新型除草剂H9201检测技术及环境残留行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然农药对于保障作物的产量具有重要的作用,但农药的安全性问题(环境生态安全及人类健康安全)日益受到人们的关注。H9201是我国南开大学元素有机化学研究所国家重点实验室研发的具有自主知识产权的农用化学品,是少数具有广谱除草活性、水旱田两用的新型有机磷类化合物。作为一种新型除草剂,急需建立其残留分析方法,研究其环境释放后的残留行为,评价其环境友好性及安全性,协助设立最大残留限量值(MRL),以利于评估新型除草剂H9201残留对消费者的身体健康构成威胁的风险。
     1.H9201残留分析ELISA方法的建立
     以三氯硫磷与2,4-二甲基-6-硝基苯酚为原料,合成了带有氨基的O-甲氧基-O-(2,4-二甲基-6-硝基苯氧基)硫代磷酰胺的人工半抗原,并利用琥珀酸酐法对氨基进行改造,合成连接有4碳臂的羧基基团;利用二甲基吡啶(DMAP)催化活性酯法(NHS)使半抗原与载体蛋白进行偶联,紫外扫描和SDS-聚丙烯酰胺凝胶电泳的结果表明已成功合成了免疫和包被所需的人工抗原。人工抗原的偶联比因载体蛋白的不同而有所不同,Hapten-BSA为42.7:1, Hapten-OVA为18.3:1。
     以Hapten-BSA作为免疫原对3只新西兰大白兔免疫注射,获得了抗H9201的特异性抗体,成功地建立了基于多克隆抗体的H9201酶联免疫检测技术。所得血清效价分别为:1/51,200(血清H1600),1/56,000(血清H6000),1/102,400(血清H6600)。经方阵滴定和间接非竞争ELISA确定了血清H1600,H6000和H6600的ELISA工作浓度:包被原稀释度为1/256(Hapten-OVA,4.6μg/mL),血清稀释度为1/6400;抗血清H6000的ELISA的工作浓度:包被原为1/256(Hapten-OVA,4.6μg/mL),血清为1/10,000;抗血清H6600的ELISA工作浓度为:包被原为1/512 (2.3μg/mL),血清为1/18,000。分别为3种血清建立了ELISA检测方法:用血清H1600建立的IC-ELISA,对H9201的抑制中浓度(IC50)为5.8551μg/mL,最低检测浓度为0.2291μg/mL,检测范围为0.6508-38.1422μg/mL;用血清H6000建立的IC-ELISA,对H9201的抑制中浓度(IC50)为3.2765μg/mL,最低检测浓度为0.2007μg/mL;用血清H6600建立的IC-ELISA,对H9201的抑制中浓度(IC50)为1.331μg/mL,最低检测浓度为0.017μg/mL,检测范围为0.0524-20.4135μg/mL。以血清H6600建立的H9201的IC-ELISA分析方法可特异性识别其母体化合物,该抗体对结构类似化合物2,4-二甲基-6-硝基苯酚、硝基苯酚、甲胺磷、甲拌磷、毒死蜱、对硫磷均未有识别作用,微弱识别S-羧乙基-O,O-二甲基二硫代磷酸酯、乐果、马拉硫磷,对半抗原及其结构类似物具有高的识别作用。对田间水样、土壤、胡萝卜、添加样本进行检测,回收率因前处理方法的采用与否而不同,在0.05-5.0mg/Kg的添加浓度范围,回收率范围分别为78.4±2.4%-95.2±3.2%,72.1±4.8%-85.4±5.1%和74.4±4.3%-91.3±4-2%。
     2.H9201残留分析的GC、GC/MS、LC/MS检测方法的建立
     气相色谱法.硫磷检测器(GC/FPD).在优化的气相色谱条件下建立了H9201在水、土壤、植株中的残留检测方法:DB.17毛细管柱(30m×0.53 mm,0.25μm);程序升温:初始柱温箱温度为150℃,保持2 min,以8℃/min升温到250℃,保持12 min;进样口温度:220℃;检测器(FPD)温度:200℃;载气:高纯氮气,60 mL/min;氢气:75 mL/min;空气:100 mL/min,尾吹:40 mL/min;进样:不分流进样,进样量:1μL,出峰保留时间为13.75min。在添加范围为0.05.1.0 mg/kg,方法的回收率分别为:土壤中90.8-98.4%,胡萝卜中89.2-101.8%,水中97.43-100.91%,田水96.37-115.39%。方法的最低检测限分别为:0.01,0.02,0.008,0.02mg/kg。
     气相色谱-质谱法(GC/MS).在气相色谱-质谱法分析方法中,气相色谱部分同上,其中质谱部分的检测条件如下:离子电压为70 eV,离子扫描区间20-450 m/z,离子源温度230℃,GC-MS连接部温度280℃,采用SIM模式进行定量与定性分析,目标离子:318.3,定量离子为272(100,),定性离子为230(32),152(22),定量离子为272(100),氦气作为载气,流量为1.0ml/min,保留时间为11.77 min,在添加范围为0.01-1.0mg/kg,方法的回收率为:胡萝卜98.2±4.5-100.8±5.0%,土壤99.8±3.5-96.8±3.5%,田水98.6±5.4-100.3±5.5%,方法的最低检测限分别为:0.008,0.005,0.005 mg/kg。
     液相色谱-质谱法(LC/IT/MS).液相色谱部分的优化条件为:C18柱(ZORBAX Eclipse 4.6 x 150 mm,3.5μm, Agilent, USA),流动相为80%的乙腈(含0.1%甲酸),20%水(含0.1%甲酸),流量为0.3ml/min。质谱部分的检测条件为:离子阱6300(Agilent, Palo Alto, CA, USA)负离子模式,MRM模式进行定量与定性分析。以23.02mg/L的标准品溶液进行质谱条件优化,出峰保留时间为13.6min,离子317/317,317/248.6,317/165.7及丰度比进行定性定量,吹扫气350℃,流量9 L/min,雾化气压60psi,挥发温度400℃,毛细管电压1200V,在添加范围为0.01-1.0mg/kg,方法的回收率为:胡萝卜89.2±6.8-102.4±4.5%,土壤85.5±3.5-105.4±7.5%,田水92.5±5.4-100.8±6.0%,方法的最低检测限分别为:0.009,0.009,0.007 mg/kg。
     3.H9201残留的环境行为研究
     在不同水体中的水解动态。H9201在不同pH值的水体中的稳定性不同,在pH=7的水溶液中较为稳定,水解规律符合伪一级动力学方程,112天后水解开始进行,半衰期为538.29天。在酸性与碱性的条件下降解较快,水解规律符合一级动力学方程,在pH=5水溶液中的半衰期为276.27天,在pH=9水溶液中的半衰期为224.67天,在田间水体中的降解快于其它三种水体,水解规律符合一级动力学方程,半衰期为197.16天,田水中有机质的含量及生物因素的影响可能是加速其在水中降解的原因。H9201在水中的主要初级水解产物为O-甲基-O-(2,4-二甲基-6-硝基)-N-羟基硫代磷酰胺酯,同时描绘出可能的光解与水解过程。
     在土壤中的残留消解动态。H9201在土壤中的残留动态数据,经不同的模型模拟分析,及不同的统计软件(Microsoft Excel Solver,GraphPad Prism 5.0,)统计分析,发现H9201在土壤中的残留动态同时满足一级动力学方程、一级不连续二期方程和一期指数衰减方程、二期指数衰减方程,经分析表明最为真实反应H9201在土壤中衰减动态为一级不连续二期方程,C=7.0264e-0.0700t1+1.1396e-0.0120t2,其在土壤中的半衰期为9.9天。
     H9201在收获后的植株(胡萝卜)、土壤中的残留水平。试验分析表明收获后的植株(胡萝卜)中的H9201的残留应来源于环境施用后的残留,预示此药剂在植株体内可能具有累积性,且在水溶液环境中较为稳定存在,因而对水生环境生物的负作用应进行深入研究。在胡萝卜、土壤中的残留量分别小于0.02,0.4mg/kg。
Agrochemicals play important roles in modern agriculture; however, concerns about environmental impact of agrochemical and risk to human health have increased. Due to the intellectual property rights, research aiming at the development of enviromental friendly and safely agri-chemicals is increasingly important. H9201 is a new agent for the weed control, which was invented by the State Key Lab of Element-organic Chemistry (Nankai University), and performed broad-spectrum weed control activity under water field and dry field conditions. Hereby, our study focused on the analytical method development and enviromental fate analysis and dissipation pathway profiling of this new agent in order to provide basic information for the evaluation of risk to human health, which will help to determine the maxiam residue limit value (MRL). Our research conducted includes method development (polycolonal antibody development for the ELISA method establishment, GC, GC/MS, and LC/ESI/ITMS analytical method development), and residual dynamics of H9201 in environment after field application. The main results are listed as follows.
     1. Indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) development.
     An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for H9201 determination was developed based on polyclonal antibody, and was employed in the sample analysis.
     Chemical O-methyl-O-(2,4-dimethyl-6-nitrophenoxy)-N-phosphoramide (hapten) was synthesized by thiophosphoryl chloride and 2,4-dimethyl-6-nitrophenol, then succinic anhydride was used to modify amino group with Dimethylamino pyridine (DMAP) catalysising, thereafter conjugated with the carrier proteins bovine serum albumin (BSA) and ovalbumin (OVA) by active ester method (AEM). Final conjugation identified by UV screen and SDS-PAGE, the conjugate ratio of Hapten-BSA is:42.7:1; Hapten-OVA is:18.2:1, respectively.
     Polyclonal antibodies raised against Hapten-BSA were screened and selected for the IC-ELISA. One set of serum from the rabbit H1600 showed an I50 value of 5.8551μg/mL with a detection limit of 0.2291μg/mL at the concentration of H9201 ranged from 0.6508-38.1422μg/mL, and the serum raised from the rabbit H6000 had an I50 value of 3.2765μg/mL with a detection limit of 0.2007μg/mL at the range of H9201 concentration from 0.3204 to 18.0652μg/mL. A sensitive indirect enzyme-linked immunosorbent assay (ELISA) was developed for the detection of new herbicide H-9201 based on the polyclonal antibody H6600 generated in rabbits by immunizing with synthesized hapten. For standard,50% reduction of the maximum ELISA signal (IC50) was 1.331μg/mL, whereas the detection limit was 0.017μg/mL in the competitive standard curve ranged from 0.05μg/mL to 20.0μg/mL, which combination of the concentrations of coating solution and primary antibody was optimized to 1/512 and 1/18 000, respectively. No significant cross-reactivity for related compounds was observed, such as DMNT, p-nitrophenol, Methamidophos, Phorate, Chlorpyrifos, Parathion, the antibody showed negligible cross-reactivity with S-Carboxylethyl-O,O-Dimethyl-phosphorodithioate, dimethoate, malathion, but high cross-reactivity with analogs of hapten. Recovery of H-9201 in environmental water,soil and carrot based on the developed IC-ELISA method with sample previous treatment step was 78.4±2.4%~95.2±3.2%,72.1±4.8%~85.4±5.1%,74.4±4.3%~91.3±4.2%,respectively.
     2. Method development of GC, GC/MS, LC/MS for H9201 residue determination.
     Method Development based on Gas Chromatergraphy with frame photometric detector (FPD). DB-17 (1μm film thickness,30 m length,0.53 mm ID, J&W Scientific, USA) column was used for the analyte analysis, GC work conditions as follows:the inlet temperature was 250℃and the injection was carried out in splitless modle using a 1μL injection volume. For FPD, the detector temperature was 200℃, the initial oven temperature was 150℃, and was maintained for 2 min, the temperature was then increased 8℃/min to 250℃and held for 12 min.The recoveries ranged from 90.8~98.4% in soil matrix,89.2~101.8% in carrot matrix,97.43~100.91% in water,96.37~115.39% in natural pond water, respectively.The limit of detection of method is 0.01 mg/kg in soil,0.02 mg/kg in carrot, and 0.008 mg/kg in tap water,0.02 mg/kg in natural pond water, respectively.
     HP-5MS (0.25μm film thickness,30 m length,0.32 mm ID, J&W Scientific, USA) connected with MS for GC-MS method development. The gas chromatograph settings were the same as described above. The ionization potential of mass selective detector was 70 eV and the scan range was 20-450 m/z, the ion-source temperature 230℃, and the GC-MS interface temperature 280℃. Selected ion monitoring was performed with target ion 318.3, one quantifying ion 272(100), and two qualifying ions 230 (32),152(22) for analysis, Helium was used as the carrier gas at a flow rate of 1.0 mL·min-1. All gases were Ultra-pure. This analytical procedure gave recoveries of 99.8±3.5~96.8±3.5% in soil and 98.2±4.5~100.8±5.0% in carrot,98.6±5.4~100.3±5.5% in natural pond water for a range of spiked H-9201 concentrations from 0.01 to 1.0 mg/kg.The analytical detection limit in soil, carrot, natural pond water was 0.005,0.008 and 0.005 mg/kg, respectively.
     LC/IT/MS method development. Detection was performed with an Agilent 1200 MSD ion-trap 6300 system (Agilent, Palo Alto, CA, USA) operating in the electrospray negative mode. The optimized conditions were as followings:nebulizer gas pressure 60 psi, drying nitrogen gas temperature 350℃, drying nitrogen gas flow 9 L/min, vaporizer temperature 400℃, capillary voltage 1200V, the optimized perimeters were obtained with 23.02 mg/L H9201 standard in methanol, and quantization was monitored as [M-H]-ion. The LC-MS mobile phase consisted of 80% phase A (containing acetonitrile and 0.1% formic acid) and 20% Phase B solvent (containing Deion water and 0.1% formic acid) at flow rate of 0.3ml/min.MRM transitions were selected based upon analysis of pure reference standards. The average abundance ratios between the precursors:product ion transitions were determined,317/317 was compared with 317/248.6 and 317/165.7 to ensure the ratios obtained from the plasma standards can be applied to real cases. The recoveries of 89.2±6.8~102.4±4.5% in carrot and 85.5±3.5~105.4±7.5% in soil, 92.5±5.4~100.8±6.0% in natural pond water were archived at the spiked H-9201 concentrations from 0.01 to 1.0 mg/kg.The analytical detection limit in soil, carrot, natural pond water was 0.009,0.009 and 0.007 mg/kg, respectively.
     3. Dissipation of H9201 in carrot, soil and water after application under field condition.
     Hydrolysis study of H9201 in different pH water solution. The results of the hydrolysis experiments indicate that hydrolysis of H-9201 started during the 112 days of incubation at pH 7, after this period hydrolysis of H-9201 slowed down, which can be described by modified first-order equation also known as pseudo first-order equation, the half-life was 538.29 days. Dissipation followed the first-order kinetic equation at pH 5 and pH 9, and the hydrolysis rate at pH 9 was faster than at pH 5. The inorganic contents of the natural pond water or biological effects may accelerate the degradation and shorten the half-life, which was 197.2 days. An initial metabolite was found and identified as O-methyl-O-(2,4-dimethyl-6- nitrophenoxy)-N-hydroxy phosphoramide, the most likely pathway of H-9201 hydrolysis is outlined.
     Dissipation study of H9201 in soil. The results showed that the representation of herbicide persistence by the first-order discontinuous biphasic model was better than simple first-order kinetics and one, two phase exponential decay model, which derived from Microsoft Excel Solver and GraphPad Prism 5.0, and the degradation of H-9201 slowed down from around 30 days after application. The first-order discontinuous biphasic model had a DT50=9.9 days, the best-fit model for H-9201 was finally found to be the first-order biphasic model, and the endpoints derived from this model were accepted for assessment the fate of H-9201, the equation is C=7.0264e-0.0700t1+ 1.1396e-0.0120t2
     H-9201 residue in post-harvest carrot and in soil. The residue of H-9201 in harvested carrots only came from the environment where the herbicide had been applied before seedling emergence, implying that the residue probably accumulated in carrot via water delivery, since this chemical can persist in the aqueous layer as shown by our hydrolysis study, therefore an environmental impact assessment is needed to determine the bioaccumulation of H-9201 residues in the aqueous environment. The residues of H-9201 present in carrot and soil after application (harvest at 144 days) were less than 0.02 mg/kg in carrot, and less than 0.4 mg/kg in soil.
引文
[1]Abad A, Montoya A. Application of a monoclonal antibody-based ELISA to the determination of carbaryl in apple and grape juices[J]. Analytica Chimica Acta,1995,311(3):365-370.
    [2]Adalberto Menezes Filho, Fabio Neves dos Santos, Pedro Afonso de P. Pereira. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical group in surface and groundwater samples[J]. Microchemical Journal,2010,96(1):139-145.
    [3]Adalberto Menezes Filho, Fabio Neves dos Santos, Pedro Afonso de Paula Pereira. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS)for the determination of pesticid residues in mangoes[J]. Talanta,2010,81(1-2):346-354.
    [4]Adgate J L, Barr D B, Clayton C A, et al. Measurement of children's exposure to pesticides: Analysis of urinary metabolite levels in a probability-based sample[J]. Environmental Health Perspectives,2001,109(6):583-590.
    [5]Adou K, Bontoyan W, Sweny P J. Multiresidue Method for the Analysis of Pesticide Residue in Fruit s and Vegetabales by ASE and Capillary GC[J]. Journal of Agriculture and Food Chemistry,2001,49:4153-4160.
    [6]Adriana F S. Application of solid-phase extraction and micellar electrokinetic capillary chromatography to the study of hydrolytic and photolytic degradation of phenoxy acid and phenylurea herbicides[J]. Journal of Chromatography A,2004, (1024):267-274.
    [7]Afsoon Pajand Birjandi, Araz Bidari, Fatemeh Rezaei, et al. Speciation of butyl and phenyltin compounds using dispersive liquid-liquid microextraction and gas chromatography-flame photometric detection[J]. Journal of Chromatography A,2008,1193(1-2):19-25.
    [8]Aklilu A.Tesfamichael, Jagath J. Kaluarachchi. A methodology to assess the risk of an existing pesticide and potential future pesticides for regulatory decision-making[J]. Environmental Science & Policy,2006,9(3):275-290.
    [9]Alan R. Boobis, Bernadette C. Ossendorp, Ursula Banasiak, et al. Cumulative risk assessment of pesticide residues in food[J]. Toxicology Letters,2008,180(2):137-150.
    [10]Alexandra E. Botchkareva, Fabiana Fini, Sergei Eremin, et al. Development of a heterogeneous chemiluminescent flow Immunoassay for DDT and related compounds Analytica Chimica Acta[J],2002,453(1):43-52.
    [11]Andres Garcia Sanchez, Natividad Ramos Martos, Evaristo Ballesteros. Multiresidue analysis of pesticides in olive oil by gel permeation chromatography followed by gas chromatography-tandem mass-spectrometric determination[J]. Analytica Chimica Acta,2006, 558(1-2):53-61.
    [12]Andrew Craven, Simon Hoy. Pesticide persistence and bound residues in soil- dregulatory significance[J]. Environmental Pollution,2005,133:5-9
    [13]Angelo Antonio D'Archivio, Maria Fanelli, Pietro Mazzeo et al. Comparison of different sorbents for multiresidue solid-phase extraction of 16 pesticides from groundwater coupled with high-performance liquid chromatography[J]. Talanta,2007,71(1):25-30.
    [14]Anna M.L. Lindahl, Mats Soderstrom, Nicholas Jarvis. Influence of input uncertainty on prediction of within-field pesticide leaching risks[J]. Journal of Contaminant Hydrology,2008, 98(3-4):106-114.
    [15]Anna Oubina, Jordi Gascon, Damia Barcelo. Multianalyte effect in the determination of cross-reactivities of pesticide immunoassays in water matrices. Analytica Chimica Acta[J],1997, 347(1-2):121-130.
    [16]Anna Yu. Kolosova, Jung-Hyun Park, Sergei A. Eremin, et al. Comparative study of three immunoassays based on monoclonal antibodies for detection of the pesticide parathion- methyl in real samples[J]. Analytica Chimica Acta,2004,511(2):323-331.
    [17]Anne Kirstine Miiller, Sieto Bosgra, Polly E. Boon, et al. Probabilistic cumulative risk assessment of anti-androgenic pesticides in food[J]. Food and Chemical Toxicology,2009, 47(12):2951-2962.
    [18]Antonio Abad, Angel Montoya. Production of Monoclonal Antibodies for Carbaryl from a Hapten Preserving the Carbamate Group[J]. Journal of Agricultural and Food Chemistry,1994, 42(8):1818-1823.
    [19]Arjen Schots, Jan M. van der Wolf. Green fluorescent protein fluobody immunosensors. Immunofluorescence with GFP-antibody fusion proteins[J]. Methods Mol. Biol,2002,183: 265-273.
    [20]ASTM international. Standard Practice for the Solid Phase Micro Extraction (SPME) of Water and its Headspace for the Analysis of Volatile and Semi-Volatile Organic Compounds[J]. Designation:D,2000,6520-00:1-6.
    [21]Aure'lien Olichon, Thomas Surrey. Selection of Genetically Encoded Fluorescent Single Domain Antibodies Engineered for Efficient Expression in Escherichia coli[J]. Journal Of Biological Chemistry,2007,282(50):36314-36320.
    [22]Bacigalupo M, Meroni G. Quantitative determination of diuron in ground and surface water by time-resolved fluoroimmunoassay Seasonal variations of diuron,carbofuran, and paraquat in an agricultural area[J]. Journal of Agricultural and Food Chemistry,2005,55:3823-3828.
    [23]Barraj L M, Petersen B J, Daniel A S. Background Document for the Sessions:Dietary Exposure Evaluation Model (DEEMTM) and DEEMTM Decopositing Procedure and Software[J]. Novigen Sciences,Inc,2000,3(3):1-62.
    [24]Becky Daiss, Reregistration Branch 4, Health Effect Division. Buprofezin-Revised Acute and Chronic Dietary and Drinking Water Exposure and Risk Assessments. MEMORANDUM, DP#365822, Washington, D.C, United States Environmental Protection Agency[J]. EPA-HQ-OPP-,2009,2008-0589-0005:1-28.
    [25]Belfroid A C, van Drunen M, Beek M A., et al. Relative risks of transformation products of pesticides for aquatic ecosystems[J]. The Science of The Total Environment,1998,222(3): 167-183.
    [26]Belova A.B, Mozhaev V.V, Levashov A.V, et al. Relationship between the physicochemical characteristics of organic solvents and their denaturing capacity towards proteins[J]. Biochemistry (Moscow),1991,56:1357-1373.
    [27]Berger B M, Wolf N L. Hydrolysis and biodegradation of sulfon-ylurea herbicides in aqueous bufers and anaerobic water-sediment systems:assessing fate pathways using molecular descriptors. Environmental Toxicology and Chemistry [J],1996,15:1500-1507.
    [28]Bernard D. Hill, Schaalje G. Bruce. A Two-Compartment Model for the Dissipation of Deltamethrin on Soil. J. Agric[J]. Food Chem,1985,33(5):1001-1006.
    [29]Bernard F. Gibbs, Inteaz Alli, Catherine N. Mulligan. Simple and rapid high- performance liquid chromatographic method for the determination of aspartame and its metabolites in foods[J]. Journal of Chromatography A,1996,725:372-377.
    [30]Beulke S, Brown C. D. Evaluation of methods to derive pesticide degradation parameters for regulatory modelling[J]. Biology and Fertility of Soils,2001,33:558-564.
    [31]Bin Lu, Emmanuel I. Iwuoha, Malcolm R. Smyth, et al. Effects of acetonitrile on horseradish peroxidase (HRP)-anti HRP antibody interaction[J]. Biosensors and Bioelectronics,1997,12(7): 619-625.
    [32]Bloem Thomas, Shah P V, Kelly L, et al. Buprofezin-Human-Health Risk Assessment for the Requested Stone Fruit Registration and the Proposed Amendment for the Grape and Papaya and Related Tropical Fruit Registrations [J]. Memorandum, D327268. Washington, D.C.20406, United States Environmental Protection Agency,2007,1-24.
    [33]Boesten J. J. T. I., Aden K., Beigel C., et al. Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics,2006, Sanco/10058/2005, version 2.0.
    [34]Bollag J, Myers C.J, Minard R.D. Biological and chemical interactions of pesticides with soils [J]. Science of the Total Environment,1992,123/124:205-217.
    [35]Brian B, Henrik B, Johan B, et al. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers [J]. Journal of Chromatography A,2007, 1174(1-2):63-71.
    [36]Bruce A. Tomkins, Ralph H. Ilgner. Determination of atrazine and four organophos-phorus pesticides in ground water using solid phase microextraction (SPME) followed by gas chromatography with selected-ion monitoring[J]. Journal of Chromatography A,2002,972 (2): 183-194.
    [37]Buhler D.D, Randall G.W, Koskinen W.C, et al. Atrazine and alachlor losses from subsurface tile drainage of a clay loam soil[J]. J. Environ. Qual,1993,22:583-588.
    [38]Butler J H, Rodriguez J M. Methyl Bromide in the Atmosphere. In The Methyl Bromide Issue. Bell C H, Price N, Chakrabarti B Eds[J]. England, Wiley:West Sussex,1996,1:27-90.
    [39]Carla Soler, Jordi Manes, Yolanda Pico. Comparison of liquid chromatography using triple quadrupole and quadrupole ion trap mass analyzers to determine pesticide residues in oranges [J]. Journal of Chromatography A,2005,1067(1-2):115-125.
    [40]Carla Soler, Jordi Manes, Yolanda Pico. Determination of carbosulfan and its metabolites in oranges by liquid chromatography ion-trap triple-stage mass spectrometry[J]. Journal of Chromatography A,2006,1109(2):228-241.
    [41]Catherine L. Arthur, Janusz Pawliszyn. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry,1990,62(19):2145-2148.
    [42]Catherine L. Arthur, Lisa M. Killam, Karen D. Buchholz, et al. Automation and optimization of solid-phase microextraction[J]. Analytical Chemistry,1992,64(17):1960-1966.
    [43]Cavieres M F, Jaeger J, Porter W. Developmental toxicity of a commercial herbicide mixture in mice:Effects on embryo implantation and fitter size[J]. Environ Health Perspectives,2002,110: 1081-1085.
    [44]Chard T. An introduction to radioimmunoassay and related techniques(4th Revised Edition) [J]. Amsterdam, North-Holland Publishing Company,1990
    [45]Chen Wenfeng, J. Z, Chen Jinmei, et al. High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating [J]. Journal of Chromatography A,2009,1216 (52):9143-9148.
    [46]Cho Young Ae, Seok Jin-Ah, Lee Hye-Sung et al. Synthesis of haptens of organophosphorus pesticides and development of immunoassays for fenitrothion[J]. Analytica Chimica Acta,2004, 522(2):215-222.
    [47]Christine Wittmann, Bertold Hock. Application and performance characteristics of a novel ELISA for the quantitative analysis of the atrazine metabolite deethylatrazine[J]. Journal of Agricultural and Food Chemistry,1993,41(10):1795-1799.
    [48]Cochran R C. Risk Assessment for Acute Exposure to Pesticides[J]. Handbook of Pesticide Toxicology (Second Edition),2001,691-705.
    [49]Corey D R, Shiau A K, Yang Q, et al. Trypsin display on the surface of bacteriophage[J]. Gene, 1993,128:129-134.
    [50]Corry B, Uilk J, Crawley C. Probing direct binding affinity in electro-chemical antibody- based sensors[J]. Anal Chim Acta,2003,496:103-116.
    [51]Corwin H, Toshio F. Additions and Corrections -ρ-α-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure[J]. J. Am. Chem. Soc,1964,86(24):5710-5710.
    [52]Corwin H, Edna W. D. The use of substituent constants in the study of structure-activity relation in cholinesterase inhibitors [J]. Biochim Biophys Acta,1966,112(1):381.
    [53]Cristina Blasco, Guillermina Font, Yolanda Pico. Multiple-stage mass spectrometric analysis of six pesticides in oranges by liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry[J]. Journal of Chromatography A,2004,1043(2): 231-238.
    [54]Cristina Nerin, Ramon Batlle, Juan Cacho. Determination of pesticides in high-water- content samples by off-line supercritical fluid extraction-gas chromatography-electron-capture detection[J]. Journal of Chromatography A,1998,795(1):117-124.
    [55]Cutchin W, Alternative Risk Integration Assessment Team (ARIA), Risk Integration Minor Use and Emergency Response Branch (RIMUERB), Registration Division (RD) (7505P). Amended. Imidacloprid. Human Health Risk Assessment. Section 3 Requests for Uses on Peanut, Proso Millet, Pearl Millet, Oat, Kava, Globe Artichoke,Caneberries, Wild Raspberry, and Soybeans[R]. Memorandum. Washington, D.C:United States Environmental Protection Agency,2007:1-82.
    [56]Dan Staerk, Julie R. Kesting, Majid Sairafianpour, et al. Accelerated dereplication of crude extracts using HPLC-PDA- MS-SPE-NMR:Quinolinone alkaloids of Haplophyllum acutifolium[J]. Phytochemistry,2009,70(8):1055-1061.
    [57]Daura Vega Moreno, Zoraida Sosa Ferrera, Jose Juan Santana Rodriguez. SPME and SPE comparative study for coupling with microwave-assisted micellar extraction in the analysis of organochlorine pesticides residues in seaweed samples, [J] Microchemical Journal,2007,87(2): 139-146.
    [58]Davide Calamari, Luoping Zhang. Environmental risk assessment of pesticides on aquatic life in Xiamen, China[J]. Toxicology Letters,2002,128(1-3):45-53.
    [59]Debra Edwards, Special Review and Reregistration Division, Office of Pesticide Programs. Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the Organophosphate pesticides, and Completion of the Tolerance Reassessment and Reregistration Eligibility Process for the Organophosphate Pesticides[R]. Memorandum. Washington D.C, United States Environmental Protection Agency,2006,1-235.
    [60]De la Colina C, Baez M.E., Pena A., et al. Simultane- ous determination of various pesticides in water by solid-phase extraction/HPLC with photodiode array detection Science of The Total Environment[J],1994,153(1-2):1-6.
    [61]Diana I. Kolberg, Osmar D. Prestes, Martha B. Adaime, et al. Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC-MS[J]. Food Chemistry In Press, Accepted Manuscript, Available online 14 October 2010.
    [62]Du B, Li X C, Liu H. Determination of organochlorine pesticide residues in herbs by capillary gas chromatography[J]. Life Science Journal,2007,4(1):40-42.
    [63]Du Dan,Chen Shizhen,Cai Jie,et al. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface[J]. Talanta,2008,74(4):766-772.
    [64]Du Dan, Huang Xi, Cai Jie, et al. Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor[J]. Biosensors and Bioelectronics,2007,23(2):285-289.
    [65]Diamandis E P, Christopoulos T K. The biotin-(strept)avidin system:principles and applications in biotechnology[J]. Clinical Chemistry,1991,37(5):625-636.
    [66]Edwar F, Maria E. B, Ronnie L. Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil[J]. Journal of Chromatography A,2007, 1169(1-2):40-46.
    [67]Eiji Ishikawa, Seiichi Hashida,Takeyuki Kohno,et al. Ultrasensitive enzyme immunoassay[J]. Clinica Chimica Acta,1990,194(1):51-72.
    [68]Eiji Matsukuma, Zenichiro Kato, Kentaro Omoya,et al. Development of Fluorescence-Linked Immunosorbent Assay for high Throughput Screeening of Interferon-y[J]. Allergology International,2006,55(1):49-54.
    [69]Elham Zeini Jahromi, Araz Bidari, Yaghoub Assadi, et al. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry:Ultra trace determination of cadmium in water samples[J]. Analytica Chimica Acta,2007,585(2):305-311.
    [70]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346(6287):818-822.
    [71]EPA's Office of Pesticide Programs [J]. EPA's Risk Assessment Process For Tolerance Reassessment, Staff Paper #44,1999
    [72]European Communities. Technical Guidance Document on Risk Assessment. Commission Directive 93/67/EEC on Risk Assessment for new notified substances,Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances,Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market[J]. Italy, Institute for Health and Consumer Protection,2003
    [73]Evangelos C. T, Sjef B, Vassiliki E, et al. Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS[J]. Phytochemistry,2007,68(3):383-393.
    [74]Ahmadi F, Assadi Y., Milani Hosseini S.M.R., et al. Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector[J]. Journal of Chromatography A,2006,1101(1-2):307-312.
    [75]Fabbri D, Bianco P. A, Zelano V, et al. Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis[J]. Chemosphere,2008, 71:59-65.
    [76]Fabrice G. R, Pat H. B, Colin D. B. Simulating pesticides in ditches to assess ecological risk (SPIDER):I. Model description[J]. Science of the Total Environment,2008,394(1):112-123.
    [77]Wang F, Bian Y, Jiang X, et al. Residual Characteristics of Organochlorine Pesticides in Lou Soils with Different Fertilization Modes[J]. Pedosphere,2006,16(2):161-168.
    [78]Farran A, Ruiz S. Application of solid-phase extraction and micellar electrokinetic capillary chromatography to the study of hydrolytic and photolytic degradation of phenoxy acid and phenylurea herbicides[J]. Journal of Chromatography A,2004,1024:267-274.
    [79]Fed.Regist. Protection of Stratospheric Ozone:Incorporation of Montreal Protocol Adjustment for a 1999 Interim Reduction in Class I, Group IV[J].Controlled Substances,1999,64: 29240-29245.
    [80]Feng K, Yu B Y, Ge D M, et al. Organo-chlorine pesticide(DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system I.Field survey of DDT and HCH residues in ecosystem of the region[J]. Chemosphere,2003,50:683-687.
    [81]Ferriery H, Nieuwenhuijseny M, Boobis A, et al. Current knowledge and recent developments in consumer exposure assessment of pesticides:A UK perspective[J]. Food Additives and Contaminants:Part A,2002,19, (9):837-852.
    [82]Fillion J, Sauve F, Selwyn J. Multiresidue Method for the Determination of Residues of 251 Pesticides in Fruits and Vegetables by Gas Chromatography/Mass Spectrometry and Liquid Chromatography with Fluorescence Detection[J]. Journal of AOAC International,2000,83(3): 698-713.
    [83]Gao Baojiao, Wang Jian, An Fuqiang, et al. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarbArticle[J]. Polymer,2008, 49(5):1230-1238.
    [84]Gao Z X, Liu N, Cao Q L, et al. Immunochip for the detection of five kinds of chemicals:atrazine,nonylphenol,17-beta estradiol, paraverine and chloramphenico[J]. Biosens Bioelectron,2009,24(1):1445-1450
    [85]Garrido-Frenich A, Romero-Gonzalez R., Martinez-Vidal JL, et al. Characterization of recovery profiles using gas chromatography-triple quadrupole mass spectrometry for the determination of pesticide residues in meat samples[J]. Journal of Chromatography A,2006,1133(1-2):315-321.
    [86]Gehring P J, Nolan R J, Watanabe P G, et al. Handbook of Pesticide Toxicology [J]. Academic: San Diego, CA,1991,2:668-671.
    [87]Giacomo Dugo, Giuseppa Di Bella, Loredana La Torre, et al. Rapid GC-FPD determination of organophosphorus pesticide residues in Sicilian and Apulian olive oil Food Control,2005,16(5): 435-438.
    [88]Giraudi G, Baggiano C. Solvent effect on testosterone-antitestosterone interaction[J]. Biochimica et Biophysica Acta,1993,1157:211-216.
    [89]Goodrow M H, Hammock B D. Hapten design for compound-selective antibodies:ELISAS for environmentally deleterious small molecules[J]. Anal. Chim. Acta,1998,376:83-91.
    [90]Goodrow M H, Wortberg M, Sugawara Y. Poster at 211th American Chemical Society National Meeting [J]. New Orleans, LA,1996, March,24-28
    [91]Gopinath SC. Methods developed for SELEX [J]. Analytical and Bioanalytical Chemistry,2007, 387(1):171-182.
    [92]Griep RA, Van Twisk C, Van der Wolf JM, et al. Fluobodies:green fluorescent single-chain Fv fusion proteins[J]. J. Immunol. Methods,1999,230:121-130.
    [93]Grover R, Wolt J. D, Cessna A. J, et al. Environmental fate of trifluralin[J]. Reviews of Environment Contamination and Toxicology,1997,153:1-64.
    [94]Halman M, Velan B, Sery T. Rapid identification and quantitation of small numbers of microorganisms by a chemiluminescent immunoreaction[J]. Applied and Environmental Microbiology,1977,34:473-477.
    [95]Hao Chunyan, Zhao Xiaoming, Yang Paul. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices[J]. TrAC Trends in Analytical Chemistry,2007,26(6):569-580.
    [96]Hao Hongtao, Sun Bo, Zhao Zhenhua. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils[J]. Environmental Pollution,2008,156(3): 1046-1052.
    [97]Hass J H, Guardia E J. Production of antibodies against insecticide-protein conjugates[J]. Proc.Soc. Exp. Bio. Med,1968,129:546-551.
    [98]Hitch R K. EPA Guidelines:Hydrolysis Studies, Pesticide Assessment Guidelines,Subdivision N, Chemistry:Environmental Fate 161-1 [J]. EPA, National Technical Service Information, 1982,44-46.
    [99]Hong Sung-Yong, Linz John E. Functional Expression and Subcelluar Localization of the Aflatoxin Pathway Enzyme Ver-1 Fused to Enhanced Green Fluorescent Protein[J]. Applied and Environmental Microbiology,2008,74(20):6385-6396.
    [100]Howard H Weetall. Antibodies in water immiscible solvents immobilized antibodies in hexane [J]. Journal of Immunological Methods,1991,136(1):139-142.
    [101]Hsiao-chung Tsai, Ruey-an Doong. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor[J]. Biosensors and Bioelectronics, 2005,20(9):1796-1804.
    [102]Huang C H, Stone A T. Synergistic Catalysis of Dimetilan Hydrolysis by Metal Ions and Organic Ligands[J]. Environ Sci Technol,2000,34(19):4117-4122.
    [103]Huang W, Schlautman M.A, Weber Jr, et al. A distributed reactivity model for sorption by soils and sediemnts 5:The influence of near-surface characteristics in mineral domains[J]. Environmental Science Technology,1996,30:2993-3000.
    [104]Huang Zhiqiang, Li Yongjun, Chen Bo, et al. Simultaneous determination of 102 pesticide residues in Chinese teas by gas chromatography-mass spectrometry[J]. Journal of Chromatography B,2007,853(1-2):154-162.
    [105]Huls GA, Heijnen IA, Cuomo ME, et al. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments[J]. Nat. Biotechnol, 1999,17(276-281).
    [106]Hyotylainen T, K.L.u, Rautiainen-Rama M., et al. Determination of pesticides in red wines with on-line coupled microporous membrane liquid-liquid extraction-gas chromatography[J]. Journal of Chromatography A,2004,1056:267-271.
    [107]Imma F, Amadeo F-A, Jerry A. Z, et al. Exact-mass library for pesticides using a molecular-feature database[J]. Rapid Communications in Mass Spectrometry,2006,20(24): 3659-3688.
    [108]Ionara R. Pizzutti, Andre de Kok, Renato Zanella, et al. Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography-tandem mass spectrometry using positive an dnegtive electrospray ionization[J]. Journal of Chromatography A,2007,1142(2):123-136.
    [109]Jackie Maud, Gareth Edwards-Jones, Fraser Quin. Comparative evaluation of pesticide risk indices for policy development and assessment in the United Kingdom[J]. Agriculture, Ecosystems & Environment,2001,86(1):59-73.
    [110]Jacob D. van Klaveren, Polly E. Boon. Probabilistic risk assessment of dietary exposure to single and multiple pesticide residues or contaminants:Summary of the work performed within the safe foods project[J]. Food and Chemical Toxicology,2009,47, (12):2879-2882.
    [111]Jaroslav Pol, Tuulia Hyotylainen, Outi Ranta-Aho, et al. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation[J]. Journal of Chromatography A,2004,1052(1-2):25-31.
    [112]Jasna Dmitrovic, Siu C. Chan, Sylvia H. Y. Chan. Analysis of pesticides and PCB congeners in serum by GC/MS with SPE sample cleanup[J]. Toxicology Letters,2002,134(1-3):253-258.
    [113]Jean Marc Schlaeppi, Hans Moser, Klaus Ramsteiner. Determination of metolachlor by competitive enzyme immunoassay using a specific monoclonal antibody[J]. Journal of Agricultural and Food Chemistry,1991,39(8):1533-1536.
    [114]Jeannette Klein, Lutz Alder. Applicability of Gradient Liquid Chromatography with Tandem Mass Spectrometry to the Simultaneous Screening for About 100 Pesticides in Crops[J]. Journal of AOAC International,2003,83(5):1015-1037.
    [115]Jeffre C. Johnson, Jeanette M. Van Emon, Diane R. Pullman, et al. Development and Evaluation of Antisera for Detection of the O, O-Diethyl Phosphorothionate and Phosphorothionothiolate Organophosphorus Pesticides by Immunoassay. J. Agric [J]. Food Chem,1998,46:3116-3123.
    [116]Jendins A L, Yin R, Jensen J L. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst,2001,126:798-802.
    [117]Joanne L. Casey, Andrew M. Coley, Leann M. Tilley, et al. Green fluorescent antibodies:novel in vitro tools[J]. Protein Eng,2000,13:445-452.
    [118]Jones KC, Voogt Pde. Persistent organic Pollutant(POPS):state of the science[J]. Environmental Pollution,1999,100:209-221.
    [119]Jordi Gascon, Anna Oubina, Damia Barcelo. Detection of endocrine-disrupting pesticides by enzyme-linked immunosorbent assay (ELISA) [J]:application to atrazine TrAC Trends in Analytical Chemistry,1997,16(10):554-562.
    [120]Jourdan PS, Weiler EW, Mansell RL. Radioimmunoassay for naringin and related flavanore 7-neohesperidosides using a tritiated tracer[J].Agric Food and Chem,1983,31:1249.
    [121]Jourdan S.W., Scutellaro A.M., Hayes M.C., et al. Immunoassays for Residue Analysis:Food Safety [J]. Washington, ACS.1996
    [122]Jozef Tekel', Soa Tahotna, tefania Vaverkova. Gas chromatographic method for determination of uracil herbicides in roots of Echinacea angustifolia Moench (Asteraceae) Journal of Pharmaceutical and Biomedical Analysis,1998,16(5):753-758.
    [123]Juan F. Garcia-Reyes, M. Dolores Hernando, Antonio Molina-Diaz, et al. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS[J]. TrAC Trends in Analytical Chemistry,2007,26(8):828-841.
    [124]Juan F. Garcia-Reyes, M. Dolores Hernando, Carmen Ferrer, et al. Large Scale Pesticide Multiresidue Methods in Food Combining Liquid Chromatography-Time-of -Flight Mass Spectrometry and Tandem Mass Spectrometry[J]. Analytical Chemistry,2007,79(19): 7308-7323.
    [125]Jun Xiong, Bin Hu. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmnetal and beverage samples by gas chromatoraphy with flame photometric detection[J]. Journal of Chromatography A,2008,1193(1-2):7-18.
    [126]Jung F, Gee S J, Harrison R O, et al. Use of immunochemical techniques for the analysis of pesticides Pestic. Sci,1989,26:303-317.
    [127]Kamilah Hylton, Somenath Mitra. Barrier film protected, and mixed solvent optimized micro-scale membrane extraction of methyl carbamate pesticides[J]. Journal of Chromatography A,2007,1154:60-65.
    [128]Kammerer Bernd, Kahlich Rainer, ufer Mike, et al. Achiral-chiral LC/LC-MS/MS coupling for determination of chiral discrimination effects in phenprocoumon metabolism[J]. Aalytical Biochemistry,2005,333(2):297-309.
    [129]Karickho S.W. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils[J]. Chemosphere,1981,10:833-846.
    [130]Katan Patel, Richard J. Fussell, Roy Macarthur, et al. Method validation of resistive heating-gas chromatography with flame photometric detection for the rapid screening of organophosphorus pesticides in fruit and vegetables[J]. Journal of Chromatography A,2004,1046(1-2):225-234.
    [131]Kathleen C. Raffaele, Jess Rowland, Brenda May, et al. The use of developmental neurotoxicity data in pesticide risk assessments[J]. Neurotoxicology and Teratology:in process,2010
    [132]Kaufman B M, Clower M. Immunoassay of pesticides:an update J. AOAC. Int,1995,78(4): 1079-1090.
    [133]Kaushik Banerjee, Dasharath P. Oulkar, Soma Dasgupta, et al. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2007, 1173(1-2):98-109.
    [134]Kerstin Greulich, Lutz Alder. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS[J]. Analytical and Bioanalytical Chemistry,2008,391(1):183-197.
    [135]Kevin N. T. Norman, Sean H. W. Panton. Supercritical fluid extraction and quantitative determination of organophosphorus pesticide residues in wheat and maize using gas chromatography with flame photometric and mass spectrometric detection[J]. Journal of Chromatography A,2001,907(1-2):247-255.
    [136]Khan S U. Kinetics of hydrolysis of atrazine in aqueous fulvic acid solution[J]. Pestic. Sci,1978, 9:39-43.
    [137]Kim Hee-Joo, Shelver Weilin L., Li Qing X. Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid[J]. Analytica Chimica Acta,2004,509(1): 111-118.
    [138]Kim H.J, Shelver W.L, Hwang E.C. Automated flow fluorescent immunoassay for pat pertrillion detection of the neonicotinoid insecticide thiamethoxam[J]. Analytica Chimica Acta, 2006,571:66-73.
    [139]Kim IS, Shim JH, Suh YT, et al. Green fluorescent protein-labeled recombinant fluobody for detecting the picloram herbicide[J]. Biosci Biotechnol Biochem,2002,66:1148-1151.
    [140]Kim Y J, Cho Y A, Lee H S, et al. Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity[J]. Anal. Chim. Acta,2003,475(1-2):85-96.
    [141]Kiss A, Rap S, Csutoras Cs. GC/MS studies on revealing products and reaction mechanism of photodegradation of pesticides [J]. Microchemical Journal,2007,85(1):13-20.
    [142]Kiyokatsu Jinno, Takayoshi Muramatsu, Yoshihiro Saito, et al. Analysis of pesticides in environmental water samples by solid-phase micro-extraction-high-performace liquid chromatography[J]. Journal of Chromatography A,1996,754(1-2):137-144.
    [143]Kmellar B, Fodor P, Pareja L, et al. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2008,1215(1-2):37-50.
    [144]Krogh-Meibom T, Holmskov U, Lφvendahl P, et al. A time-resolved immunofluorometric assay for quantification of collectin-43[J]. Journal of Immunological Methods,2004,295(1-2): 161-167.
    [145]Lauzon S. de, Rajkowski K.M., Cittanova N. Investigation of a 17β-estradiol-monoclonal antiestradiol antibody binding mechanism using dilute solutions of organic solvents[J]. Journal of Steroid Biochemistry and Molecular Biology,1994,48(2-3):225-233.
    [146]Lee JM, Park JW, Jang GC, et al. Comparative study of pesticide multi-residue extraction in tobacco for gas chromatography-triple quadrupole mass spectrometry[J]. Journal of Chromatography A,2008,1187:25-33.
    [147]Lee Kim-Chung, Wu Jian-Lin, Cai Zongwei. Determination of malachite green and leucomalachite green in edible goldfish muscle by liquid chromatography-ion trap mass spectrometry[J]. Journal of chromatography B,2006,843(2):247-251.
    [148]Lee S M, Philip L Wylie. Comparison of the atomic emission detector to other element-selective detectors for the gas chromatographic analysis of pesticide residues[J]. Journal of Agricultural and Food Chemistry,1991,39:2192-2199.
    [149]Lehotay SJ, Mastovska K, Yun SJ. Evaluation of Two Fast and Easy Methods for Pesticide Residue Analysis in Fatty Food Matrixes[J]. Journal of AOAC International,2005,88(2): 630-638.
    [150]Li Bo, Shi Hai-Yan, Wang Ming-Hua. An Enzyme-linked Immunosorbent Assay for the Detection of Bifenthrin Chinese [J]. Journal of Analytical Chemistry,2008,36(1):34-38.
    [151]Li Quanlong, X. W, Yuan Dongxing. Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples[J]. Journal of Chromatography A,2009,1216(9): 1305-1311
    [152]Lin S, Han S, Liu Y, et al. Chemiluminescence immunoassay for chloramphenicol[J]. Analytical and Bioanalytical Chemistry,2005,382:1250-1255.
    [153]Lin Tsao-Jen, Huang Kuang-Tse, Liu Chia-Yu. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance[J]. Biosensors and Bioelectronics,2006,22(4):513-518.
    [154]Linskens HF, Jackson JK. immunology in Plants Science[J]. Germany, Springer-Verlag,1988
    [155]Lionel Spack, Cristina Alvarez, Jean M. F. Martins, et al. Comparison of supercritical fluid extraction (SFE), Soxhlet and shaking methods for pendimethalin extraction from soils:effect of soil properties and water content[J]. Journal of Contaminant Hydrology,1998,33(1-2): 171-185.
    [156]Liu B, McConnell L L, Torrents A. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay Chemosphere[J],2001,44(6):1315-1323.
    [157]Liu Yan, Lou Yang, Xu Dan, et al. Production and characterization of monoclonal antibody for class-specific determination of O,O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity[J]. Microchemical Journal,2009, 93(1):36-42.
    [158]Liu Yan, Srinivasan Kannan, Pohl Chris, et al. Recent developments in electrolytic devices for ion chromatography [J]. Journal of Biochemical and Biophysical Methods,2004,60(3): 205-232.
    [159]Loaguea K, Green R. E. Statistical and graphical methods for evaluating solute transport models: Overview and application[J]. Journal of Contaminant Hydrology,1991,7(1-2):51-73.
    [160]Lopez-Feria S, Cardenas S., Valcarcel M. One step carbon nanotubes-based solid-phase extraction for the gas chromatographic-mass spectrometric multiclass pesticide control in virgin olive oils [J]. Journal of Chromatography A,2009,1216(43):7346-7350.
    [161]Lu Y, Gong Z. T, Zhang G L, et al. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China[J]. Geoderma,2003,115:101-111.
    [162]Luo Y. Z, Zhang M. H. Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California[J]. Chemosphere,2009,75(7): 969-978.
    [163]Lurdes I.B. Silva, Filipe D.P. Ferreira, Teresa A.P. Rocha-Santos, et al. Carbon nanotube field-effect transistor detector associated to gas chromatography for speciation of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene[J]. Journal of Chromatography A,2009,1216(37): 6517-6521.
    [164]Ma Q. L, Rahman A, Holland P T, et al. Field dissipation of acetochlor in two New Zealand soils at two application rates[J]. Journal of Environment Quality,2004,33:930-938.
    [165]Macdonald RW, Barrie LA, Bidleman TF. Contaminants in the Canadian Arctic:5 years of Progress in understanding sources, occurrence and Pathways[J].The science of the Total Environment,2000,264:93-234.
    [166]Magdalena Surma-Zadora, Adam Grochowalski. Using a membrane technique (SPM) for high fat food sample preparation in the determination of chlorinated persistent organic pollutants by a GC/ECD method[J]. Food Chemistry,2008,111(1):230-235.
    [167]Magliulo M, Mirasoli M, Simoni P, et al. Development and Validation of an Ultrasensitive Chemiluminescent Enzyme Immunoassay for Aflatoxin M1 in Milk[J]. Journal of Agricultural and Food Chemistry,2005,53:3300-3305.
    [168]Manuela Schellin, Barbara Hauser, Peter Popp. Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection-gas chromatography-mass spectrometric detection[J]. Journal of Chromatography A,:2004,1040: 251-258.
    [169]Manuela van Pinxteren (nee Schellin), Coretta Bauer, Peter Popp. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water:A comarison between membrane-assisted solvent extraction and solid phase extraction[J]. Journal of Chromatography A,2009,1216:5800-5806.
    [170]Maria Geovania Dantas Silva, Adriano Aquino, Haroldo Silveira Dorea, et al. Simultaneous determination of eight pesticide residues in coconut using MSPD and GC/MS[J]. Talanta,2008, 76(3):680-684.
    [171]Marja E. Koivunen, Roel Vermeulen K. D, Berit Bakke, et al. Hammock. Improved methods for urinary atrazine mercapturate analysis-Assessment of an enzyme-linked immunosorbent assay(ELISA)and a novel liquid chromatography-mass spectrometry(LC-MS) method utilizing online solid phase extraction(SPE) [J]. Analytica Chimica Acta,2006,572(2):180-189.
    [172]Mark N. Bobrow, Krista J. Shaughnessy, Gerald J. Litt. Catalyzed reporter deposition, a novel method of signal amplification:Ⅱ. Application to membrane immunoassays[J]. Journal of Immunological Methods,1991,137(1):103-112.
    [173]Martin Vanderlaan, Bruce E. Watkins, Larry Stanker. ES&T Critical Review:Environmental monitoring by immunoassay [J]. Environ. Sci. Technol,1988,22(3):247-254.
    [174]Mascini M. Aptamers and their applications Analytical and Bioanalytical Chemistry[J].2008, 390(4):987-988.
    [175]Maurice Hiemstra, Andre de Kok. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2007,1154(1-2):3-25.
    [176]McCafferty J, Jackson RH, Chiswell DJ. Phage enzymes:expression and affinity chromatography of functional alkaline phosphatase on the surface of bacteriophage[J]. Prot. Eng,1991,4(955-961).
    [177]McCauley S.E, Goldstein A.H, DePaolo D. J. An isotopic approach for understanding the CH Br budget of the atmosphere[J]. Proc. Natl. Acad. Sci.USA,1999,96:10006-10009.
    [178]Miao Lingni, Cai Wensheng, Shao Xueguang. Rapid analysis of multicomponent pesticide mixture by GC-MS with the aid of chemometric resolution [J]. Talanta:In press, Corrected Proof,2010.
    [179]Michael Fryer, Chris D. Collins, Helen Ferrier, et al. Human exposure modeling for chemical risk assessment:a review of current approaches and research and policy implications[J]. Environmental science&policy,2006,9:261-274.
    [180]Michele Y Selisker, David P Herzog, Roger D Erber, et al. Itak. Determination of Paraquat in Fruits and Vegetables By a Magnetic Particle Based Enzyme-Linked Immunosorbent Assay[J]. Journal of Agricultural and Food Chemistry,1995,43(2):544-547.
    [181]Mieke De Schampheleire, Pieter Spanoghe, Eva Brusselman, et al. Risk assessment of pesticide spray drift damage in Belgium[J]. Crop Protection,2007,26(4):602-611.
    [182]Miguel Gamon, Concha Lleo, Amparo Ten, et al. Multiresidue Determination of Pesticides in Fruit and Vegetables by Gas Chromatography/Tandem Mass Spectrometry[J]. Journal of AOAC International,2001,84(4):1209-1216.
    [183]Milagros Mezcua, Octavio Malato, Juan F. Garca-Reyes, et al. Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Chromatography Time-of-Flight Mass Spectrometry[J]. Analytical Chemistry,2009,81(3):913-929.
    [184]Mohamad Ibrahim MN, Sipaut CS, Mohamad Yusof N.N. Purification of vanillin by a molecular imprinting polymer technique[J]. Separation and Purification Technology,2009, 66(3):450-456.
    [185]Mohamed H. EL-Saeid, Saleh A. AL-Dosari. Monitoring of pesticide residues in Riyadh dates by SFE, MSE, SFC, and GC techniques Arabian[J]. Journal of Chemistry,2010,3(3):179-186.
    [186]Mohammad Rezaee, Yaghoub Assadi, Mohammad-Reza Milani Hosseini, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A,2006,1116(1/2):1-9.
    [187]Morrica P,Barbato F,Iacovo R D, et al. Kinetics and mechanism of imazosulfuron hydrolysis[J]. Journal of Agricultural and Food Chemistry,2001,49:3816-3820.
    [188]Mostafa I.Y, Zayed S.M, Adam Y.M, et al. Investigations on trifluralin binding to soil and possible uptake of bound residues by plants[J]. Journal of Environmental Science Health B, 1982,17(3):265-275.
    [189]Nathalie Mionetto, Jean-Louis Marty, Isao Karube. Acetylcholinesterase in organic solvents for the detection of pesticides:Biosensor application[J]. Biosensors and Bioelectronics,1994,9(6): 463-470.
    [190]Nathalie Sauret-Szczepanski, Philippe Mirabel, Henri Wortham. Development of an SPME-GC-MS method for the determination of pesticides in rainwater:Laboratory and field experiments[J]. Environmental Pollution,2006,139(1):133-142.
    [191]Navas Diaz A, Garcia Sanchez F, Lovillo J, et al. Enhanced chemiluminescence kinetic ELISA of dichlorprop methyl ester Analytica Chimica Acta[J].1996,321(2-3):219-224.
    [192]Nishikawa Y. Supercritical fluid chromatographic separation of organophosphorus pesticides on packed columns and capillary columns[J]. Analytical Sciences,1992,8(5):681-686.
    [193]Niu X X, Dong J B, Du H L. Climatic Analysis on Typhoon Rainfall Of East China and Affecting Factors of the Precipitation June[J]. Applied Meteorological Science,2005,16(3): 402-407.
    [194]Oelschlaeger P, Srikant-Iyer S, Lange S, et al. Fluorophor-linked immunosorbent assay:a time and cost-saving method for the characterization of antibody fragments using a fusion protein of a single-chain antibody fragment and enhanced green fluorescent protein[J]. Analytical Biochemistry,2002,309:27-34.
    [195]Ole Bjeld Hφrning, Soren Theodorsen, Ole Vorm, et al. Solid phase extraction-liquid chromatography (SPE-LC) interface for automated peptide separation and identification by tandem mass spectrometry[J]. International Journal of Mass Spectrometry,2007,268(2-3): 147-157.
    [196]Ornthida Sae-Khow, Somenath Mitra. Carbon nanotubes as the sorbent for integrating μ-solid phase extraction within the needle of a syringe[J]. Journal of Chromatography A,2009, 1216(12):2270-2274.
    [197]Pang Guo-Fang, Cao Yan-Zhong, Zhang Jin-Jie, et al. Validation study on 660 pesticide residues in animal tissues by gel permeation chromatography cleanup/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2006,1125(1):1-30.
    [198]Pang Guo-Fang, Liu Yong-Ming, Fan Chun-Lin, et al. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry[J]. Anal. Bioanal. Chem, 2006,384:1366-1408.
    [199]Paul Salm, Paul J. Taylor, Darren Roberts, et al. Liquid chromatography-tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate,fenthion,diazinon and chlorpyrifos in human blood[J]. Journal of Chromatography B,2009,877(5-6):568-574.
    [200]Pearce K L, Trenerry V C, Were S. Supercritical fluid extraction of pesticide residues from strawberries[J]. Journal of Agricultural Food Chemistry,1997,45(1):153-157.
    [201]Perdue E M, Wolfe N L. Modification of pollutant hydrolysis kinetics in the presence of humic substances[J]. Environ Sci Technol,1982,16(12):847.
    [202]Pere Boadas-Vaello, Eric Jover, Jordi Llorens, et al. Determination of cyanide and volatile alkylnitriles in whole blood by headspace solid-phase microextraction and gas chromatography with nitrogen phosphorus detection[J]. Journal of Chromatography B,2008,870(1):17-21.
    [203]Pereira W. E, Rostad C. E, Leiker T. J. Distribution of agrochemicals in the lower Mississippi river and its tributaries [J]. The Science of the Total Environment,1990,97(98):41-53.
    [204]Peter Popp, Karsten Kalbitz, Gudrun Oppermann. Application of solid-phase microextraction and gas chromatography with electron-capture and mass spectrometric detection for the determination of hexachlorocyclohexanes in soil solutions[J]. Journal of Chromatography A, 1994,687(1):133-140.
    [205]Peter T J, Paul H. D, Jefferson F, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature,1986,321(6069):522-525.
    [206]Petr Skladal. Effect of methanol on the interaction of monoclonal antibody with free and immobilized atrazine studied using the resonant mirror-based biosensor[J]. Biosensors and Bioelectronics,1999,14(3):257-263.
    [207]Petra M. Kramer, Bert A. Baumann, Peter G. Stoks. Prototype of a newly developed immunochemical detection system for the determination of pesticide residues in water[J]. Analytica Chimica Acta,1997,347(1-2):187-198.
    [208]Peyrin E. Nucleic acid aptamer molecular recognition principles and application in liquid chromatography and capillary electrophoresis[J]. Journal of Separation Science,2009,32(10): 1531-1536.
    [209]Phanikrishna S M V, Durga K V, Subrahmanyam M. TiO2 supported over SBA-15:An efficient photocatalyst for the pesticide degradation using solar light[J]. Chemosphere,2008,73: 1562-1569.
    [210]Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environmental Science and Technology,1996,30:1-11.
    [211]Piletsky S A, Susan Alcock, Anthony P F T. Molecular imprinting:at the edge of the third millennium[J]. Treng in Biotechnology,2001,19(1):9-12.
    [212]Podhorniak L V, Negron J F, Griffith F D Jr. Gas chromatography with pulsed flame photometric detection multiresidue method for organophosphate pesticide and metabolite residues at the parts-per-billion level in representative commodities of fruit and vegetable crop groups[J]. Journal of AOAC International,2001,84(3):873-890
    [213]Purchase I F H. Risk assessment Principles and consequences[J]. Pure and Applied Chemistry, 2000,72(6):1051-1056.
    [214]Qian Guoliang, Wang Limin, Wu Yunru, et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chemistry,2009,117(2):364-370.
    [215]Qiu Canrong, Cai Minggang. Ultra trace analysis of 17 organochlorine pesticides in water samples from the Arctic based on the combination of solid-phase extraction and headspace solid-phase microextraction-gas chromatography-electron-capture detector [J]. Journal of Chromatography A,2010,1217(8):1191-1202.
    [216]Quan Y, Zhang Y, Wang S, et al. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B1 in food samples[J]. Analytica Chimica Acta,2006,580:1-8.
    [217]Rajapaksc N, Silva E, Kortenkamp A. Combining xenoesuogens at levels below individual 110-observed effect concentrations dramatically enhances steroid hormone action[J]. Environ Health Perspectives,2002,110:917-921.
    [218]Ramos C, Carbonell G, Garcia Baudin J. Ma., et al. Ecological risk assessment of pesticides in the Mediterranean region. The need for crop-specific scenarios [J]. The Science of the Total Environment,2000,247(2-3):269-278.
    [219]Ravi Sinha, Mallikarjunarao Ganesana, Silvana Andreescu, et al. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides[J]. Analytica Chimica Acta,2010,661(2):195-199.
    [220]Rawlings N C, Cook S.J, Waldbillig D. Effects of the pesticides Carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin,2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes[J]. Toxicol. Environ. Health.1998,54: 21-36.
    [221]Rene P Schwarzenbach, Philip M. Gschwend, Dieter M. Imboden. Environmental Organic Chemistry [J]. New York, Wiley.1993
    [222]Reyes Carlos C, Zimdahl Robert L. Mathematical Description of Trifluralin Degradation in Soil [J]. Weed Science,1989,37(4):604-608.
    [223]Reyhaneh Rahnama Kozani, Yaghoub Assadi, Farzaneh Shemirani, et al. Part-per-trillion determination of chlorobenzenes in water using dispersive liquid-liquid microextraction combined gas chromatography-electron capture detection[J]. Talanta,2007,72(2):387-393.
    [224]Romero-Gonzalez R, Garrido Frenich A, Martinez Vidal J L. Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry[J]. Talanta,2008,76(1):211-225.
    [225]Rozemeijer J. C, Broers H. P. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands) [J]. Environmental Pollution,2007,148:695-706.
    [226]Sabadie J. Nicosulforon:aleoholysis, chem ical Hydrolysis, and degradation on various mineral[J]. Journal of Agricultural and Food Chemistry,2002,50:526-531.
    [227]Sadeghi A.M, Isensee A.R. Effect of tillage systems and rainfall patterns on atrazine distribution in soil[J]. J. Environ. Qual,1992,21:464-469.
    [228]Sally K. Mak, Guomin Shan, Hu-Jang Lee, et al. Development of a class selective immunoassay for the type II pyrethroid insecticides[J]. Analytica Chimica Acta.2005,534(1):109-120.
    [229]Samaonova J.V, Rubtsova M.Y, Kiseleva A.V, et al. Chemiluminescent multiassay of pesticides with horseradish peroxide as a label[J]. Biosensors & Bioelectronics,1999,14:273-281.
    [230]Sarmah A K,Kookana R S,DufFy M J,et al. Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions[J]. Pest Management Science,2000,56: 463-471.
    [231]Seiichi Sakamoto, Futoshi Taura, Benyakan Pongkitwitoon, et al. Development of sensitivity-improved fluorescence-linked immunosorbent assay using a fluorescent single-domain antibody against the bioactive naphthoquinone,plumbagin[J]. Anal. Bioanal. Chem. in press:2010, DOI 10.1007/s00216-010-3535-9
    [232]Senesi N, Testini C, Metta D. Binding of chlorophenoxy-alkanoic herbicides from aqueous solution by soil humic acids. International Conference on Environmental Contamination[J]. London,1984:96-101.
    [233]Senesi N, Testini C, Miano T.M. Interaction mechanisms between humic acids of different origin and nature and electron donor herbicides:a comparative IR and ESR study[J]. Organic Geochemistry,1987,11:25-30.
    [234]Serena Laschi, Dominika Ogonczyk, Ilaria Palchetti, et al. Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors[J]. Enzyme and Microbial Technology,2007,40(3):485-489.
    [235]Serenella Sala, Marco Vighi. GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems[J]. Ecotoxicology and Environmental Safety,2008,69(1):1-12.
    [236]Shan Guomin, Stoutamire Donald W., Wengatz Ingrid, et al. Development of an Immunoassay for the Pyrethroid Insecticide Esfenvalerate[J]. Journal of Agricultural and Food Chemistry, 1999,47(5):2145-2155.
    [237]Sherry J P, Clement Raymond E. Environmental Chemistry[J]:The Immunoassay Option Critical Reviews in Analytical Chemistry,1992,23(4):217-300.
    [238]Shigeaki Inoue, Takeshi Saito, Hiroyasu Mase, et al. Rapid simultaneous determination for organophosphorus pesticides in human serum by LC-MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44(1):258-264.
    [239]Shockcor J.P. HPLC-NMR,Pharmaceutical Applications[J]. Encyclopedia of Spectroscopy and Spectrometry,2009:946-956.
    [240]Shokoufi N, Shemirani F, Assadi Y. Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simulaneous preconcertration and determination of palladium and cobalt[J]. Analytica Chimica Acta,2007,597(2):349.
    [241]Sibel Topuz, Gul Ozhan, Buket Alpertunga. Simultaneous determination of various pesticides in fruit juices by HPLC-DAD[J]. Food Control,2005,16(1):87-92.
    [242]Siemers NO, Yelton DE, Bajorath J, et al. Modifying the specificity and activity of the Enterobacter cloacae P99 β-lactamase by mutagenesis within an M13 phage vector[J]. Biochemistry,1996,35:2104-2111.
    [243]Sieto Bosgra, Hilko van der Voet, Polly E. Boon, et al. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food:An example with organophosphorus pesticides[J]. Regulatory Toxicology and Pharmacology,2009,54(2): 124-133.
    [244]Sigua G.C, Isensee A.R, Sadeghi A.M, et al. Distribution and transport of atrazine as influenced by surface cultivation,earthworm population and rainfall pattern[J]. Chemosphere,1995,31(10): 4237-4242.
    [245]Silvana Andreescu, Thierry Noguer, Vasile Magearu, et al. Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents[J]. Talanta,2002,57(1): 169-176.
    [246]Silvia Millan, M. Carmen Sampedro, Nora Unceta, et al. Simple and rapid determination of biogenic amines in wine by liquid chromatography-electrospray ionization ion trap mass spectrometry[J]. Analytica Chimica Acta 584(1):2007,145-152.
    [247]Simonsen L, Fomsgaard I. S, Svensmark B, et al. Fate and availability of glyphosate and AMPA in agricultural soil[J]. Journal of Environmental Science Health B,2008,43:365-375.
    [248]Singles S K, Dean G M, Kirkpatrick D M, et al. Fate and behaviour of flupyrsulfuron-methyl in soil and aquatic systems[J]. Pesticide Science,1999,55:288-300.
    [249]Skerritt J H, Rani B E A. Immunoassays for Residue Analysis [J]:Food Safety,. Washington, ACS.1996
    [250]Smolen J M, Stone A T. Divalent Metal Ion-catalyzed hydrolysis of phosphrothionate ester pesticides and their corresponding oxonates[J]. Environ Sci Technol,1997,31(6):1664-1673.
    [251]Spynu E. I. Predicting pesticide residues to reduce crop contamination[J]. Rev.Environ. Contam. Toxicol,1989,109:89-107.
    [252]Stefania Vichi, Cecilia Santini, Nadia Natali, et al. Volatile and semi-volatile components of oak wood chips analysed by Accelerated Solvent Extraction (ASE) coupled to gas chromatography-mass spectrometry(GC-MS) [J]. Food Chemistry,2007,102(4):1260-1269.
    [253]Stocklein W, Gebbert A, Schmid R D. Binding of triazine herbicides to antibodies in anhydrous organic solvents[J]. Analytical Letters,1990,23:1465-1476.
    [254]Stoltenburg R, Reinemann C, Strehlitz B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands[J]. Biomolecular Engineering,2007,24(4):381-403.
    [255]Suelter C.H. A Practical Guide to Enzymology [J]. New York, Wiley,1985
    [256]Sugawara Y, Goodrow M H, Hammock B D. Poster at 214th American Chemical Society National Meeting[J]. Las Vegas, NV.1997, September,7-11
    [257]Sun Xia, Wang Xiangyou. Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides[J]. Biosensors and Bioelectronics,2010, 25(12):2611-2614.
    [258]Tagami T, Kajimura K, Takagi S, et al. Simultaneous analysis of 17 organochlorine pesticides in natural medicines by GC/MS with negative chemical ionization[J]. Yakugaku Zasshi,2007, 127(7):1167-1171.
    [259]Takaho Watanabe, Guomin Shan, Donald W. Stoutamire, et al. Development of a class-specific immunoassay for the type I pyrethroid insecticides [J]. Analytica Chimica Acta,2001,444(1): 119-129.
    [260]Tala Henry. US EPA QSAR and Expert System Tools for Predicting Toxicity. Cal/EPA Symposium Sacramento, California[R]. Washington, DC:Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency.2007
    [261]Tao C.J, Hu J.Y, Li J.Z, et al. Multi-Residue Determination of pesticides in vegetables by gas chromatography/ion trap mass spectrometry[J]. Bulletin of Enviromental Contamination and Toxicology,2009,82:111-115.
    [262]Tennant D. R. Estimating acute dietary intakes of chemicals[J]. Regulatory Toxicology and Pharmacology,1999,30:99-102.
    [263]The Environmental Protection Agency's Office of Pesticide Program. A Background Document for the Session:Statistical Methods for Use of Composite Data in Acute Dietary Exposure Assessment[C]. Meeting of the FIFRA Scientific Advisory Panel.1999
    [264]Tijssen P. Practice and Theory of Enzyme Immunoassay[J]. Amsterdam, Elsevier,1985
    [265]Tiktak A, de Nie D. S., Pineros G J. D, et al. Assessment of the pesticide leaching risk at the Pan-European level. The EuroPEARL approach[J]. Journal of Hydrology,2004,289 (1-4): 222-238.
    [266]Timme G; Frehse H; Walter H F. Statistical interpretation and graphic representation of degradation behaviour of pesticide residues[J]. I.pflanzenschutz-Nachrichten. Bayer,1980,33: 47-60.
    [267]Tin C. Tran, Philip J. Marriott. Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry and simultaneous electron capture detection/nitrogen phosphorous detection for incense analysis[J]. Atmospheric Environment,2008,42(32):7360-7372.
    [268]Tobias Nilsson, Soren Bowadt, Erland Bjorklund. Development of a simple selective SFE method for the determination of desorption behaviour of PCBs in two Swedish sediments[J]. Chemosphere,2002,46(3):469-476.
    [269]Tombelli S, Mascini M. Aptamers as molecular tools for bioanalytical methods[J]. Current Opinion in Molecular Therapeutics,2009,11(2):179-188.
    [270]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers[J]. Biosensors and Bioelectronics,2005,20(12):2424-2434.
    [271]Torres C. M, Pico Y, Manes J. Determination of pesticide residues in fruit and vegetables[J]. Journal of Chromatography A,1996,754(1-2):301-331.
    [272]Toshihiko Imato, Nobuhiko Ishibashi. Potentiometric butyrylcholine sensor for organophosphate pesticides[J]. Biosensors and Bioelectronics,1995,10(5):435-441.
    [273]Trine Henriksen, Bo Svensmark, Bo Lindhardt et al. Analysis of acidic pesticides using in situ derivatization with alkylchloroformate and solid-phase microextraction (SPME) for GC-MS[J]. Chemosphere,2001,44(7):1531-1539.
    [274]Trine Klein Reffstrup, John Christian Larsen, Otto Meyer. Risk assessment of mixtures of pesticides. Current approaches and future strategies[J]. Regulatory Toxicology and Pharmacology,2010,56(2):174-192.
    [275]Tseng Chiao-Li, Liu Li-Lian, Chen Chien-Min, et al. Analysis of perfluorooctanesulfonate and related fluorochemicals in water and biological tissue samples by liquid chromatography-ion trap mass spectrometry[J]. Journal of Chromatography A,2006,1105(1-2):119-126.
    [276]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science,1990,249(4968):505-510.
    [277]Tuija Pihlstrom, Gun Blomkvist, Paula Friman, et al. Analysis of pesticide residues in fruit and vegetables with ethyl acetate extraction using gas and liquid chromatography with tandem mass spectrometric detection[J]. Analytical and Bioanalytical Chemistry,2007,389(6):1773-1789.
    [278]U. S Environmental Protection Agency (July 13,2005). Overview Of The Preliminary Methyl Bromide Risk Assessment[R]. EPA-HQ-OPP-2005-0123-0002.
    [279]U. S Environmental Protection Agency Office of Atmospheric Programs 2000. Methyl Bromide Use Background Document[R]. Washington, DC.
    [280]U. S Environmental Protection Agency. Report of Food Quality Protection Act (FQPA) Tolerance Reassessment and Risk Management Decision (TRED) for Methyl Bromide, and Reregistration Eligibility Decision (RED) for Methyl Bromide's commodity uses, Prevention, Pesticides and Toxic Substances[R]. EPA,2006,738-R-06-026.
    [281]U. S Environmental Protection Agency. Environmental Fate and Ecological Risk Assessment for the Re-registration of Methyl Bromide, Office of prevention, pesticides, and toxic substances[R].2009
    [282]U. S. Environmental Protection Agency, Office of Research and Development. Integrated Risk Information System (IRIS) [R]:Bromomethane. Washington, DC.2000
    [283]U.S. Environmental Protection Agency. EPA Announces New Restrictions on Pesticide Phosphine Fumigants to Reduce Risks to Children New labels aim to reduce accidental poisonings [EB]. http://www.epa.gov/oppsrrd1/reregistration/alphosphide/.2010
    [284]U.S. Environmental Protection Agency, Office of Pesticide Programs,U.S. Government Printing Office. Pesticide Fact Sheet Number 98:Methyl Bromide[R]. Washington, DC.1986
    [285]USEPA. Exposure Factor Handbook. EPA/600/P-95/002Fc [R]. Washington, DC:US Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development.1997
    [286]USEPA. The Role of the Use-related Information in Pesticide Risk Assessment and Risk Management. Draft document (64 FR 37977)[R]. Washington D C:District of Columbia, Environmental Protection Agency.1999
    [287]USEPA. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA530-R-05-006[R]. Washington, D C:US Environmental Protection Agency, Office of Solid Waste and Emergency Response.2005
    [288]USEPA, Environmental Protection Agency's Office of Pesticide Programs. Memorandum: Office of Pesticide Programs Reference Dose Tracking Report[R]. Memorandum. Washington.D C 1997
    [289]Van Emon JM, Lopez-Avila V. Immunochemical methods for environmental analysis[J]. Anal Chem,1992,64:78-88.
    [290]Velappan N, Clements J, Kiss C, et al. Fluorescence linked immunosorbant assays using microtiter plates [J]. Journal of Immunological Methods,2008,336:135-141.
    [291]Wai C M., Wang Shaofen. Separation of metal chelates and organometallic compounds by SFC and SFE/GC [J]. Journal of Biochemical and Biophysical Methods,2000,43(1-3):273-293.
    [292]Walter F. M. Stocklein, Frieder W. Scheller, Ram Abuknesha 1995. Effects of organic solvents of semicontinuous immunochemical detection of coumarin derivatives[J]. Sensors and Actuators, B:Chemical 24(1-3):80-84.
    [293]Walter F. M. Stocklein, Manuela Rohde, Gudrun Scharte, et al. Sensitive detection of triazine and phenylurea pesticides in pure organic solvent by enzyme linked immunosorbent assay (ELISA):stabilities, solubilities and sensitivities[J]. Analytica Chimica Acta,2000,405(1-2): 255-265.
    [294]Wang Chunmei, Liu Yihua, Guo Yirong, et al. Development of a McAb-based immunoassay for parathion and influence of the competitor structure [J]. Food Chemistry,2009,115(1):365-370.
    [295]Wang S T, Gui W J, Guo Y R, et al. Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide[J]. Anal. Chim. Acta,2007,587(2):287-292.
    [296]Wang T L. Immunology in Plant Science. Oxford, Cambridge University Press[J].1986
    [297]Wang Xuedong, Zhao Xinna, Liu Xiujuan, et al. Homogeneous liquid-liquid extraction combined with gas chromatography-electron capture detector for the determination of three pesticide residue in soils[J]. Analytica Chimica Acta,2008,620(1-2):162-169.
    [298]Waseem A, Yaqoob M, Nabi A. Photodegradation and flow-injection of simetryn herbicide by luminol chemiluminescence detection[J]. Analytical Sciences,2008,24(8):979-983.
    [299]Weber K, Osborn M.The reliability of molecular weight determinations by SDS-polyacrylamide gel electrophoresis [J]. J. Biol.Chem,1969,244:4406-4412.
    [300]Wei Du, F. Z, Baizhao Zeng. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds[J]. Journal of Chromatography A,2009,1216(18): 3751-3757.
    [301]Weiler EW. Immunoassay of plant growth regulators[J]. Anu. Rev. Plant Physiol,1984,35: 85-95.
    [302]Weiler EW, Jourdan PS, Conrad W. Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay [J]. Planta,1981,153:561-571.
    [303]Wet J, Furrie G, Kaufmann S, et al. Influence of caly minerals on the hydrolysis of carbamate pesticides [J]. Environ Sci Technol,2001,35:2226-2232.
    [304]Wild D (Ed). The Immunoassay Handbook[J]. New York:, Stockton Press,1994
    [305]William E. Paul (Editor). Fundamental Immunology[J]Philadelphia, USA, Lippincott Williams & Wilkins Publishers.1998
    [306]Winston Ho W S, Sirkar K K. Membrane Handbook[J]. New York, Van Nostrad Reinhold,1992.
    [307]Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology [J]. Annu. Rev. Immunol.1992,12:433-455.
    [308]Wong Jon W, Webster Michael G, Bezabeh Dawit Z, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring[J]. Journal of Agricultural and Food Chemistry,2004,52(21): 6361-6372.
    [309]World Health Organization. Methyl Bromide, Environmental Health Criteria[C],166. Geneva, Switzerland.1995
    [310]World Health Organization. Methods of Assessing Risk to Health from Exposure to Hazards Released from Landfills [C]. Copenhagen.2000
    [311]Xie Quan, Shuo Chen, Bernhard Platzer, et al. Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(1):189-199.
    [312]Xua Zhen-Lin, Xie Gui-Mian, Li Yong-Xiang, et al. Production and characterization of a broad-specificity polyclonal antibody for 0,0-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition[J]. Analytica Chimica Acta,2009,647:90-96.
    [313]Yang H. Z, Zhang Y. J, Wang L. X, et al. Quantitative structure-activity study of herbicidal O-aryl O-ethyl Nisopropylphosphor aminothioates[J]. Pesticide Biochemistry and Physiology. 1986,26:275-283.
    [314]Ye Jing, Zhao Meirong, Liu Jing, et al. Enantioselectivity in environmental risk assessment of modern chiral pesticides[J]. Environmental Pollution,:In Press,2010
    [315]Yin Y H, Ni Y Q, Shi L. Diagnostic study of summer rainfall anomaly in Changjiang-Huaihe valley and its relationship with the global mid-low latitude sea surface temperature anomaly[J]. Journal of Nanjing University (Natural Sciences),2001,37(3):95-105.
    [316]Yirgaalem Abrha, D. R. Polychlorinated biphenyl (PCB) recovery from spiked organic matrix using accelerated solvent extraction (ASE) and Soxhlet extraction[J]. Journal of Hazardous Materials,2000,80(1-3):147-157.
    [317]Yolcubal I, Akyol N H. Adsorption and transport of arsenate in carbonate-rich soils:Coupled effects of nonlinear and rate-limited sorption[J]. Chemosphere,2008,73:1300-1307.
    [318]Young A.C, Lee H.S, Park E.Y, et al. Development of an ELISA for the organophosphorus insecticide chlorpyrifos[J]. Bull. Korean Chem.Soc.2002,23(3):481-487.
    [319]Yuri L. Khmelnitsky, Vadim V. Mozhaev, Alla B. Belova, et al. Denaturation capacity:a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis European[J]. Journal of Biochemistry,1991,198(1):31-41.
    [320]Zhang Baohong, Pan Xiaoping, Venne Louise, et al. Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection[J]. Talanta,2008,75(4):1055-1060.
    [321]Zhang H B, Luo Y M, Zhao Q G, et al. Residues of organochlorine pesticides in Hong Kong soils[J]. Chemosphere,2006,63(4):633-641.
    [322]Zhang Q, Wang L B, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2007,596:303-311.
    [323]Zhang X L, Chen J, Tan M Z, et al. Assessing the impact of urban sprawl on soil resources of Nanjing city using satellite images and digital soil databases [J]. CATENA,2007,69:16-30.
    [324]Zhao Ercheng, Zhao Wenting, Han Lijun, et al. Application of dispersive liquid-liquid microextraction for the analysis of organophorus pesticides in watermelon and cucumbe[J]. Journal of Chromatography A,2007,1175(1):137-140.
    [325]Zhao Lixia, Lin Jin-Ming. Development of a micro-plate magnetic chemiluminescence enzyme immunoassay (MMCLEIA) for rapid- and high-throughput analysis of 17p-estradiol in water samples [J]. Journal of Biotechnology,2005,118(2):177-186.
    [326]Zhao Y G, Zhang G L, Harald Z, et al. Establishing a spatial grouping base for surface soil properties along urban-rural gradient-A case study in Nanjing, China. CATENA,2007,69: 74-81.
    [327]Zhao Y, Liang Y, Qian J, et al. Determination of Diethylstilbestrol by Time-resolve Fluoroimmunoassay [J]. Analytical Letters.2009,42(2):216-227.
    [328]Zheng W, Liu W P. Kinetic and mechanism of the hydrolysis of imidacioprid Pestic. Sci.1999, 55:481-485.
    [329]Zuin V G, Yariwake J H, Bicchi C. Fast supercritical fluid extraction and high-resolution gas chromatography with electron-capture and flame photometric detection for multiresidue screening of organochlorine and organophosphorus pesticides in Brazil's medicinal plants[J]. Journal of Chromatography A,2003,985(1-2):159-166.
    [330]柏再苏,王大翔.杂环、基因工程和二十一世纪的农药[J].农药,1998,37(6):2-6.
    [331]陈静,周倩如,郭小琳,等.固相萃取-高效液相色谱串联离子阱质谱法测定水中微囊藻毒素[J].中国卫生检验杂志,2009,19(8):1720-1724.
    [332]陈茹玉,杨华铮,曾强,等.O-烷基O-芳基N-烷基硫代磷酰胺类化合物的合成及其结构与除草活性定量关系的研究[J].化学学报,1981,39(7):643-651.
    [333]陈茹玉,杨华铮,张岳军,等.硫代磷酰胺酯类化合物的合成及其结构与除草活性的定量关系[J].中国科学(B辑),1985,5:394-400.
    [334]陈茹玉,杨华铮,邢晓东,等.O-乙基O-芳基N-异丙基硫代磷酰胺脂结构与活性定量关系中芳基邻位取代效应的影响[J].高等学校化学学报,1985,10(6):897-902.
    [335]崔兆杰,赵士燕.超临界C02流体萃取——气相色谱法测定土壤中的类二噁英类多氯联苯[J].山东大学学报(理学版),2006,41(6):124-128.
    [336]戴树桂,承雪琨,刘广良SDBS及腐殖酸对涕灭威及其氧化物水解的影响[J].中国环境科学,2002,22(3):193-197.
    [337]刁春鹏,赵汝松,柳仁民,等.分散液相微萃取.气相色谱/质谱快速分析水中的硝基苯类化合物[J].分析试验室,2009,28(6):9-12.
    [338]董健,刘贤进,韩召军.氟虫氰半抗原设计及抗体制备[J].江苏农业学报,2001,17(3):172-175.
    [339]甘居利,林钦,贾晓平,等.广东近江牡蛎(Crassostrea rivularis)有机氯农药残留与健康风险评估[J].农业环境科学学报,2007,26(6):2323-2328.
    [340]高仁君,王蔚,陈隆智,等.JMPR农药残留急性膳食摄入量计算方法[J].中国农学通报,2006,22(4):101-105.
    [341]顾海东,陶冠红,孙欣阳,等.加速溶剂萃取-气相色谱法测定土壤中的联苯菊酯[J].化学分析计量,2009,18(6):43-45.
    [342]顾立群,王磊光,黄五群,等.神经网络对硫代磷酰胺酯类化合物的QSAR研究[J].科学通报,1994,39(10):913-916.
    [343]国家环境保护局.化学农药环境安全评价试验准则[S].北京:国家环境保护局,1989
    [344]洪孝庄,孙曼雯.蛋白质连接技术[M].北京:中国医药科技出版社1993
    [345]胡正君,史亚利,蔡亚岐.加速溶剂萃取气相色谱质谱法测定污泥、底泥及土壤样品中的合成麝香[J].分析化学,2010,38(6):885-888.
    [346]黄文风,蔡琪,林而立,等.酶催化动力学光度法快速测定蔬菜中的农药残留毒性[J].现代科学仪器,2000,2:29-32.
    [347]李斌.除草剂工业的发展及展望[J].农药,1998,37(10):1-7.
    [348]李鱼,刘建林,翦英红.分散液液微萃取-柱前衍生-高效液相色谱法测定水样中双酚A[J].分析化学,2009,37(10):1484-1488.
    [349]李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科技出版社,1996
    [350]梁柱,余雯静,孙欣阳.加速溶剂萃取.色谱质谱联用法测定土壤中的多环芳烃[J].化学分析计量,2009,18(3):45-48.
    [351]刘翠英,蒋新,杨兴伦,等.加速溶剂萃取法评价土壤中六氯苯和五氯苯对水稻根的生物有效性[J].环境科学,2010,31(5):1352-1358.
    [352]刘维屏.农药环境化学[M].北京:化学工业出版社,2006
    [353]美国杜邦公司.实验稻田除草剂Londax-试验代号DPA-F5384[J].农药译丛,1984,6(3):62-63.
    [354]莫汉宏.农药环境化学行为论文集[M].北京:中国科学技术出版社,1994
    [355]农业部中国农药信息网http://www.chinapesticide.gov.cn [EB].2010
    [356]欧晓明,任竞,雷满香.新农药硫肟醚在池塘水中的水解动力学及降解机理研究[J].农业环境科学学报,2006,25(2):477-481.
    [357]邱朝坤,刘晓宇,任红敏,等.酶抑制法检测蔬菜中有机磷农药残留[J].食品与机械,2010,26(2):40-42.
    [358]沈关心.现代免疫学实验技术(第二版)[M].武汉:湖北科学技术出版社,2002
    [359]石丽明,刘美美,王晓华,等.加速溶剂萃取提取土壤中正构烷烃的方法研究[J].岩矿测试,2010,29(2):104-108.
    [360]孙卫玲,倪晋仁,郝鹏鹏.水中内分泌干扰物的固相萃取-液相色谱-离子阱二级质谱分析 [J].质谱学报,2005,26(1):22-26.
    [361]唐才明,黄秋鑫,余以义,等.污泥和沉积物中微量大环内酯类、磺胺类抗生素、甲氧苄胺嘧啶和氯霉素的测定[J].分析化学,2009,37(8):1119-1124.
    [362]田宏哲,周艳明,刘朋宇,等.谷物中15种除草剂多残留检测方法的建立及应用[J].食品科学,2009,30(14):215-218.
    [363]田芹,周志强,江树人.毒死蜱在环境水体中降解的研究[J].农业环境科学学报,2005,24(2):289-293.
    [364]王劲松,陈思光,徐华,等.印迹与交联壳聚糖吸附水中微量Cr(Ⅵ)的对比试验研究[J].南华大学学报(自然科学版),2010,24(1):74-77.
    [365]王颜红,霍佳平,张红,等.阿特拉津分子印迹固相萃取柱的制备及应用[J].分析化学,2010,38(5):678-682.
    [366]王一龙,曾昭睿,杨敏,等.自制固相微萃取探头用于分析大白菜中有机磷农药[J].武汉大学学报(理学版),2006,52(2):137-141.
    [367]吴明,戴宝江,邹小毛.水旱两用除草剂20%双甲胺草磷乳油的应用研究[J].现代农药,2004,3(6):16-18.
    [368]吴永宁.现代食品安全科学[M].北京:化学工业出版社,2003
    [369]肖乾芬,王晓栋,魏忠波,等.三唑磷农药水解动力学研究[J].农药科学与管理,2005,44(8):356-358.
    [370]薛思佳,邹金山.2H-1,2,4-噻二唑并[2,3-a]嘧啶衍生物的合成及降草活性研究(Ⅱ)[J].农药学学报,1999,1(2):85-87.
    [371]杨华铮,吴华,任康太,等.O-乙基-异丙基(取代硫脲基)硫代磷酰胺酯类衍生物杀菌作用的构效关系研究[J].高等学校化学学报,1995,16(5):710-714.
    [372]杨华铮,吴烨,张玉芬,等.O-乙基-N-烷基(取代硫脲基)硫代磷酰胺酯的合成及其生物活性[J].高等学校化学学报,1991,12(1):44-48.
    [373]杨华铮,邹小毛,王磊光,等.新型除草剂H-9201的研究与开发历程[J].华中师范大学学报(自然科学版),2006,40(4):532-539.
    [374]杨利国.酶免疫测定技术[M].南京:南京大学出版社,1998
    [375]余传霖,叶天星,陈德源.现代医学免疫学[M].上海:上海医科大学出版社,1998
    [376]余孝颖.有机磷农药对不同生物来源的胆碱酯酶选择性抑制的研究[J].环境科学,1996,17(4):41-43.
    [377]臧晓欢,王春,高书涛,等.分散液相微萃取-气相色谱联用分析水样中菊酯类农药残留[J].分析化学,2008,36(6):765-769.
    [378]张纯娟.美国的农药及其管理情况[J].农药科学与管理,1998,3:33.
    [379]张存政,张心明,田子华,等.稻米中毒死蜱和氟虫腈的残留规律及其暴露风险[J].中国农业科学,2010,43(1):151-163.
    [380]张敦阳,宋贤利,孙艾萍,等.20%双甲胺草磷乳油防除胡萝卜、水稻田杂草效果[J].农药科学与管理,2004,26(7):21-24.
    [381]张建华,黄颖,陈晓秋,等.分散液-液微萃取2高效液相色谱法测定环境水样中的多环芳烃[J].色谱,2009,27(6):799-803.
    [382]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京: 高等教育出版社,1997
    [383]张卫,虞云龙,谭成侠,等.阿维菌索水解动力学的研究[J].农业环境科学学报,2004,23(1):174-176.
    [384]张雪燕,邓吉生,翟留香.蔬菜中农药残留量的生物化学检测[J].西南农业学报,1996,9(2):62-66.
    [385]张宗炳,樊德方,钱传范,等.杀虫药剂的环境毒理学[M].北京:中国农业出版社,1989
    [386]赵莉,樊晓青,朱国念.氰氟草酯水解动力学研究[J].农药学学报,2009,11(2):274-278.
    [387]赵建庄,康国瑞.快速测定果蔬中农药残留量的方法研究[J].农业环境保护,2002,21(1):70-71.
    [388]中华人民共和国农业部.NY/T 788-2004农药残留试验准则[S].北京:中国农业出版社,2004
    [389]朱臻怡,冯民,何健,等.固相萃取-气相色谱法同时测定花生中18种有机氯农药残留[J].化学分析计量,2010,19(1):19-22.
    [390]邹小毛,杨华铮,程慕如.新型除草剂O-甲基-O-(2-硝基-4,6-二甲基苯基)-N-异丙基硫代磷酰胺酯(H-9201)的研究与开发[J].中国科技论文在线http://www.paper.edu.cn:2005, 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700