NF-κB、p38 MAPK和PKC通路对Aβ_(1-42)诱导K_(ATP)亚基Kir6.2/SUR1蛋白表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     阿尔茨海默病(Alzheimer's disease, AD)是老年人最常见的神经变性性疾病,临床特征为隐袭起病,进行性智能衰退、认知障碍和行为异常,多伴有人格改变,症状持续进展,病程通常为5-10年。
     在AD的发病机制研究中,研究最多的是神经细胞凋亡途径,而最常见的致凋亡因素是老年炎性斑(Senile plaque, SP)的主要成分p-淀粉样蛋白(Ap),尤其是容易发生聚集且难溶解的Aβ1-42。Aβ的神经毒性机制非常复杂,Aβ可诱发过度氧化应激,而过度的氧化应激导致自由基的产生与消除之间的动态平衡被打破,这一平衡打破加速了细胞的凋亡最终导致细胞死亡。氧自由基的增加可使细胞膜系统的脂质和蛋白被氧化修饰,活性氧增加,线粒体功能、ATP酶活性下降,从而导致细胞内ATP的降低。而细胞内ATP水平低于某一临界值时,ATP敏感性钾通道(KATP)被激活,其激活后可通过降低细胞的兴奋性来维持Na+和Ca2+的稳定以及保持ATP的水平,且已经有研究证明对ATP较敏感的KATP通道亚基是Kir6.2及SUR1亚基
     核转录因子NF-κB是一种普遍存在的核转录因子,在中枢神经系统中也广泛表达,并参与神经系统中多种基因调控、细胞凋亡的信号传导过程。p38MAPK是分裂原激活的蛋白激酶家族(mitogen-activated protein kinase, MAPK)的成员之一,而MAPK通路是细胞外信号引起细胞核反应的汇聚通路。蛋白激酶C(protein kinase C, PKC)是一组具有单一肽链结构的丝氨酸/苏氨酸蛋白激酶,是机体细胞信号传导通路的中心环节,广泛分布于中枢神经系统。这三种信号通道与AD的发生发展有着密切的不可分割的联系。本实验通过研究NF-κB、p38MAPK和PKC信号通路对KATP通道亚基Kir6.2/SUR1蛋白表达的影响,来探讨这三个通路在阿尔茨海默病中的可能作用。为NF-κB、P38MAPK及PKC信号通路对神经元的作用提供了新思路,同时也为研究防治AD药物提供了新视角。
     研究方法:
     取Wistar大乳鼠(出生24h内),原代培养皮层和海马胆碱能神经元。并采用免疫细胞化学的方法,对爬片7天的细胞,通过胆碱乙酰转移酶(ChAT)进行胆碱能神经元的鉴定。将培养至第7天的胆碱能神经元进行随机分组:空白对照组、Apt-42组、Aβ142+抑制剂组和抑制剂组。分组后进行药物处理:空白对照组予以等量的培养液和PBS;Aβ1-42组:予以2μM的Aβ1-42;Ap1-42+抑制剂组:首先分别给予NF-kB抑制剂SN50(0.5μM)/p38MAPK抑制剂SB203580(2μM)/PKC抑制剂Chelerythrine chloride(CTC)(2μM),30min后,再分别加入Aβ1-42(2μM)继续培养;抑制剂组:分别予以SN50(0.5μM)/SB203580(2μM)/Chelerythrine chloride(CTC)(2μM)。药物处理后每组均培养至72h。收集并裂解细胞,然后提取蛋白,用BCA法检测蛋白浓度。取40μg总蛋白上样行蛋白质的SDS-聚丙烯酰胺凝胶电泳,经电转移至PVDF膜上,5%脱脂牛奶封闭,加入一抗(兔抗大鼠Kir6.2多克隆抗体或兔抗大鼠SUR1多克隆抗体)和二抗杂交,用发光试剂(ECL发光液)显色,以GAPDH作内参照,用图像分析软件进行光密度值分析。最后用SPSS统计分析NF-κB,p38MAPK和PKC三条通路各自对Aβ1-2诱导的KATP通道亚基Kir6.2/SUR1蛋白表达的影响。
     研究结果:
     (1)ChAT免疫细胞化学染色:胆碱能阳性神经元胞浆内呈棕黄色着色,阳性细胞计数结果显示90%以上;
     (2).Ap1-42作用72h后KATP通道亚基Kir6.2/SUR1蛋白表达均显著升高,具有统计学意义p<0.05或p<0.01);
     (3).与Aβ142组相比较,SN50+Aβ1-42组的KATP通道亚基SUR1和Kir6.2蛋白表达显著降低p<0.01);与空白对照组、Aβ1-42组相比,单独SN50组的KATP通道亚基SUR1和Kir6.2蛋白表达也均显著降低p<0.05或<0.01);但与SN50+Aβ1-42组相比,单独SN50组的KATP通道亚基SUR1蛋白表达显著降低p<0.01),而亚基Kir6.2蛋白表达差异无统计学意义p>0.05);
     (4).与Aβ1-42组相比,SB203580+Aβ1-42组的KATP通道亚基Kir6.2及SUR1蛋白表达均降低(p<0.05或p<0.01);与空白对照、Aβ1-42组以及SB203580+Ap1-42组相比,SB203580组的KATP通道亚基Kir6.2蛋白表达是降低的p<0.05);然而与SB203580+Aβ142组相比较,KATP通道亚基SURl蛋白表达没有差异(p>0.05)。
     (5)与Aβ1-42组相比,CTC+Aβ1-42组的KATP通道亚基Kir6.2及SUR1蛋白表达均明显降低(p<0.01);与空白对照组、Aβ1-42组相比,单独CTC组的KATP通道亚基SUR1和Kir6.2蛋白表达也均显著降低p<0.05或p<0.01),但与CTC+Aβ1-42组相比,单独CTC组的KATP通道亚基SURl蛋白表达显著降低(p<0.05),而亚基Kir6.2蛋白表达差异无统计学意义((p>0.05)。
     研究结论:
     (1).原代培养的细胞90%以上为胆碱神经元;
     (2).Ap1-42作用72h后KATP通道亚基Kir6.2/SURl蛋白的表达升高可能原因是Aβ1-42诱发氧化应激导致线粒体功能失调,ATP下降,为维持细胞正常膜电位及电生理活动KATP通道被激活,从而起到防治Aβ1-42的细胞毒性作用;
     (3).NF-κB抑制剂SN50抑制Kir6.2/SUR1蛋白的表达,可能原因是SN50通过抑制NF-κkB核移位干扰NF-κB的生成,从而影响了NF-kB诱导增加Aβl-42水平,进一步影响了KATP通道亚基蛋白的表达。因此,NF-κB通路参与了Ap增加神经细胞KATP亚基表达的作用,阻断此通路能够减少神经细胞KATP亚基的表达。提示与神经元内Aβ1-42沉积有关的NF-kB活化是一种细胞保护反应;
     (4).p38MAPK抑制剂SB203580抑制Kir6.2/SURl蛋白的表达,SB203580与p38MAPK的特异性结合,使p38MAPK失去与ATP结合的能力,从而使其失去激酶活性,进一步影响了KATP通道亚基蛋白的表达,本实验也进一步证实了p38MAPK抑制剂能抑制或消除Ap诱导的培养的神经元的凋亡;
     (5)PKC抑制剂CTC抑制Kir6.2/SURl蛋白的表达,可能原因是剂CTC抑制PKC的活化,从而抑制PKC由胞浆向细胞膜转移,进而影响离子通道蛋白中的丝氨酸或苏氨酸残基磷酸化,使通道蛋白构象和门控动力学改变,最终调控离子通道的开闭,从而影响KATP通道。
     研究意义:
     信号通路NF-κB、p38MAPK、PKC均部分参与Aβ1-42诱导的KATP通道亚基Kir6.2/SUR1蛋白的表达,提示以上信号通路可能参与阿尔茨海默病的发生发展,为研究防治AD药物提供了新的理论依据。
Objective:
     Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly people, clinical manifestations of insidious onset, progressive smart recession, accompanied by personality changes. General symptoms continued to progress, there is usually a course of5-10years. In the study of the pathogenesis of AD, neuronal apoptosis pathway is the most studied, especially the pathological features of senile plaque (SP) in the AD, the main component of beta-amyloid protein (Aβ) induced apoptosis, and Aβ1-42is the first precipitation and the most difficult to dissolve. Beta-amyloid protein (AP) neurotoxicity mechanism is very complex and is one of the key factors of AD formation and development, and excessive oxidative stress and free radicals toxic effects play an important role in the development of AD pathogenesis. KATP are activated when intracellular ATP levels fall below a certain threshold by reducing cell excitability to maintain the stability of Na+and Ca+as well as to maintain the ATP level, and especially for the subunits Kir6.2/SUR1. NF-κB is a nuclear transcription factor, is widespread in a variety of cells in the human body, is also widely expressed in the central nervous system, such as neurons. Via the inhibitor of p38MAPK (SB203580), a major role in the T160of ATP-binding active site, can make the p38MAPK lost the ability to bind with ATP, which lost a kinase activity. Protein kinase C (protein kinase C, PKC) is a serine/threonine protein kinase with a single peptide chain structure, which is the central link of the body cell signaling pathways, widely distributed in the central nervous system. The pathogenesis of Alzheimer's disease is very complex and also associated with a variety of signaling pathway. Study of the effect of NF-κB, p38MAPK and PKC pathways on the neural KATPsubunits Kir6.2/SUR1expression induced by Aβ1-42in this experiment, to explore each of the paths possible role in Alzheimer's disease, maybe providing a new thinking for targeted therapy of AD.
     Methods:
     Cultured Wistar rats (within24h of birth) cortical and hippocampal cholinergic neurons in primary cells cultured and identification of cholinergic neurons in choline acetyltransferase (ChAT) immuno cytochemistry methods. The cells were randomly divided into four groups:the control group, the Aβ1-42group, the Aβ1-42+SN50group and the SN50group. The cells were cultured for7days, the control group was treated with equal volume PBS and culture medium; the Aβ1-42group was treated with Aβ-42(2μM); Aβ1-42+SN50group was treated with SN50(0.5μM),after30min, then added Aβ1-42(2μM) continue to culture; SN50group was treated with SN50(0.5μM); and a collection of cells by drug effects of72h, and the protein concentration in the extracts was determined by BCA Protein Assay Kit. SDS-PAGE electrophoresis,40g total protein samples taken, and then transferred to PVDF, closed one hour with5%skim milk, and finally closed overnight with primary antibody (Kir6.2or SUR1) and anti-closed2h (horseradish peroxidase conjugated goat anti-rabbit IgG), the final color using the ECL, and GAPDH as an internal reference, and finally analysis of the integral value of the optical density using image analysis software.
     Results:
     (1).Identification of rat hippocampal and cortical cholinergic neurons:the cytoplasm of positive neurons were stained brown,positive cells in more than90%of ChAT positive neurons.
     (2).The experimental results showed that Aβ1-42significantly increased the subunits Kir6.2and SUR1of KATP expression.
     (3).The subunits Kir6.2/SUR1of KATP expression level for72h compared with the Aβ1-42group were significantly reduced in the Aβ1-42+SN50group (p<0.01); compared with the Aβ1-42group or control group, the subunits Kir6.2/SUR1of KATP expression were significantly reduced in the SN50group(p<0.01and p<0.05), but compared with Aβ1-42+SN50group, the only subunit SUR1of KATP expression was significantly reduced in the SN50group(p<0.01), while the subunit Kir6.2of KATP expression was not obvious (p>0.05).
     (4).The subunits Kir6.2/SUR1of KATP expression level for72h compared with the Aβ1-42group were significantly reduced in SB203580+Aβ1-42group(p<0.05). Compared with the Aβ1-42group or the control group or SB203580+Aβ1-42group, the subunits Kir6.2of KATP expression were significantly reduced in SB203580group(p<0.05). However, compared with SB203580+Aβ1-42group, the subunit SUR1of KATP expression level of SB203580group has no difference.
     (5).The subunits Kir6.2/SUR1of KATP expression compared with the Aβ1-42group were significantly reduced in the Aβ+CTC(p<0.01); compared with the Aβ1-42group or control group, the subunits Kir6.2/SUR1of KATP expression were significantly reduced in the CTC group(p<0.01andp<0.05), but compared with Aβ+CTC group, the only subunit SUR1of KATP expression was significantly reduced in the CTC group(p<0.01), while the subunit Kir6.2of KATP expression was not obvious (p>0.05).
     Conclusion:
     (1).More than90%of cholinergic neurons in the primary cultured cells.
     (2).The experimental results showed that Aβ1-42significantly increased the subunits Kir6.2and SUR1of KTP expression in the primary cholinergic neurons for72h compared with control group. One of possible causes is the KATP each subunit sensitivity to oxidative stress, the persistence of oxidative stress leading to mitochondrial dysfunction, serious disorder of cell metabolism, the KATP of the activation and opening up can maintain normal cell membrane potential and spontaneous electrical activity, which play the prevention and treatment of Aβ1-42cytotoxicity.
     (3).The NF-κB inhibitor SN50inhibit Kir6.2/SUR1protein expression, the possible reason is that SN50interferes with NF-κB by inhibiting NF-κB nuclear translocation, thereby affecting the transcription expression of the subunits Kir6.2and SUR1of KATP induced by NF-κB, further affecting the expression of KATP.Therefore, NF-κB signal pathway is involved in the subunits of KATP expression increased by Aβ in neurons, blocking NF-κB signal pathway can reduce the subunits of KATP expression in neurons.
     (4).The p38MAPK inhibitor SB203580inhibit Kir6.2/SUR1protein expression, the possible reason is the surrounding glial cell proliferation activated by amyloid plaques, releasing inflammatory products, thereby activating p38MAPK, but SB203580occupy the ATP binding sites, making the p38MAPK lose the ability to bind with ATP, thereby weakening the Aβ toxicity,and further affecting the subunits Kir6.2/SUR1of KATP expression, this experiment also further confirmed that p38MAPK can suppress or eliminate the neuronal apoptosis induced by Aβ。
     (5).The PKC inhibitor CTC inhibit Kir6.2/SUR1protein expression, the possible reason is the activation of the PKC from the cytoplasm to the cell membrane inhibited by CTC and remain on the membrane and to promote a variety of protein phosphorylation, including serine or threonine residues of ion channel protein,so that changing the channel protein conformation and gating kinetics, KATP channel protein,finally regulating opening and closing of ion channels, thereby affecting the expression of KATP channel protein.
     Significance:
     It is indicated that NF-κB or p38MAPK or PKC has a protective effect against excessive oxidative stress, against destruction of the mitochondrial membrane potential, maybe a new theoretical basis for research drugs of prevention and treatment AD.
引文
1. Kawasumi M, Hashimoto Y, Chiba T (2002) Molecular Mechanisms for neuronal cell death by Alzheimer's amyloid precursor protein relevant insults [J]. Neurosignals 11:236-250
    2. Watson D, Castano E, Kokjohn TA, et al. Physicochemical characteristics of soluble oligomeric A-beta and their pathologic role in Alzheimer's disease[J]. Neurol Res,2005,27(8):869-881.
    3. Yamada S, Kane GC, Behfar A, et al. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant[J]. Physiol,2006,577:1053-1065.
    4. Yamada M, Isomoto S, Matsumoto S, et al. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+-channel[J]. Physiol, 1997,499(3):715-720.
    5. Sartiraju S, Reyes S, Kane OC, et al. KATP Channel Pharma-cogenomics:From Bench to Bedside[J]. Clin Pharmacol Ther,2008,83(2):354-357.
    6. Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease[J]. Trends Cell Biol,1998,8(11):447-453.
    7. Mattson MP. Pathways towards and away from Alzheimer's disease[J]. Nature, 2004,430:631-639.
    8. Blass JP, Sheu RK, Gibson GE. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise [J]. Ann N Y Acad Sci,2000,903(4):204-221.
    9. Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease[J]. Trends Neurosci,2008,31(9):454-463.
    10. de la Torre JC. Critically attained threshold of cerebral hypoperfusion:the CATCH hypothesis of Alzheimer's pathogenesis [J]. Neurobiol Aging,2000,21(2):331-342.
    11. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofinan A, Breteler MM. Cerebral hypoperfusion and clinical onset of dementia:the Rotterdam study[J]. AnnNeurol,2005,57(6):789-794.
    12. Patel JR, Brower GJ. Age-related differences in NF-κB translocation and Bcl-2/Bax ratio caused by TNF alpha and Abeta42 promote survival in middle-age neurons and death in old neurons[J]. Exp Neurol,2008,213(1):93-100.
    13. Pratico D.Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy:Lights and shadows[J].Ann N Y Acad Sci,2008,1 147:70-78.
    14. Mohmmad Abdul H, Wenk GL, Gramling M, et al. APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol:Implications for Alzheimer's disease[J]. Neurosci Lett,2004,368(2):148-150.
    15. Behi C. Oxidative stress in Alzheimer's disease:Implications for prevention and therapy In:Harris JR,Fahrenholz F (Eds) Alzheimer's Disease[J]. Springer US, 2005,65-78.
    16. Kim HC,Yamada K, Nitta A,et al.Immunocytochemical evidence that amyloid beta (1-42) impairs endogenous antioxidant systems in vivo[J]. Neuroscience,2003,1 19(2):399-419.
    17. Carrotta R, Di Carlo M, Manne M, et al. Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus[J]. Faseb,2006,20(11):1916-1917.
    18. Tickler A K, Wade J D, Separovic F, et al. The role of A peptides in Alzheimer's disease[J]. Protein and Peptide Letters,2005,12(2):513-519.
    19. Mannhold R. KATP channel openers:structure-activity relationships and therapeutic potential[J]. Med Res Rev,2004,24(2):213-266.
    20. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B. Cell-type specific expression of ATP sensitive potassium channels in the rat hippocampus[J]. J Physiol, 1999,514(Pt2):327-341.
    21. Light PE, Kanji HD, Fox JE, French RJ. Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery[J]. FASEB J,2001,15(14):2586-2594.
    22. Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmer E, Mattson MP. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death[J]. J Neurochem,2003,86(4):966-979.
    23. Ma G, Fu Q,Zhang Y,et al. Effects of Abetal-42 on the subunits of KATP expression in cultured primary rat basal forebrain neurons [J]. Neurochem Res, 2008,33(7):1419-24.
    24. Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase[J]. Biol Chem,2002,277(41):38079-38086.
    25. Oneill LA, Kaltschmidt C, NF-κB:a crucial transcription factor for glial and neuronal cell function[J]. Trends Neurosci,1997,20:252-258.
    26. Kaltschmidt B, Uherek M, Volk B, et al. Transcription factor NF-κB is activated in primary neurons by amyloid P peptides and in neurons surrounding early plaques from patients with Alzheimer disease[J]. Proc Natl Acad Sci,1 997,94:2642-2647.
    27. Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease[J]. Proc Natl Acad Sci,1997,94:7531-7536.
    28. Xie YP, Wang JC.Nuclear factor-KB and acute lung injury[J]. Chongqing Medical Journal,2003,32(1):115-117.
    29. Siebenlist U, Franzose G, Brown K. Structure, regulation and function of NF-kappa B[J]. Annu Rev Cell Biol,1994,10:405-55.
    30. Tomita S, Fujita T, Kirino Y,et al. PDZ domain-dependent suppression of NF-KB/p65 induced Abeta42 production by a neuron-specific X11-like protein[J]. Biol Chem,2000,275:13056-13060.
    31. Irving EA, Bamford M. Role of mitogen and stress activated kinases in ischemic injury[J]. Cereb Blood Flow Metab,2002,22 (6):631-647.
    32. Coulthard LR, White DE, Jones DL, et al. p38(MAPK):stress responses from molecular mechanisms to therapeutics [J]. Trends Mol Med,2009,15(8):369-379.
    33. Namgung Uk, Zhengui Xia. Arsenite Induced Apoptosis in Cortical Neurons Is Mediated by C-jun N-Terminal Protein Kinase 3 and p38 Mitogen-Activated Protein Knee[J]. Neurosci,2000,20 (17):6442-6451.
    34. Miloso M, Scuteri A, Foudah D, et al. MAPKs as mediators of cell fate determination:an approach to neurodegenerative diseases[J]. Curr Med Chem, 2008,15(6):538-548.
    35. Barone FC, Irving EA, Ray AM, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia[J]. Med Res Rev,2001,21 (2):129-145.
    36. Ossum CG, Lauritsen AN, Karottki DG, et al. Diferential role for ERK2 in anoxia-induced activation of transcription and translation of Hsp70 in NIH 3T3 cells[J]. Cell Physiol Biochem,2011,27(2):109-120.
    37. Shukla D,Saxena S,Jayamurthy P,et al.Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs [J]. High Alt Med Biol,2009,10(1):57-69.
    38. Zhu X, Rottkamp CA, Boux H, et al. Activation of p38 kinase links tau phosphorylation,oxidative stress,and cell cycle-related events in Alzheimer disease[J]. Neuropathol Exp Neurol,2000;59(10):880-8.
    39. McDonald DR, Bamberger ME, Combs CK, et al. Beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes[J]. Neurosci,1998;18(12):445-60.
    40. Tamagno E,Robino G,Obbili A, et al.H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK[J]. Exp Neurol,2003;180(2):144-55.
    41. Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells[J]. Neurosci,2000,20(13):5037-5044.
    42.董啸,刘迎龙.p38MAPK在大鼠体外循环肺组织炎症反应中作用的实验研究[D].优秀博士生学位论文,中国协和医科大学,2006.
    43. D'cruz B J, Fertig K C, Filiano A J, et al. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation[J]. Cereb Blood Flow Metab,2002,22(7):843-851.
    44. Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury[J]. Stroke,2005;36(12):2781-90.
    45.Xu SZ, Bullock L, Shan C J, et al. PKC is forms were reduced by lead in the developing rat brain[J]. Int J Dev Neurosei,2005,23(1):53-64.
    46. Gross GJ. Role of opioids in acute and delayed preconditioning[J]. J Mol Cell Cardiol,2003,35:709-718.
    47. Takihino K, Johan F, Willyl B. Loss of inositol 1,4,5-triphosphate receptor sitees and decreased PKC levels correlate with staging of Alzheimer'disease neurofibrillary pathology[J]. Brain Res,1998,796(2):209-221.
    48. Marambaud P, Lopez-Perez E, Wilk S, et al. Constitutive and protein kinase C-regulated secretory cleavage of Alzheimer's β amyloid precursor protein:different control of early and late events by the proteasome[J]. Neurochem,1997,69:2500-2505.
    49. Weinreb O, Bar-Am O, Amit T, et al. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members[J]. Faseb 2004;12(9):1471-3.
    50. Chmura S J, Dolan M E, Cha A, et al. In Vitro and Vivo Activity of Protein Kinase C inhibitor Chelerythrine Chloride Induces Tumor Cell Toxicity and Growth Delay in Vivo[J]. Clinical Cancer Research,2000(6):737-742.
    1. Dudai Y. The Neurobiology of Memory. Oxford University Press, New York.1989.
    2. Kandel ER.The molecular biology of memory storage:A dialogue between genes and synapses. Science,2001,294:1030-1038.
    3. Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004,(5):45-54.
    4. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Brain synapses contain inducible forms of the transcription factor NF-κB. Mech Dev,1993,(43):135-147.
    5. Bakalkin G, Yakovleva T, Terenius L. NF-k B-like factors in the murine brain. Developmentally-regulated and tissue-specific expression. Brain Res Mol Brain Res, 1993,(20):137-146.
    6. Schmidt-Ullrich R, Memet S, Lilienbaum A. NF-κB activity in transgenic mice: Developmental regulation and tissue specificity. Development,1996,(122):2117-212.
    7. Meffert MK, Chang JM, Wiltgen BJ. NF-κB functions in synaptic signaling and behavior. Nat Neurosci,2003,(6):1072-1078.
    8. Bakalkin G, Yakovleva T, Terenius L.NF-k B-like factors in the murine brain. Developmentally-regulated and tissue-specific expression. Brain Res Mol Brain Res, 1993,20:137-146.
    9. Bhakar AL, Tannis LL, Zeindler C, Russo MP, et al. Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci,2002, (19):8466-75.
    10. Meffert MK, Chang JM, Wiltgen BJ, et al. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci,2003,6(10):1072-8.
    11. Dickson KM, Bhakar AL, Barker PA. TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev Dyn,2004,231(1):122-7.
    12. Meffert MK, Chang JM, Wiltgen BJ, et al. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci,2003,6(10):1072-8.
    13. Wellmann H, Kaltschmidt B, Kaltschmidt C. Retrograde transport of transcription factor NF-kappa B in living neurons. J Biol Chem,2001,276(15):11821-9.
    14. Shrum CK, Defrancisco D, Meffert MK. Stimulated nuclear translocation of NF-kappaB and shuttling differentially depend on dynein and the dynactin complex. Proc Natl Acad Sci,2009,106(8):2647-52.
    15. Mikenberg I, Widera D, Kaus A, et al. Transcription factor NF-kappa B is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons. PLos One,2007,2(7):e589.
    16. Meffert MK, Chang JM, Wiltgen BJ, et al. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci,2003,6(10):1072-8.
    17.Fridmacher V, Kaltschmidt B, Goudeau B, et al. Forebrain-specific neuronal inhibition of nuclear factor-kappa B activity leads to loss of neuroprotection. J Neurosci,2003,23(28):9403-8.
    18. O'Mahony A, Raber J, Montano M, et al. NF-kappa B/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol Cell Biol,2006,26(19):7283-98.
    19. Kaltschmidt B, Ndiaye D, Korte M, et al.NF-κB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol,2006, (26):2936-2946.
    20.Gutierrez H, Hale VA, Dolcet X, et al. NF-kappa B signaling regulates the growth of neural processes in the developing PNS and CNS. Development.,2005,132(7):1713-26.
    21. Gutierrez H, Hale VA, Dolcet X, et al. NF-kappa B signaling regulates the growth of neural processes in the developing PNS and CNS. Development, 2005,132(7):1713-26.
    22. Schultz C, Konig HG, Del Turco D, et al. Coincident enrichment of phosphorylated I kappa B alpha, activated IKK, and phosphorylated p65 in the axon initial segment of neurons. Mol Cell Neurosci,2006,33(1):68-80.
    23. Politi C, Del Turco D, Sie JM,et al.. Accumulation of phosphorylated I kappaB alpha and activated IKK in nodes of Ranvier. Neuropathol Appl Neurobiol,2008, 34(3):357-65.
    24. Sanchez-Ponce D, Tapia M, Munoz A, et al. New role of IKK alpha/beta phosphorylated I kappa B alpha in axon outgrowth and axon initial segment development. Mol Cell Neurosci,2008,37(4):832-44.
    25. Bhakar AL, Tannis LL, Zeindler C, et al. Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci,2002,22(19):8466-75.
    26. De Souza CT, Araujo EP, Bordin S,et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology,2005,146(10):4192-9.
    27. Zhang X, Zhang G, Zhang H,et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell,2008,135(l):61-73.
    28. Mignot E, Taheri S, Nishino S. Review Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci,2002,5 Suppl:1071-5.
    29. Kaltschmidt B, Heinrich M, Kaltschmidt C. Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. NeuromolecularMed,2002,2(3):299-309.
    30. Bhakar AL, Tannis LL, Zeindler C,et al. Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci,2002,22(19):8466-75.
    31. Blondeau N, Widmann C, Lazdunski M, et al. Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci,2001,21(13):4668-77.
    32. Fridmacher V, Kaltschmidt B, Goudeau B, et al. Forebrain-specific neuronal inhibition of nuclear factor-kappa B activity leads to loss of neuroprotection. J Neurosci,2003,23(28):9403-8.
    33. Meffert MK, Chang JM, Wiltgen BJ, et al. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci,2003,6(10):1072-8.
    34. Pizzi M, Sarnico I, Boroni F, et al. NF-kappa B factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ,2005,12(7):761-72.
    35. Duckworth EA, Butler T, Collier L, et al. NF-kappaB protects neurons from ischemic injury after middle cerebral artery occlusion in mice. Brain Res,2006, 1088(1):167-75.
    36. Schneider A, Martin-Villalba A, et al. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med,1999,5(5):554-9.
    37. Cho IH, Hong J, Suh EC, et al. Role of microglial IKK beta in kainic acid-induced hippocampal neuronal cell death. Brain,2008,131 (Pt 11):3019-33.
    38. Rother J. Neuroprotection does not work. Stroke,2008,39(2):523-4.
    39. Bhakar AL, Tannis LL, Zeindler C, et al. Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci,2002,22(19):8466-75.
    40. Akama KT, Albanese C, Pestell RG,et al. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NF kappa B-dependent mechanism. Proc Natl Acad Sci.1998,95(10):5795-800.
    41. Brambilla R, Bracchi-Ricard V, Hu WH, et al. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med,2005,202(1):145-56.
    42. Khorooshi R, Babcock AA, Owens T. NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol,2008, 181(10):7284-91.
    43. Van Loo G, De Lorenzi R, Schmidt H,et al. Inhibition of transcription factor NF-kappa B in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol,2006,7(9):954-61.
    44. Niederberger E, Schmidtko A, Gao W, et al. Impaired acute and inflammatory nociception in mice lacking the p50 subunit of NF-kappaB. Eur J Pharmacol,2007, 559(1):55-60.
    45. Meunier A, Latremoliere A, Dominguez E, et al. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat. Mol Ther,2007,15(4):687-97.
    46. Fu ES, Zhang YP, Sagen J, et al. Transgenic glial nuclear factor-kappa B inhibition decreases formalin pain in mice. Neuroreport,2007,18(7):713-7.
    47. Widera D, Mikenberg I, Elvers M, et al. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci, 2006,20(7):64.
    48. Young KM, Bartlett PF, Coulson EJ Neural progenitor number is regulated by nuclear factor-kappaB p65 and p50 subunit-dependent proliferation rather than cell survival. J Neurosci Res,2006,83(1):39-49.
    49. Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci,2001,21(24):9733-43.
    50. Denis-Donini S, Caprini A, Frassoni C, et al. Members of the NF-κB family expressed in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res Dev Brain Res,2005,154:81-89.
    51. Denis-Donini S, Dellarole A, Crociara P, et al. Impaired adult neurogenesis associated with short-term memory defects in NF-kappa B p50-deficient mice. J Neurosci,2008,28(15):3911-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700