麻黄碱直接激活控制心节律的心脏I_(Ks)电流机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻黄是我国特产而闻名世界的一味中药材,早在两千年前就用于发汗、平喘、止咳。生药麻黄为麻黄(Ephedra sinica stapf)及其同属植物的地上茎,其成分主要包括3组立体异构的生物碱:左旋麻黄碱、右旋伪麻黄碱、左旋去甲基麻黄碱、右旋去甲基伪麻黄碱、左旋甲基麻黄碱、右旋甲基伪麻黄碱。生物碱中以麻黄碱为主,占生物碱总量的80%。麻黄及麻黄碱在临床已经使用多年,而且还作为膳食补充剂等非处方药用来治疗肥胖。麻黄及麻黄碱的广泛使用引发了一系列副作用事件,尤其是心血管系统副作用占47%。传统的观念认为:麻黄治疗疾病及引起副作用的机制是由麻黄碱直接或间接激动α或β肾上腺素受体所致。而我们的研究表明:麻黄碱还可以通过直接增强离子通道电流起作用。
     首先,我们利用全细胞扫描的方法,发现麻黄碱对PC12细胞上钾通道有显著的激活作用,但是对PC12细胞上钙通道和DRG细胞钠通道没有影响。而作为其立体异构体的伪麻黄碱对钾电流、钠电流和钙电流都没有作用。
     其次,我们研究了麻黄碱对KCNQ1通道的影响。KCNQ1通道(又称Kv7.1,KvLQT1)是一类电压门控钾通道,在心脏中主要与辅助亚基KCNE1共表达形成缓慢激活的、延迟整理的钾电流(I_(Ks)),在心脏动作电位复极化Ⅱ期过程中起关键作用。利用常规膜片钳、双电极膜片钳、点突变、显微注射和转染等试验方法,我们发现麻黄碱在体外表达系统——HEK293细胞和非洲爪蟾卵母细胞中,都能激活KCNQ1/KCNE1通道,激活I_(Ks)电流的EC_(50)=50 nM,而且加药后的激活时间常数(τ_(on))和洗脱时间常数(τ_(off))分别为49 s和400 s。尽管麻黄碱对I_(Ks)电流有显著的激活作用,而伪麻黄碱对I_(Ks)电流几乎没有影响。因此,我们推测并进一步发现了麻黄碱与KCNQ1/KCNE1通道的结合位点是S5-S6之间P-loop上的两个芳香族氨基酸,分别是F296和Y299。由于这两个作为位点在KCNQ通道家族中是保守的,而位于脑组织中的M电流是由KCNQ1的同源基因形成的,故麻黄碱可能在人类的学习和记忆等行为中起重要作用。
     再次,为了进一步验证麻黄碱对心血管系统的作用,我们检验了麻黄碱对BALS/c小鼠心电图的影响。结果表明:5 mg/kg麻黄碱能够增加心率49%,缩短QTc 39%。另外,秀丽隐杆线虫(C.elegans)中与KCNQ1通道同源的KQT-3主要位于肠道肌肉,因此我们研究了麻黄碱对线虫排泄的作用,表明:麻黄碱对线虫排泄的周期及排泄间隔影响不大,但却提高线虫排泄成功率Exp/pBoc 20%。
     另外,麻黄被用来治疗普通感冒、支气管炎、哮喘和关节炎。我们首次从支气管平滑肌入手,研究麻黄碱对支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)增殖的影响。300μg/mL麻黄碱对BSMCs增殖影响效果不明显,而600μg/mL麻黄碱却显著抑制了BSMCs的增殖,作用24,48小时后,对BSMCs增殖的抑制率分别达到(25.9±0.43)%和(40.7±0.35)%。
Ephedra is a kind of famous and special local product which has been used to perspire, wheeze and cough for two thousand years in China. The dried medicinal herb of Mahuang is the spigeal stem of Ephedra sinica stapf. Ephedra is composed of three pairs of stereo-isomers alkaloid, including L-ephedrine, D-pseudoephedrine, L-norephedrine, D-norpseudoephedrine, L-methylephedrine, D-methylpseudoephedrine. As the major components, ephedrine (Eph) is about 80 percent of the total alkaloid. Ephedra and Eph have been used in clinical for many years and to treat for obesity as the food assistants. The wide application of Ephedra and Eph induces a series of side effects, especially in cardiovascular system. It is well-known that physiological function and side effects induced by Eph may be through a or (3-adrenoceptor directly or indirectly. However, our findings indicated that Eph could directly activate ion channel.
     Firstly, Eph could activate markedly the potassium channel in PC12 cells. But, Eph had no influences on the calcium channel in PC12 cells and sodium channel of DRG cells by whole-cell recording. Oppositely, pseudoephedrine (Pse) could not change the current of K~+, Ca~(2+) and Na~+ channel.
     Secondly, the effects of Eph on KCNQ1 channel were also investigated in this paper. KCNQ1 (K_V7.1, K_VLQTl), a kind of voltage-gated potassium channel, which coexpressed with the anxiliary subunit KCNE1 in cardia formed slowly activated-rectified-potassium currents (Iks) and has key contribution on the phase II of repolarization of cardiac action potential. In this study, we found Eph could increase the current of I_(Ks) in vitro (both in Xenopus oocytes and HEK293 cells) by means of patch clamp or two electrode voltage clamp. Then, we demonstrated that Eph, but not pseudoephedrine (Pse), could activate cardiac I_(Ks) currents with EC_(50) = 50 nM. The onset and offset time constants of Eph activation of the I_(Ks) current wereτ_(on) = 49 s andτ_(off) = 400 s, respectively. A pair of Eph binding sites was also shown to occur at F296 and Y299 in the S5-S6 P-loop of the KCNQ1 channel by using of site-mutation, microinjection, transfection, and so on. As the binding sites are conserved highly in the KCNQ family and the M currents in the brain are formed by KCNQ2/KCNQ3 heterotetramer which belonged to the KCNQ family, Eph may have more profound significance on learning and memory. The mechanism of activation by Eph may provide a clue for drug design in the future.
     Thirdly, to further corroborate our findings, influences of Eph on the electrocardiographic (ECG) of BALB/c have been studied in the paper. The rats injected Eph with the dose of 5 mg/kg showed an increment of about 49 % in the heart rate and a decrement of about 39 % in the QTc interval. Besides, effects of Eph on defecation of C. elegans have been investigated in the paper also because KQT-3, the homologization of KCNQ1 channel, located mainly at intestine of C.elegans. Eph increased the ration of Exp/pBoc 20 %, whereas had no difference on the cycle period and interval period of defecation.
     At last, ephdra has been used to treate as common cold, bronchitis, asthma and arthritis. Until now, it is the first time that the influences of Eph on proliferation of bronchial smooth muscle cells (BSMCs) have been investigated in the paper. There was slight difference on the proliferation of BSMCs in the presence of 300μg/mL Eph. On the contrary, with the dose of 600μg/mL for 24 hours and 48 hours, Eph inhibited the proliferation of BSMCs (25.9±0.43) % and (40.7±0.35) %, respectively.
引文
[1] Phinney KW, Ihara T, Sander LC. Determination of ephedrine alkaloid stere oisomers in dietary supplements by capillary electrophoresis. J Chromatogr A. 2005,1077(1): 90-97.
    
    [2] Blanck HM, Khan LK, Serdula MK. Diet and physical activity behavior among users of prescription weight loss medications. Int J Behav Nutr Phys Act, 2004, 1 (1):17
    [3] Green GA, Uryasz FD, Petr TA, et al. NCAA study of substance use and abuse habits of college student-athletes. Clin J Sport Med, 2001,11(1): 51-56
    [4] Kanayama G, Gruber AJ, Pope HG, et al. Over-the-counter drug use in gymnast- iums: an underrecognized substance abuse problem? Psychother Psychosom. 2001, 70 (3): 137-140
    [5] Hailer CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med, 2000,343(25): 1833-1838
    [6] Grzesk G, Polak G, Grabczewska Z, et al. Myocardial infarction with normal coronary arteriogram: the role of ephedrine-like alkaloids. Med Sci Monit, 2004, 10(4): CS15-21
    [7] Enders J M, Dobesh P P, Ellison J N. Acute myocardial infarction induced by ephedrine alkaloids. Pharmacotherapy, 2003, 23 (12): 1645-1651
    [8] Hille B. Ion channels of excitable membranes. 3th ed., Sinauer Associates Inc. Sunderland MA, 2001: 66-236
    [9] Doyle A, Morais CJ, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K~+ conduction and selectivity. Science. 1998, 280(5360): 69-77.
    [10] Shieh CC, Coghlan M, Sullivan JP. et al. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev, 2000, 52(4): 557-593
    
    [11] Heginbotham L, Lu Z, Abramson T. et al. Mutations in the K~+ channel signature sequence. Biophys J. 1994, 66:1061-1067.
    [12] MacKinnon R. Determination of the subunit stoichiometry of a voltage activated potassium channel. Nature. 1991, 350: 232-235.
    [13] MacKinnon R, Heginbotham L, Abramson T. Mapping the receptor site for charyb- dotoxin, a pore-blocking potassium channel inhibitor. Neuron. 1990. 5: 767-771.
    [14] Yellen G, Jurman ME, Abramson T. et al. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K~+ channel. Science. 1991,251:939-942.
    [15] Goldstein SA, Pheasant DJ, Miller C. The charybdotoxin receptor of a Shaker K~+ channel: Peptide and channel residues mediating molecular recognition. Neuron. 1993,12:1377-1388.
    [16] Perozo E, Santacruz-Toloza L, Stefani E, et al. S4 mutations alter gating currents of Shaker K channels. Biophys J. 1994, 66:345-354.
    [17] Seoh SA, Sigg D, Papazian DM, et al. Voltage-sensing residues in the S2 and S4 segments of the Shaker K~+ channel. Neuron. 1996, 16:1159-1167.
    [18] Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K~+ channels: Effects of alterations in the carboxy-terminal region. Neuron. 1991, 7: 547-556.
    [19] Li M, Jan YN and Jan LY. Specification of subunit assembly by the hydro- philic amino-terminal domain of the Shaker potassium channel. Science. 1992, 257: 1225-1230.
    [20] Shen NV, Chen X, Boyer MM, et al. Deletion analysis of K~+ channel assembly. Neuron. 1993,11:67-76.
    [21] Schmitt N, Schwarz M, Peretz A, et al. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J. 2000,19: 332-340.
    [22] Clement JP, Kunjilwar K, Gonzalez G, et al. Association and stoichiometry of K_(ATP) channel subunits. Neuron. 1997,18:827-838.
    [23] Wang ZW, Kunkel MT, Wei A, et al. Genomic organization of nematode 4TM K~+ channels. Ann NY Acad Sci. 1999, 868:286-303.
    [24]Isom LL,De Jongh KS,Catterall WA.Auxiliary subunits of voltage-gated ion channels.Neuron.1994,12:1183-1194.
    [25]Hodgkin AL,Huxley AF.A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol.1952,117:500-544.
    [26]Makielski J,Sheets M,Hanck D,et al.Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells.Biophys J.1987,52:1-11.
    [27]Balser JR.Structure and function of the cardiac sodium channel.Cardiovasc.Res,1999,42:327-328.
    [28]Chiamvimonvat N,Perez-Garcia M,Ranjan R,et al.Depth asymmetries of the pore-lining segments of the Na~+ channel revealed by cysteine mutagenesis.Neuron.1996,16:1037-1047.
    [29]Chiamvimonvat N,Perez-Garcia M,Tomaselli G.,et al.Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels.J Physiol.1996,491:51-59.
    [30]Benitah J,Ranjan R,Yamagishi T,et al.Molecular motions within the pore of voltage-dependent sodium channels.Biophys J.1997,73:603-613.
    [31]Tsushima R,Li R,Backx P.P-loop flexibility in Na~+ channel pores revealed by single- and double-cysteine replacements.J Gen Physiol.1997,110:59-72.
    [32]Kontis K,Goldin A.Sodium channel inactivation is altered by substitution of voltage sensor positive charges.J Gen Physiol.1997,110:403-413.
    [33]Holmgren M,Smith P,Yellen G..Trapping of organic blockers by closing of voltage-dependent K~+ channels-evidence for a trap door mechanism of activation gating.J Gen Physio.1997,109:527-535.
    [34]West J,Patton D,Scheuer T,et al.A cluster of hydrophobic amino acid residues required for fast Na~+-channel inactivation.Proc Natl Acad Sci USA.1992,89:10910-10914.
    [35]McPhee J C,Ragsdale D S,Scheuer T,et al.A role for intracellular loop IVS4-S5 of the Na~+ channel subunit in fast inactivation.Biophys J.1996,70:318a.
    [36] Chiamvimonvat N, Perez-Garcia M, Ranjan R, et al. Depth asymmetries of the pore-lining segments of the Na~+ channel revealed by cysteine mutagenesis. Neuron. 1996,16:1037-1047.
    [37] Hayward L J, Brown R H J, Cannon S C. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J. 1997, 72: 1204-1219.
    [38] Rogers J, Qu Y, Tanada T, et al. Molecular determinants of high affinity binding of -scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na~+ channel subunit. J Biol Chem. 1996, 271:15950-15962.
    [39] Kambouris N, Nuss H, Johns D, et al. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation 1998, 97: 640-644.
    [40] Backx P, Yue D., Lawrence J, Marban E, et al. Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science.1992, 257: 248-251.
    [41] Perez-Garcia M, Chiamvimonvat N, Marban E, et al. Structure of the sodium channel pore revealed by serial cysteine mutagenesis. Proc Natl Acad Sci USA. 1996, 93: 300-304.
    [42] French R, Prusak-Sochaczewski E, Zamponi G., et al. Interactions between a pore-blocking peptide and the voltage sensor of the sodium channel: an electrostatic approach to channel geometry. Neuron. 1996, 16: 407-413.
    [43] Hill J, Alewood P, Craik D. Three-dimensional solution structure of μ-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Biochemistry. 1996, 35: 8824-8835.
    [44] Eggen B, Mandel G. Regulation of sodium channel gene expression by transcriptional silencing. Dev. Neurosci. 1997, 19: 25-26.
    [45] Isom L, De Jongh K, Patton D, et al. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science.1992, 256: 839-842.
    [46] Isom L, Ragsdale D, De Jongh K, et al. Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 1995, 83: 433-442.
    [47] Cantrell A, Smith R, Goldin A, et al. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel subunit. J Neurosci. 1997,17: 7330-7338.
    [48] Frohnwieser B, Chen L, Schreibmayer W, et al. Modulation of the human cardiac sodium channel-subunit by cAMP-dependent protein kinase and the responsible sequence domain. J Physiol. 1997, 498: 309-318.
    [49] Qu Y, Rogers J, Tanada T, Catterall, et al. Phosphorylation of S1505 in the cardiac Na~+ channel inactivation gate is required for modulation by protein kinase C. J Gen Physio. 1996,108: 375-379.
    [50] Bennett E, Urcan M, Tinkle S, et al. Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism. J Gen Physio. 1997,109: 327-343.
    [51] Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 2000; 16: 521-55.
    [52] Catterall WA, Striessnig J, Snutch TP et al. International union of pharmacology. XL. compendium of voltage-gated ion channel: calcium channel. Pharmacol Rev. 2003, 55: 579-581.
    [53] Jagannathan S, Publicover SJ, Barrratt LR. Voltage-operated calcium channels in male germ cells. Reproduction. 2002, 123: 203-215.
    
    [54] Kaczorowski GJ, Garcia ML. Pharmacology of voltage-gated and calcium- activated potassium channels. Curr Opin Chem Biol. 1999, 3:448-458.
    [55] Hoppe UC, Marban E, Johns DC. Adenovirus-mediated inducible gene expression in vivo by a hybrid ecdysone receptor. Mol Ther. 2000, 1:159-164.
    [56] Koo GC, Blake JT, Talento A, et al. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol. 1997,158: 5120-5128.
    [57] Shieh CC, Coghlan M, Sullivan JP, et al. Potassium channels: molecular defects, diseases, and therapeutic ipportunities. Pharmacol Rev. 2000, 52: 557-593
    [58] Koo GC, Blake JT, Shah K, et al. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol.1999,197: 99-107.
    [59] Nattel S, Yue L and Wang Z. Cardiac ultrarapid delayed rectifiers: A novel potassium current family of functional similarity and molecular diversity. Cell Physiol Biochem. 1999, 9: 217-226.
    [60] Nuss HB, Marban E and Johns DC. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest. 1999,103: 889-896.
    [61] Wang HS, Pan Z, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel. Science. 1998, 282: 1890-1893.
    [62] Zaczek R, Chorvat RJ, Saye JA, et al. Two new potent neurotransmitter release enhancers, 10, 10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis (2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: Comparison to linopirdine. J Pharmacol Exp Ther. 1998, 285: 724-730.
    [63] Wang HS, Brown BS, Mckinnon D, et al. Molecular basis for differential sensitivity of KCNQ and I_(Ks) channels to the cognitive enhancer XE991. Mol Pharmacol. 2000, 57: 1218-1223
    [64] Main MJ, Cryan JE, Dupere JB, et al. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol. 2000, 58: 253-262.
    [65] Olesen SP, Munch E, Moldt P, et al. Selective activation of Ca(2+)-dependent K~+ channels by novel benzimidazolone. Eur J Pharmacol. 1994, 251: 53-59.
    [66] Biagi G., Calderone V, Giorgi I, et al. 1,5-Diarylsubstituted 1,2,3-triazoles as potassium channel activators:VI. Farmaco. 2004, 59:397- 404.
    [67] Biagi G., Giorgi I, Livi O, et al. Synthesis and biological activity of novel substituted benzanilides as potassium channel activators: V. Eur J Med Chem 2004, 39: 491- 498
    [68] Turner SC, Carroll WA, White TK, et al. The discovery of a new class of large-conductance Ca~(2+)-activated K~+ channel opener targeted for overactive bladder: synthesis and structure-activity relationships of 2-amino-4-azaindoles. Bioorg Med Chem Lett. 2003,13: 2003- 2007
    [69] Ottolia M, Toro L. Potentiation of large conductance K_(Ca) channels by niflumic, flufenamic, and mefenamic acids. Biophys J. 1994, 67: 2272- 2279.
    [70] Ghatta S, Nimmagadda D, Xu XP, et al. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther. 2006,110: 103-116.
    [71] Derand R, Bulteau-Pignoux L, Becq F. Comparative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel: effect of the benzimidazolone derivative NS004. J Membr Biol. 2003,194: 109-117.
    [72] Tricarico D, Barbieri M, Mele A, et al. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K~+-deficient rats. FASEB J. 2004, 18: 760-761.
    [73] Wu SN, Hwang T, Teng CM, et al. The mechanism of actions of 3-(5V-(hydroxymethyl-2V-furyl)-1-benzyl indazole (YC-1) on Ca(2+)-activated K(+) currents in GH(3) lactotrophs. Neuropharmacology. 2000, 39: 1788-1799.
    [74] Dubuis E, Potier M, Wang R, et al. Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BK_(Ca) channels. Cardiovasc Res. 2005, 65: 751-761.
    [75] Lu T, Wang XL, He T, et al. Impaired arachidonic acid-mediated activation of large-conductance Ca~(2+)-activated K~+ channels in coronary arterial smooth muscle cells in Zucker diabetic fatty rats. Diabetes. 2005, 54: 2155-2163
    [76] Archer SL, Gragasin FS, Wu X, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003, 107: 769- 776.
    [77] Ohwada T, Nonomura T, Maki K, et al. Dehydroabietic acid derivatives as a novel scaffold for large-conductance calcium-activated K~+channel openers. Bioorg Med Chem Lett. 2003,13: 3971-3974.
    
    [78] Sun XH, Ding JP, Li H, et al. Activation of large-conductance calcium- activated potassium channel by puerarin: the underlying mechanism of puerarin-mediated vasodilation. J Pharmacol Exp Ther. 1997, 323: 391-397
    [79] Wu SN, Li HF, Chiang HT. Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells. Biochem Pharmacol. 2001, 61: 877-892.
    [80] Boy KM, Guernon JM, Sit SY, et al. 3-Thio-quinolinone maxi-K openers for the treatment of erectile dysfunction. Bioorg Med Chem Lett. 2004, 14: 5089- 5093.
    [81] Li W, Aldrich RW. Unique inner pore properties of BK channels revealed by quaternary ammonium block. J Gen Physiol. 2004, 124: 43- 57.
    [82] Wu S N. Large-conductance Ca~(2+)-activated K~+ channels: physiological role and pharmacology. Curr Med Chem. 2003, 10: 649-661.
    [83] Liu YC, Lo YC, Huang CW, et al. Inhibitory action of ICI-182,780, an estrogen receptor antagonist, on BK(Ca) channel activity in cultured endothelial cells of human coronary artery. Biochem Pharmacol. 2003, 66, 2053-2063.
    [84] Harper AA, Catacuzzeno L, Trequattrini C, et al. Verapamil block of large-conductance Ca-activated K channels in rat aortic myocytes. J Membr Biol. 2001, 179: 103-111.
    [85] Tammaro P, Smith AL, Hutchings SR, et al. Pharmacological evidence for a key role of voltage-gated K~+ channels in the function of rat aortic smooth muscle cells. Br J Pharmacol. 2004, 143: 303-317.
    [86] Yao J, Chen X, Li H, et al. BmP09, a "long chain" scorpion peptide blocker of BK channels. J Biol Chem. 2005, 280: 14819-14828
    [87] Syme CA, Gerlach AC, Singh AK, et al. Pharmacological activation of cloned intermediate- and small-conductance Ca~(2+)-activated K~+ channels. Am J Physiol. 2000, 278 :C57O-C581.
    [88] Wulff H, Miller MJ, Hansel W, et al. Design of a potent and selective inhibitor of the intermediate-conductance Ca~(2+)-activated K~+ channel, IK_(Ca): A potential immunosuppressant. Proc Natl Acad Sci. 2000, 97:8151-8156.
    [89] Blatz AL and Magleby KL. Single apamin-blocked Ca-activated K1 channels of small conductance in cultured rat skeletal muscle. Nature (London). 1986, 323:718-720.
    [90] Malik-Hall M, Ganellin CR, Galanakis D, et al. Compounds that block both intermediate-conductance (IK_(Ca)) and small-conductance (SK_(Ca)) calcium-activated potassium channels. Br J Pharmacol. 2000,129:1431-1438.
    [91] Aguilar-Bryan L, Clement JP 4th, Gonzalez G, et al. Toward understanding the assembly and structure of K_(atp) channels. Physiol Rev. 1998, 78:227-245.
    [92] Lorenz E, Alekseev AE, Krapivinsky GB, et al. Evidence for direct physical association between a K~+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K~+ channel. Mol Cell Biol. 1998, 18:1652-1659.
    [93] Shieh CC, Coghlan M, Sullivan JP, et al. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000, 52: 557-593.
    [94] Sato T, Sasaki N, O'Rourke B, et al. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol. 2000, 35:514-518.
    [95] Macfarlane WM, O'Brien RE, Barnes PD, et al. Sulfonylurea receptor 1 and Kir6:2 expression in the novel human insulin-secreting cell line NES2Y. Diabetes. 2000, 49:953-960.
    [96] Humphrey SJ and Ludens JH. K-ATP-blocking diuretic PNU-37883A reduces plasma renin activity in dogs. J Cardiovasc Pharmacol. 1998, 31: 894-903.
    [97] Lesage F and Lazdunski M. Potassium channels with two pore domains, in Handbook of Experimental Pharmacology. Pharmacology of Ionic Channel Function: Activators and Inhibitors (Endo M, Mishina M and Kurachi Y, eds) Springer-Verlag, Berlin. 1999
    [98] Jespersen T, Crunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiol. 2005, 20: 408-416.
    [99] Wang Q, Curran M E, Splawski I, et al. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 1996,12: 17-23.
    [100] Splawski I, Shen J, Timothy KW, Vincent GM, et al. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics. 1998, 51: 86-97.
    [101] Doyle DA, Morais CJ, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K~+ conduction and selectivity. Science. 1998, 280: 69-77.
    [102] Takumi T, Ohkubo H, Nakanishi S. Cloning of a membrane protein that induces a slow voltage gated potassium current. Science. 1988, 242:1042-1045.
    [103] Seebohm G, Sanguinetti MC, Pusch M. Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. J Physiol. 2003, 552: 369-378.
    [104] Melman YF, Urn SY, Krumerman A, et al. KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity. Neuron. 2004, 42: 927-937.
    [105] Tinel N, Diochot S, Borsotto M, et al. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 2000,19: 6326-6330.
    [106] Schroeder BC, Waldegger S, Fehr S, et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 2000, 403: 196-199.
    [107] Grunnet M, Jespersen T, Rasmussen HB, et al. KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol. 2002, 542: 119-130.
    [108] Piccini M, Vitelli F, Seri M, et al. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics. 1999, 60: 251-257.
    [109] Wang KW, Goldstein SA. Subunit composition of minK potassium channels. Neuron. 1995, 14: 1303-1309.
    [110] Wang W, Xia J, Kass R S. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J Biol Chem. 1998, 273: 34069-34074.
    [111] Barhanin J, Lesage F, Guillemare E, et al. K(V)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996, 384:78-80.
    [112] Hideaki K, Sabina K, Tao Y, et al. A structural requirement for proceeding the cardiac K~+ channel KCNQ1. The Biol Chem. 2004, 279: 33976-33983
    [113] Zeheleina J, Thomasa D, Khalilb M, et al. Identification and characterisation of a novel KCNQ1 mutation in a family with Romano-Ward syndrome. Biochimica et Biophysica Acta. 2004,1690: 185-192
    [114] Inge RB, Adam LR, Natacha O. et al. Functional effects of a KCNQ1 mutation associated with the long QT syndrome. Cardiovasc Res. 2006, 70: 466-474.
    [115] Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000, 94, 99- 102.
    [116] Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004, 109: 2394- 2397.
    [117] Torsten KR, Geoffrey WA. Pharmacogenetics and cardiac ion channels. Vasc Pharmacol. 2006, 44: 90 - 106
    [118] Jespersen T, Rasmussen HB, Grunnet M, et al. Basolateral localization of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci. 2004,117: 4517-4526.
    [119] Lohrmann E, Burhoff I, Nitschke R B, et al. A new class of inhibitors of cAMP- mediated Cl~- secretion in rabbit colon, acting by the reduction of cAMP- activated K~+conductance. Pflugers Arch. 1995, 429:517-530.
    [120] Demolombe S, Franco D, de Boer P, et al. Differential expression of KvLQTl and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol. 2001, 280: C359-C372.
    [121] Wangemann P, Liu J, and Marcus DC. Ion transport mechanisms responsible for K~+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res. 1995, 84: 19-29,
    [122]Selnick H G,Liverton NJ,Baldwin J J,et al.Class Ⅲ antiarrhythmic activity in vivo by selective blockade of the slowly activating cardiac delayed rectifier potassium current I_(Ks) by(R)-2-(2,4-tri-uoromethyl)-N-[2-oxo-5-phenyl-1-(2,2,2-tri-uoroethyl)-2,3-dihydro-1H-ben-zo[e][1,4]diazepin-3-yl]acetamide.J Med Chem.1997,40:3865-3868.
    [123]Seebohm G.,Lerche C,Pusch M,et al.A kinetic study on the stereospecific inhibition of KCNQ1 and I_(Ks) by the chromanol 293B.Brit J Pharmacol.2001,134:1647-1654.
    [124]Joseph JS,Nancy KJ,Jixin W,et al.A novel benzodiazepine that activates cardiac slow delayed rectifier K~+ currents.Mol Pharnacol.1998,53:220-230
    [125]刘振伟.实用膜片钳技术.北京:军事医学科学出版社,2006:1-198
    [126]陈军.膜片钳实验技术(第一版)。北京:科学出版社,2001.4-6
    [127]Blanton MG,Lo Turco JJ,Kriegstein AR.Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex.J Neurosci Methods.1989,30:203-210
    [128]Margrie TW,Sakmann B,Urban NN.Action potentim propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb.Proc Natl Acad Sci USA.2001,98:319-324
    [129]Margrie TW,Meyer AH,Caputi A,et al.Targeted whole-cell recordings in the mammalian brain in vivo.Neuron.2003,39(6):911-918
    [130]康华光,康新军.膜片钳技术及其应用(第一版).北京:科学出版社,2003.30-32
    [131]Kalix P.The pharmacology of psychoactive alkaloids from ephedra and catha.J Ethnopharmacol.1991,32:201-208.
    [132]Arch JR,Ainsworth AT,Cawthorne MA,et al.A typical-adrenoceptor on brown adipocytes as target for antiobesity drugs.Nature.1984,309:163-165.
    [133]Liu YL,Toubro S,Astrup A,and Stock MJ.Contribution of 3-adrenergic activation to ephedrine-induced thermogenesis in humans.Int J Obes relat metab Disord.1995,19:678-685.
    [134]Sanguinetti MC,Curran ME,Zou A,et al.Coassembly of K(v)LQT1 and minK (IsK) proteins to form cardiac IKs potassium channel.Nature.1996,384:80-83.
    [135] Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001,104:569-580.
    [136] Kass RS, Moss AJ. Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest. 2003,112:810- 815.
    [137] Salata JJ, Jurkiewicz NK. Wang JX, et al. A novel benzodiazepine that activates cardiac slow delayed rectifier K~+ Currents. Mol Pharmacol. 1998, 53: 220-230.
    [138] Seebohm G, Pusch M, Chen J, et al. Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circ Res. 2003, 93: 941-947.
    [139] Wickenden AD, Yu W, Zou A, et al. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channel. Mol Pharmacol. 2000, 58: 591-600.
    [140] McMahon LR, Cunningham KA. Discriminative stimulus effects of (-)-ephe drine in rats: analysis with catecholamine transporter and receptor ligands. Drug Alcohol Depend. 2003, 70: 255-264.
    [141] Roepke TK, Abbott GW. Pharmacogenetics and cardiac ion channels. Vasc Pharmacol. 2006, 44: 90-106.
    [142] Persky AM, Berry NS, Pollack GM, et al. Modelling the cardiovascular effects of ephedrine. Br J Clin Pharmacol. 2004, 57: 552-562.
    [143] Sanguinetti MC, Jurkiewicz NK, Scott A, et al. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes: mechanism of action. Circ Res. 1991, 68: 77-84.
    [144] Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP- mediated regulation of a heart potassium channel. Proc Natl Acad Sci USA. 2003, 100: 2122-2127.
    [145] Riddle D, BlumenthalT, Meyer B, et al. Elegans II. New York: Cold Spring Harbor Laboratory Press. 1997
    [146] Marx J. Nobel Prize in Physiology or Medicine: Tiny Worm Takes a Star Turn. Science. 2002, 298:526.
    [147] Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans.Dev Biol.1977,56:110-156.
    [148]Sulston J,Dew M,Brenner S.Dopaminergic neurons in the nematode Cacnothabditis elegans.Comp Neurol.1975,163:215-226
    [149]奥佩(Opie LH)著,高天祥,高天礼译。心脏生理学:从细胞到循环.北京:科学出版社。2001,9:93-120
    [150]Thomas JH.Genetics analysis of defecation in Caenorhabditis elegans.Genetics.1990,124:855-872.
    [151]Howden R,Hanlon PR,Petranka JG.Ephedrine plus caffeine causes agedependent cardiovascular responses in Fischer 344 rats.Am J Physiol Heart Circ Physiol.2005,288:H2219-H2224.
    [152]Kobayashi S,Endou M,Sakuraya F.The Sympathomimetic Actions of 1-Ephedrine and d-Pseudoephedrine:Direct Receptor Activation or Norepinephrine Release? Anesth Analg.2003,97:1239-45.
    [153]Wei AD,Butler A,Salkoff.KCNQ-like potassium channels in Caenorhabditis elegans.J Biol Chem.2005,280:21337-21345
    [154]Emilia M,Manuela P,Roberta P,et al.A rapid and simple procedure for the determination of ephedrine alkaloids in dietary supplements by gas chromatography-mass spectrometry.J Pharmaceut Biomed.2006,2:1-9.
    [155]刘先胜,徐永健,张珍祥,等.蛋白激酶C对大鼠支气管平滑肌K_v通道的影响.生理学报.2003,55:135-141.
    [156]Reinoud G,Johan Z,Mechteld GB,et al.Acetylcholine:a novel regulator of airway smooth muscle remodelling? Eur J Pharmacol.2004,500:193-201.
    [157]Barnes PJ,Chung KF,Page CP.Inflammatory mediators of asthma:an update.Pharmacol Rev.1998,50:515-596.
    [158]Jeffery,P K.Remodeling in asthma and chronic obstructive lung disease.Am J Respir Crit Care Med.2001,164,28S-38S.
    [159]Stewart AG,Bonacci JV,Quan L.Factors controlling airway smooth muscle proliferation in asthma.Curr Allergy Asthma Rep.2004,4:109-115.
    [160]Krymskaya VP,Orsini MJ,Eszterhas AJ,et al.Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle. Am J Respir Cell Mol Biol. 2000, 23: 546-554.
    [161] Gosens R, Nelemans SA, Grootte Bromhaar MM, et al. Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. Am J Respir Cell Mol Biol. 2003, 28: 257-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700