Tapriyal D, Enick R M. Phase Behavior of Poly(propylene glycol) Monobutyl Ethers in Dense CO2 [J]. Journal of Chemical & Engineering Data,2008,53(6):1342-5.
    [66]Soares Da Silva M, Temtem M, Henriques S, et al. Phase Behavior Studies of 2-Hydroxyethyl Methacrylate and Methyl Methacrylate in High-Pressure Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2007,52(5):1970-4.
    [67]Kilic S, Michalik S, Wang Y, et al. Phase Behavior of Oxygen-Containing Polymers in CO2 [J]. Macromolecules,2007,40(4):1332-41.
    [68]Sarbu T, Styranec T J, Beckman E J. Design and Synthesis of Low Cost, Sustainable CO2-philes [J]. Industrial & Engineering Chemistry Research,2000,39(12):4678-83.
    [69]Liu J, Kim Y, Mchugh M A. Phase behavior of diisobutyl adipate-carbon dioxide mixtures [J]. Fluid Phase Equilibria,2006,248(1):44-9.
    [70]Sarbu T, Styranec T, Beckman E J. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures [J]. Nature,2000,405(6783):165-8.
    [71]Herbert M, Montilla F, Galindo A. The use of pyridine-functionalised polydimethylsiloxane polymers as a supercritical carbon dioxide solubilising support for copper compounds [J]. Inorganic Chemistry Communications,2007,10(7):735-7.
    [72]Dzielawa J A, Rubas A V, Lubbers C, et al. Carbon Dioxide Solubility Enhancement through Silicone Functionalization:"CO2-philic" Oligo(dimethylsiloxane)-substituted Diphosphonates* [J]. Separation Science and Technology,2008,43(9-10):2520-36.
    [73]Kilic S, Michalik S, Wang Y, et al. Effect of Grafted Lewis Base Groups on the Phase Behavior of Model Poly(dimethyl siloxanes) in CO2 [J]. Industrial & Engineering Chemistry Research,2003,42(25):6415-24.
    [74]Fink R, Hancu D, Valentine R, et al. Toward the Development of "CO2-philic" Hydrocarbons. 1. Use of Side-Chain Functionalization to Lower the Miscibility Pressure of Polydimethylsiloxanes in CO2 [J]. The Journal of Physical Chemistry B,1999,103(31):6441-4.
    [75]Zhao X, Watkins R, Barton S W. Strategies for supercritical CO2 fractionation of polydimethylsiloxane [J]. Journal of Applied Polymer Science,1995,55(5):773-8.
    [76]Page S H, Sumpter S R, Goates S R, et al. Tri-n-butylphosphate/CO2 and acetone/CO2 phase behaviors and utilities in capillary supercritical-fluid chromatography [J]. The Journal of Supercritical Fluids,1993,6(2):95-101.
    [77]Schmitt W J, Reid R C. The Solubility Of Paraffinic Hydrocarbons And Their Derivatives In Supercritical Carbon Dioxide [J]. Chemical Engineering Communications,1988,64(1):155-76.
    [78]Lin Y H, Smart N G, Wai C M. Supercritical-Fluid Extraction And Chromatography Of Metal-Chelates And Organometallic Compounds [J]. Trac-Trends in Analytical Chemistry,1995, 14(3):123-33.
    [79]Lin Y, Smart N G, Wai C M. Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents [J]. Environmental Science & Technology,1995, 29(10):2706-8.
    [80]Wai C M, Wang S F, Yu J J. Solubility parameters and solubilities of metal dithiocarbamates in supercritical carbon dioxide [J]. Analytical Chemistry,1996,68(19):3516-9.
    [81]Fedors R F. A method for estimating both the solubility parameters and molar volumes of liquids [J]. Polymer Engineering & Science,1974,14(2):147-54.
    [82]Haruki M, Kobayashi F, Kihara S-I, et al. Effect of the chemical structures of iron complexes on the solubilities in supercritical carbon dioxide [J]. Fluid Phase Equilibria,2011,308(1-2):1-7.
    [83]Haruki M, Kobayashi F, Kishimoto K, et al. Measurement of the solubility of metal complexes in supercritical carbon dioxide using a UV-vis spectrometer [J]. Fluid Phase Equilibria, 2009,280(1-2):49-55.
    [84]Haruki M, Kobayashi F, Okamoto M, et al. Solubility of β-diketonate complexes for cobalt(III) and chromium(III) in supercritical carbon dioxide [J]. Fluid Phase Equilibria,2010, 297(2):155-61.
    [85]Haruki M, Kishimoto K, Kobayashi F, et al. A New Correlation and Prediction Method for the Solubility of Metal Complexes in Supercritical Carbon Dioxide Using Regular Solution Theory with the COSMO-RS Method [J]. Journal of Chemical Engineering of Japan,2009,42(5):309-18.
    [86]Wang J, Marshall W D. Recovery of Metals from Aqueous Media by Extraction with Supercritical Carbon Dioxide [J]. Analytical Chemistry,1994,66(10):1658-63.
    [87]Andersen W C, Sievers R E, Lagalante A F, et al. Solubilities of Cerium(IV), Terbium(III), and Iron(III)β-Diketonates in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2001,46(5):1045-9.
    [88]Andersen W C, Noll B C, Sellers S P, et al. Characterization and structures of the 2,2,7-trimethyl-3,5-octanedionate chelates of cerium(IV) and terbium(III) [J]. Inorganica Chimica Acta,2002,336(0):105-10.
    [89]Aschenbrenner O, Kemper S, Dahmen N, et al. Solubility of β-diketonates, cyclopentadienyls, and cyclooctadiene complexes with various metals in supercritical carbon dioxide [J]. The Journal of Supercritical Fluids,2007,41(2):179-86.
    [90]Nejad S J, Abolghasemi H, Moosavian M A, et al. Fractional factorial design for the optimization of supercritical carbon dioxide extraction of La3+, Ce3+and Sm3+ions from a solid matrix using bis(2,4,4-trimethylpentyl)dithiophosphinic acid plus tributylphosphate [J]. Chemical Engineering Research & Design,2011,89(6A):827-35.
    [91]Joung S N, Yoon S J, Kim S Y, et al. Extraction of lanthanide ions from aqueous solution by modified supercritical CO2:tri-n-butylphosphate plus CO2 and bis-2-ethylhexyl phosphoric acid plus CO2 [J]. Journal of Supercritical Fluids,2000,18(2):157-66.
    [92]Trofimov T I, Samsonov M D, Kulyako Y M, et al. Dissolution and extraction of actinide oxides in supercritical carbon dioxide containing the complex of tri-n-butylphosphate with nitric acid [J]. Comptes Rendus Chimie,2004,7(12):1209-13.
    [93]Mekkii S, Wai C M, Billard I, et al. Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction [J]. Chemistry-a European Journal,2006,12(6):1760-6.
    [94]Lin Y, Wu H, Smart N G, et al. Studies On In-Situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique [J]. Sep Sci Technol,2001,36(5-6): 1149-62.
    [95]Dehghani F, Wells T, Cotton N J, et al. Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di(2-ethylhexyl)phosphoric acid [J]. Journal of Supercritical Fluids,1996,9(4):263-72.
    [96]Kumar P, Pal A, Saxena M K, et al. Supercritical fluid extraction of uranium and thorium from solid matrices [J]. Desalination,2008,232(1-3):71-9.
    [97]Shimizu R, Sawada K, Enokida Y, et al. Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps [J]. Journal of Supercritical Fluids,2005, 33(3):235-41.
    [98]Tomioka O, Enokida Y, Yamamoto I. Selective recovery of neodymium from oxides by direct extraction method with supercritical CO2 containing TBP-HNO3 complex [J]. Separation Science and Technology,2002,37(5):1153-62.
    [99]Tomioka O, Meguro Y, Enokida Y, et al. Dissolution Behavior of Uranium Oxides with Supercritical CO2 Using HNO3-TBP Complex as a Reactant [J]. Journal of Nuclear Science and Technology,2001,38(12):1097-102.
    [100]Foy G P, Pacey G E. Supercritical fluid extraction of mercury species [J]. Talanta,2003, 61(6):849-53.
    [101]Foy G P, Pacey G E. Specific extraction of chromium(VI) using supercritical fluid extraction [J]. Talanta,2000,51(2):339-47.
    [102]Liu J, Wang W, Li G. A new strategy for supercritical fluid extraction of copper ions [J]. Talanta,2001,53(6):1149-54.
    [103]Takeshita Y, Sato Y, Nishi S. Study of extraction of metals from CCA-treated wood with supercritical CO2 containing acetylacetone:Extraction of Cu by continuous addition of acetylacetone [J]. Industrial & Engineering Chemistry Research,2000,39(12):4496-9.
    [104]Abd El-Fatah S, Goto M, Kodama A, et al. Supercritical fluid extraction of hazardous metals from CCA wood [J]. Journal of Supercritical Fluids,2004,28(1):21-7.
    [105]Du S Y, Zhang G Y, Cui Z J. Supercritical fluid extraction of hazardous metals from urban total suspended particles [J]. Journal of Liquid Chromatography & Related Technologies,2005, 28(10):1487-95.
    [106]Kersch C, Woerlee G F, Witkamp G J. Supercritical fluid extraction of heavy metals from fly ash [J]. Industrial & Engineering Chemistry Research,2004,43(1):190-6.
    [107]Smart N G, Carleson T E, Elshani S, et al. Extraction of Toxic Heavy Metals Using Supercritical Fluid Carbon Dioxide Containing Organophosphorus Reagents [J]. Industrial & Engineering Chemistry Research,1997,36(5):1819-26.
    [108]Tai C Y, You G S, Chen S L. Kinetics study on supercritical fluid extraction of zinc(II) ion from aqueous solutions [J]. Journal of Supercritical Fluids,2000,18(3):201-12.
    [109]Kersch C, Van Roosmalen M J E, Woerlee G F, et al. Extraction of heavy metals from fly ash and sand with ligands and supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research,2000,39(12):4670-2.
    [110]Elshani S, Smart N G, Lin Y, et al. Application Of Supercritical Fluids To The Reactive Extraction And Analysis Of Toxic Heavy Metals From Environmental Matrices-System Optimisation [J]. Separation Science and Technology,2001,36(5-6):1197-210.
    [111]Kersch C, Van Der Kraan M, Woerlee G F, et al. Municipal waste incinerator fly ash: supercritical fluid extraction of metals [J]. Journal of Chemical Technology and Biotechnology, 2002,77(3):256-9.
    [112]Lin Y H, Liu C X, Wu H, et al. Supercritical fluid extraction of toxic heavy metals and uranium from acidic solutions with sulfur-containing organophosphorus reagents [J]. Industrial & Engineering Chemistry Research,2003,42(7):1400-5.
    [113]Kersch C, Ortiz S P, Woerlee G F, et al. Leachability of metals from fly ash:leaching tests before and after extraction with supercritical CO2 and extractants [J]. Hydrometallurgy,2004, 72(1-2):119-27.
    [114]Cui Z J, Zhang G Y, Song W, et al. Supercritical fluid extraction of metal ions from a solid matrix with 8-hydroxyquinoline and carbon dioxide [J]. Journal of Liquid Chromatography & Related Technologies,2004,27(6):985-94.
    [115]崔洪友,王涛.用超临界C02络合萃取法脱除中成药中的重金属[J].清华大学学报(自然科学版),2001,41(12):25-7.
    [116]赵春杰,张晖芬,陈静,等.黄芪中重金属超临界C02净化技术研究[J].沈阳药科大学学报,2004,21(5):381-4.
    [117]张晖芬,赵春杰.淫羊藿中重金属超临界C02流体净化技术研究[J].中南药学,2005,3(5):259-61.
    [118]张晖芬.熟地黄中重金属超临界C02净化技术研究[J].药物分析杂志,2005,25(8):895-8.
    [119]党志,朱志鑫,文震,李琼.超临界C02配合萃取中药广霍香中的重金属[J].华南理 工大学学报(自然科学版),2005,33(6):59-62.
    [120]Weber V E, Vogtle F. Kristalline 1:1-alkalimetallkomplexe nichtcyclischer neutralliganden [J]. Tetrahedron Letters,1975,16(29):2415-8.
    [121]Vogtle F, Weber E. Multidentate Acyclic Neutral Ligands and Their Complexation [J]. Angewandte Chemie International Edition in English,1979,18(10):753-76.
    [122]Yanagida S, Takahashi K, Okahara M. Metal-ion Complexation of Noncyclic Poly(oxyethylene) Derivatives. Complexation in Aprotic Solvent and Isolation of Their Solid Complexes [J]. Bulletin of the Chemical Society of Japan,1978,51(11):3111-20.
    [123]蔡乐真,姚克敏.直链聚醚配位化学研究进展[J].化学通报,1993,03):20-4+54.
    [124]Aparna K, Krishnamurthy S S, Nethaji M. Synthetic, spectroscopic, and structural Studies on Lanthanide Complexes of Diphosphazane Dioxide Ligands [J]. Zeitschrift fur anorganische und allgemeine Chemie,1995,621(11):1913-21.
    [125]Arabadzhiev V, Petrova J, Haupt E, et al. Complexes of Alkyl Esters of Ethylidenediphosphonic Acids with Lanthanide Nitrates [J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,38(4):362-9.
    [126]Fawcett J, Platt A W G. Structures and catalytic properties of complexes of bis(diphenylphino)methane dioxide with scandium and lanthanide trifluoromethane sulfonates [J]. Polyhedron,2003,22(7):967-73.
    [127]Hnatejko Z, Lis S, Pawlicki G, et al. Lanthanide complexes with diethyl(2-oxopropyl) phosphonate and diethyl(2-oxo-2-phenylethyl) phosphonate ligands [J]. Journal of Alloys and Compounds,2008,451(1-2):395-9.
    [128]Jin Q, Ricard L, Nief F. Lanthanide complexes with a chelating methylenediphosphonate [J]. Polyhedron,2005,24(4):549-55.
    [129]Kresinski R A, Lees A M J, Platt A W G. Structural variations in a series of lanthanide nitrate complexes with an unsymmetrical diphosphonate ligand (MeO)2P(O)C(CH2)CH2P(O)(OMe)2 [J]. Polyhedron,2012,33(1):341-6.
    [130]Lees A M J, Charnock J M, Kresinski R A, et al. Solution and solid-state structures of lanthanide nitrate complexes with [(MeO)2P(O)]2C(OH)R (R=Me, tBu) [J]. Inorganica Chimica Acta,2001,312(1):170-82.
    [131]Lees A M J, Kresinski R A, Platt A W G. Complexes of (EtO)2P(O)CH2P(O)(OEt)2 with lanthanide nitrates [J]. New Journal of Chemistry,2004,28(12):1457-63.
    [132]Lees A M J, Kresinski R A, Platt A W G. Preparation, structure, solid state and gas phase stability of the mixed neodymium nitrate-chloride complex NdCl(NO3)2{[(MeO)2PO]2C(OH)tBu}2 [J]. Inorganica Chimica Acta,2006,359(4):1329-34.
    [133]Lees A M J, Platt A W G. Complexes of Lanthanide Nitrates with Bis(diphenylphosphino) methane Dioxide [J]. Inorganic Chemistry,2003,42(15):4673-9.
    [134]Piskula Z, Manszewski T, Kubicki M, et al. The structure and spectroscopic characterization of complexes with tetraethyl methylenediphosphonate in solution and in solid state [J]. Journal of Molecular Structure,2012(1011):145-8.
    [135]Villemin E, Elias B, Marchand-Brynaert J. Europium (III) coordination complex with a novel phosphonated ligand [J]. Journal of Molecular Structure,2013(1034):276-82.
    [136]W. Magennis S, Parsons S, Pikramenou Z, et al. Imidodiphosphinate ligands as antenna units in luminescent lanthanide complexes [J]. Chemical Communications,1999(1):61-2.
    [137]杨季秋.王冠醚化学[M].原子能出版社,1985.
    [138]蔡乐真,姚克敏,李家玲,等.稀土与不同端基直链聚醚配合物的合成及其NMR研究[J].高等学校化学学报,1992(01):1-5.
    [139]姚克敏,蔡乐真,鲍正操,等.镧系与二甘醇-二-(邻羟基苯基)醚配合物的合成与表征[J].应用化学,1992(02):12-7.
    [140]Tuemmler B, Maass G, Weber E, et al. Noncyclic crown-type polyethers, pyridinophane cryptands, and their alkali metal ion complexes:synthesis, complex stability, and kinetics [J]. Journal of the American Chemical Society,1977,99(14):4683-90.
    [141]Barthelemy P P, Desreux J F, Massaux J. Complexation of lanthanides by linear polyethers in propylene carbonate:a'crown-like'behaviour [J]. Journal of the Chemical Society, Dalton Transactions,1986, (11):2497-9.
    [142]Hirashima Y, Kanetsuki K, Shiokawa J, et al. Structure Of The Complex Of Neodymium Nitrate With Pentaethylene Glycol [J]. Bulletin of the Chemical Society of Japan,1981,54(5): 1567-8.
    [143]Hirashima Y, Kanetsuki K, Yonezu I, et al. Stability-Constants And Some Other Properties Of The Lanthanoid Nitrate Complexes With Triethylene, Tetraethylene, And Pentaethylene Glycols [J]. Bulletin of the Chemical Society of Japan,1986,59(1):25-9.
    [144]Hirashima Y, Kanetsuki K, Yonezu I, et al. Lanthanoid Nitrate Complexes With Some Polyethylene Glycols And Glymes [J]. Bulletin of the Chemical Society of Japan,1983,56(3): 738-43.
    [145]Turanov A N, Karandashev V K, Kharitonov A V, et al. Extraction of scandium, rare-earth elements, and yttrium from nitric acid solutions by selected diphosphine dioxides [J]. Solvent Extraction and Ion Exchange,2000,18(6):1109-34.
    [146]Turanov A N, Karandashev V K, Baulin V E. Extractive properties of phosphoryl-substituted aza-and diazacrown ethers towards rare-earth metal ions [J]. Solvent Extraction and Ion Exchange, 2001,19(4):597-618.
    [147]Turanov A N, Karandashev V K, Yarkevich A N. Extraction of rare-earth elements and yttrium from nitric acid solutions by butyl(diphenylphosphinyl-methyl)phenylphosphinate [J]. Solvent Extraction and Ion Exchange,2002,20(1):1-19.
    [148]Turanov A N, Karandashev V K, Yarkevich A N. Metal extraction from nitric acid solutions by (diphenyl-phosphinylmethyl) phenylphosphinic acid [J]. Solvent Extraction and Ion Exchange, 2002,20(6):633-63.
    [149]Turanov A N, Karandashev V K, Kushch S D, et al. Sorption properties of fullerene black modified by a chelate-forming reagent in aqueous media [J]. Russian Journal of Physical Chemistry,2004,78(8):1298-301.
    [150]Turanov A N, Karandashev V K, Yarkevich A N. Recovery of lanthanides from nitric acid solutions using a polymeric sorbent impregnated with diphenylphosphinylacetic acid [J]. Russian Journal of Inorganic Chemistry,2004,49(7):1107-10.
    [151]Turanov A N, Karandashev V K, Evseeva N K. Extraction of rare-earth elements from nitrate solutions by fullerene black impregnated with tetraphenylmethylenediphosphine dioxide [J]. Russian Journal of Physical Chemistry,2006,80(2):260-3.
    [152]Turanov A N, Karandashev V K, Baulin V E, et al. Extraction of Lanthanides(Ⅲ) from Aqueous Nitrate Media with Tetra-(p-tolyl) (o-Phenylene)Oxymethylene Diphosphine Dioxide [J]. Solvent Extraction and Ion Exchange,2009,27(4):551-78.
    [153]Turanov A N, Karandashev V K, Yarkevich A N, et al. Extraction of U(VI), Th(IV), Sc(III), and rare-earth elements from nitric acid solutions by selected bifunctional neutral organophosphorus compounds [J]. Solvent Extraction and Ion Exchange,2004,22(3):391-413.
    [154]Turanov A N, Karandashev V K, Yarkevich A N, et al. Extraction of rare-earth elements from nitric acid solutions by selected bifunctional acidic organophosphorus compounds [J]. Solvent Extraction and Ion Exchange,2004,22(4):573-98.
    [155]Turanov A N, Karandashev V K, Yarkevich A N, et al. Extraction of rare-earth elements from hydrochloric acid solutions with (diphenylphosphinylmethyl)phenylphosphinic acid [J]. Russian Journal of Inorganic Chemistry,2005,50(6):952-7.
    [156]Turanov A N, Karandashev V K, Baulin V E. Extraction of rare-earth nitrates by phosphoryl podands [J]. Russian Journal of Inorganic Chemistry,2006,51(11):1829-35.
    [157]Turanov A N, Karandashev V K, Baulin V E. Extraction of lanthanides(III) from nitric acid solutions by selected polyfunctional monoacidic organophosphorus compounds [J]. Solvent Extraction and Ion Exchange,2007,25(2):165-86.
    [158]Turanov A N, Karandashev V K, Baulin V E. Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions [J]. Russian Journal of Inorganic Chemistry,2008,53(6):970-5.
    [159]Turanov A N, Karandashev V K, Evseeva N K, et al. The sorption properties of carbon nanotubes modified with tetraphenylmethylenediphosphine dioxide in nitric acid media [J]. Russian Journal of Physical Chemistry A,2008,82(13):2223-6.
    [160]Turanov A N, Karandashev V K, Ragulin V V. Extraction of Rare-Earth Elements by Diphenylphosphinylmethyl-2-phenylethylphosphinic Acid from Nitrate Solutions [J]. Russian Journal of Inorganic Chemistry,2009,54(3):486-92.
    [161]Turanov A N, Karandashev V K, Sharova E V, et al. Extraction of Lanthanides(III) from HClO4 Solutions with Bis(diphenylphosphorylmethylcarbamoyl)alkanes [J]. Solvent Extraction and Ion Exchange,2010,28(5):579-95.
    [162]Turanov A N, Karandashev V K, Yarkevich A N, et al. Extraction and sorption preconcentration of rare-earth elements(III) and scandium(III) with phosphorylmethyl-substituted butylphenylphosphinates from perchloric acid solutions [J]. Russian Journal of Inorganic Chemistry,2010,55(8):1305-11.
    [163]Turanov A N, Karandashev V K, Bondarenko N A. Extraction of Scandium and Rare-Earth Elements by a Phosphorylated Azapodand [J]. Russian Journal of Inorganic Chemistry,2011, 56(7):1133-8.
    [164]Turanov A N, Karandashev V K, Sharova E V, et al. Extraction of scandium(III) by bis(diphenylphosphorylmethylcarbamoyl)alkanes [J]. Russian Journal of Inorganic Chemistry, 2011,56(3):467-72.
    [165]Novomestska V, Herrmann E, Lubal P, et al. Syntheses of New Triethylene Glycol Bis(alkyl Phosphate)s as Potential Complexing Agents [J]. Collection of Czechoslovak Chemical Communications,2001,66(4):621-30.
    [166]Novomestska V, Prihoda J, Herrmann E. Complexing and Extraction Properties of Triethylene Glycol Bis(dodecyl Phosphate) [J]. Collection of Czechoslovak Chemical Communications,2006,71(10):1427-44.
    [167]Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions:a review [J]. The Journal of Supercritical Fluids,2000,17(3):259-87.
    [168]Shvedene N, Shishkanova T, Torocheshnikova I, et al. Phosphoryl Containing Podands as Carriers in Plasticized Membrane Electrodes Selective to Quaternary Ammonium Surfactants [J]. Journal of Inclusion Phenomena,1998,32(1):9-21.
    [169]Harris M, Houser K, Scarino J, et al. Ethylene oxide-bridged bipyridine oligomers that function as selective host molecules for the encapsulation of small alkali cation guests [J]. J Incl Phenom Macrocycl Chem,2008,60(1-2):153-61.
    [170]王筱梅,杨平.缩合磷酸酯的合成及其阻燃性研究[J].山东建材学院学报,1998,12(1):25-7.
    [171]范海华,陈烨璞,裘锋.双磷酸酯表面活性剂的合成与性能[J].精细化工,2007,24(10):961-3.
    [172]De S, Aswal V K, Goyal P S, et al. Characterization of new gemini surfactant micelles with phosphate headgroups by SANS and fluorescence spectroscopy [J]. Chemical Physics Letters, 1999,303(3-4):295-303.
    [173]Menger F M, Littau C A. Gemini surfactants:a new class of self-assembling molecules [J]. Journal of the American Chemical Society,1993,115(22):10083-90.
    [174]Stepinski D C, Herlinger A W. A Facile And Selective High Yield Synthesis Of Symmetric Dialkyl-Substituted Methylenebisphosphonic Acids [J]. Synthetic Communications,2002,32(17): 2683-90.
    [175]Stepinski D C, Nelson D W, Zalupski P R, et al. Facile high yielding synthesis of symmetric esters of methylenebisphosphonic acid [J]. Tetrahedron,2001,57(41):8637-45.
    [176]Novomestska V, Herrmann E, Lubal P, et al. Syntheses of new triethylene glycol bis(alkyl phosphate)s as potential complexing agents [J]. Collect Czech Chem Commun,2001,66(4): 621-30.
    [177]Novomestska V, Prihoda J, Herrmann E. Complexing and extraction properties of triethylene glycol bis(dodecyl phosphate) [J]. Collect Czech Chem Commun,2006,71(10): 1427-44.
    [178]J. Nurminen E, K. Mattinen J, Lonnberg H. Alcoholysis of dialkyl tetrazolylphosphonites [J]. Journal of the Chemical Society, Perkin Transactions 2,1999,11):2551-6.
    [179]J. Nurminen E, K. Mattinen J, Lonnberg H. Kinetics and mechanism of tetrazole-catalyzed phosphoramidite alcoholysis [J]. Journal of the Chemical Society, Perkin Transactions 2,1998,7): 1621-8.
    [180]Yang H-J, Tian J, Kim H. New Highly CO2-Philic Diglycolic Acid Esters:Synthesis and Solubility in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2010, 55(10):4130-9.
    [181]Bartle K D, Clifford A A, Jafar S A, et al. Solubilities Of Solids And Liquids Of Low Volatility In Supercritical Carbon-Dioxide [J]. Journal of Physical and Chemical Reference Data, 1991,20(4):713-56.
    [182]Chrastil J. Solubility of solids and liquids in supercritical gases [J]. The Journal of Physical Chemistry,1982,86(15):3016-21.
    [183]Giddings J C, Myers M N, Mclaren L, et al. High Pressure Gas Chromatography of Nonvolatile Species [J]. Science,1968,162(3849):67-73.
    [184]Elssier R L, Friedrich J P. Estimation of supercritical fluid-liquid solubility parameter differences for vegetable oils and other liquids from data taken with a stirred autoclave [J]. J Am Oil Chem Soc,1988,65(5):764-7.
    [185]Li Z R, Han L Y, Xue Y, et al. MODEL-molecular descriptor lab:A web-based server for computing structural and physicochemical features of compounds [J]. Biotechnology and Bioengineering,2007,97(2):389-96.
    [186]Klamt A. Conductor-like Screening Model for Real Solvents:A New Approach to the Quantitative Calculation of Solvation Phenomena [J]. The Journal of Physical Chemistry,1995, 99(7):2224-35.
    [187]Eckert F, Klamt A. Fast solvent screening via quantum chemistry:COSMO-RS approach [J]. AIChE Journal,2002,48(2):369-85.
    [188]Klamt A, Schuurmann G. COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. Journal of the Chemical Society, Perkin Transactions 2,1993,5):799-805.
    [189]Eckert K A. COSMOtherm, Version C3.0, Release 12.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany,2012 [J].
    [190]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, version E.01, Gaussian Inc., Pittsburgh, PA,2003.
    [191]Mullins E, Oldland R, Liu Y A, et al. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods [J]. Industrial & Engineering Chemistry Research,2006,45(12): 4389-415.
    [192]Haruki M, Kishimoto K, Kobayashi F, et al. A New Correlation and Prediction Method for the Solubility of Metal Complexes in Supercritical Carbon Dioxide Using Regular Solution Theory with the COSMO-RS Method [J]. Journal of Chemical Engineering of Japan,2009,42(5): 309-18.
    [193]Kumar S K, Johnston K P. Modelling the solubility of solids in supercritical fluids with density as the independent variable [J]. The Journal of Supercritical Fluids,1988,1(1):15-22.
    [194]Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa [J]. Journal of Physical and Chemical Reference Data,1996,25(6):1509-96.
    [195]Luo J, Yang H-J, Jin J, et al. Solubilities and partial molar volumes of N,N'-dibutyl-oxalamide, N,N'-dihexyl-oxalamide, N,N'-dioctyl-oxalamide in supercritical carbon dioxide [J]. The Journal of Chemical Thermodynamics,2012,54(0):339-45.
    [196]Kinugasa T, Tanahashi S, Takeuchi H. Extraction of lysozyme using reversed micellar solution:distribution equilibrium and extraction rates [J]. Industrial & Engineering Chemistry Research,1991,30(11):2470-6.
    [197]Ferraro J R, Cristallini C, Fox I. Spectral studies of the rare earth complexes of the type M(NO3)3·3TBP [J]. Journal of Inorganic and Nuclear Chemistry,1967,29(1):139-48.
    [198]Saleh M I, Kusrini E, Saad B, et al. Coordination of trivalent lanthanum with polyethylene glycol in the presence of picrate anion:Spectroscopic and X-ray structural studies [J]. Journal of Alloys and Compounds,2009,474(1-2):428-40.
    [199]Saleh M I, Kusrini E, Fun H K, et al. Structural and selectivity of 18-crown-6 ligand in lanthanide-picrate complexes [J]. Journal of Organometallic Chemistry,2008,693(15):2561-71.
    [200]Dorweiler J D, Nemykin V N, Ley A N, et al. Structural and NMR Characterization of Sm(III), Eu(III), and Yb(III) Complexes of an Amide Based Polydentate Ligand Exhibiting Paramagnetic Chemical Exchange Saturation Transfer Abilities [J]. Inorganic Chemistry,2009, 48(19):9365-76.
    [201]Reilley C N, Good B W, Desreux J F. Structure-independent method for dissecting contact and dipolar NMR shifts in lanthanide complexes and its use in structure determination [J]. Analytical Chemistry,1975,47(13):2110-6.
    [202]Tomioka O, Enokida Y, Yamamoto I, et al. Cleaning of materials contaminated with metal oxides through supercritical fluid extraction with CO2 containing TBP [J]. Progress in Nuclear Energy,2000,37(1-4):417-22.
    [203]Di Duan B S, Zhiguo Zhang, Zongbi Bao, Yiwen Yang, Qilong Ren. Synthesis, characterization and structure effects of Polyethylene Glycol Bis(2-isopropoxyethyl) Dimethyl Diphosphates on lanthanides extraction with supercritical carbon dioxide [J]. submitted to The Journal of Supercritical Fluids,2013,
    [204]Di Duan B S, Huabin Xing, Yun Su, Yiwen Yang, Qilong Ren. Solubilities of Novel Ethylene Oxide Diphosphate-based Chelating Agents in Supercritical Carbon Dioxide [J]. submitted to Fluid Phase Equilibra,2013,
    [205]Zhang H, Li R, Su B, et al. Solubilities of the Triethylene Glycol and Tripropylene Glycol Derivatives Terminated with Phosphoryl Groups in Supercritical CO2 [J]. Journal of Chemical & Engineering Data,2012,57(7):1991-5.
    [206]Ren Q, Duan D, Zhang H, et al. Solubility of novel open-chain crown ether bridged diphosphates in supercritical carbon dioxide [J]. Journal of Chemical Thermodynamics,2013, 67(40-7.
    [207]Iwao S, El-Fatah S A, Furukawa K, et al. Recovery of palladium from spent catalyst with supercritical CO2 and chelating agent [J]. Journal of Supercritical Fluids,2007,42(2):200-4.
    [208]Ouchi M, Inoue Y, Wada K, et al. Molecular design of crown ethers.4. Syntheses and selective cation binding of 16-crown-5 and 19-crown-6 lariats [J]. The Journal of Organic Chemistry,1987,52(12):2420-7.
    [209]Ouchi M, Inoue Y, Sakamoto H, et al. Crown ethers of low symmetry. Spiro crown ethers and 16-crown-5 derivatives [J]. The Journal of Organic Chemistry,1983,48(19):3168-73.
    [210]Tsay L-M, Shih J-S, Wu S-C. Solvent extraction of rare earth metals with crown ethers [J]. Analyst,1983,108(1290):1108-13.
    [211]Ashraf-Khorassani M, T. Taylor L. Supercritical fluid extraction of mercury(II) ion via in situ chelation and pre-formed mercury complexes from different matrices [J]. Analytica Chimica Acta,1999,379(1-2):1-9.
    [212]Yazdi A V, Beckman E J. Design, Synthesis, and Evaluation of Novel, Highly CO2-Soluble Chelating Agents for Removal of Metals [J]. Industrial & Engineering Chemistry Research,1996, 35(10):3644-52.
    [213]Marcos P M, Felix S, Ascenso J R, et al. Complexation and transport of alkali, alkaline earth, transition and heavy metal cations by p-tert-butyldihomooxacalix 4 arene tetra(diethyl)amide [J]. New J Chem,2004,28(6):748-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700