超重机转子填料内液体流动的观测与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超重机,是近年来兴起的一种利用离心力模拟超重力,强化气液两相传质与反应的新型化工机械。本研究的目的是研究液体在超重机转子内的流动情况,为今后进一步的传质与应用研究提供液体在转子内流动的理论与实验依据。此项研究包含两个实验和转子内液体流动的数学模拟以及液相传质系数与液体流动的关系等几部分内容。
     实验之一是转子填料内液体流动的观测与填料表面液膜厚度的测定。在这个实验中,利用安装在转子上,与转子一同旋转的电视摄象机,观察到了离心加速度在200个g(g为重力加速度)以内的液体在填料内的流动情况。发现,除填料内缘处几毫米的区域外,液体在大部分填料当中是以液膜方式流动为主,其周向速度与转子大致相同。基于观测到的图象资料,利用图象分析的方法,测量了在填料表面的液膜厚度。结果显示,在泡沫金属填料上,液膜厚度大约在30-80微米范围。这一数值,明显高于空隙率和比表面都与它接近的不锈钢丝网填料上10微米左右的液膜厚度。分析原因认为这一差异与填料的结构和表面粗糙度有关。
     在填料内缘几毫米以内,液体的流动状态比较复杂。自液体喷口喷出的液体与高速旋转的转子填料剧烈撞击,破碎、变形、产生大量的新鲜表面。观察到存在着两个方向的流动。一个是自喷口喷出的液体的径向运动,另一个是液体的径向运动受到填料的阻挡,改变运动方向造成的周向运动。这两个方向的运动,造成了在这几毫米内液体的高度混合。
     实验之二是液体在填料内停留时间分布的测量。分别安装在填料内外缘处,与填料一同旋转的两个电导探头,同时给出了注入电导率与水不同的示踪物时电导率随时间的变化曲线。经计算机数据采集和处理,得到在不同实验条件下液体在转子内的停留时间分布。定量分析的结果表明,液体的平均停留时间随液体的流量、转子转速的上升而下降,其大致范围在几百毫秒左右,并且不受气体加入的影响。但是,当转子的转速超过800-1000rpm后,平均停留时间下降的趋势变得平缓。为考察填料内缘附近液体的混合程度,将入口电导探头沿半径方向向填料内部移动10毫米。此时平均停留时间与全程数据没有明显差别,而方差却仅为全程值的1/3。即在内缘处7%的填料造成的混合,是全部填料混合程度的70%。
Higee, which exerts centrifugal force as high-gravitec force to intensify mass transfer and chemical reaction between gas and liquid phases, is a new type of machine in chemical industry. The purpose of this dissertation is to study how liquid flows inside the higee rotor. For the purpose, two experiments are employed. Based on results of experiments, a mathematical model is built. The dissertation also includes a study of mass transfer coeffecients and applications of conclusions.
    The first experiment is to study liquid flowing inside the rotor by visual investigation, and try to measure the thickness of liquid film on the surface of the packing. With a video camera, which is fixed on the rotor and naturally, goes with the rotor synchronously, one can see liquid flowing inside the rotor packing .The video image gives direct evidence of flow patterns. By this method, we know that when the centrifugal acceleration is less than 200 times of gravity, in most of packing, most of liquid flows in films except in the zone closed to the inner edge for a few millimeters. Furthermore, its peripheral speed is almost as same as the rotor's. Having seen phenomena, we use image analytic method to measure film thickness on packing surface. On the foam metal packing, it is about 30-80 microns. These numbers are clearly higher than that on wire mesh packing, it is about 10 microns. The difference may be related to the structure and the roughness of packing surface.
    Close to the inner edge of the packing, the liquid flowing is rather complex. The liquid which comes from nozzles dashes against rotating packing violently, then breaking, reforming, making huge amounts of fresh surfaces. In this section, two flowing directions are observed. One is the radial flow that comes from the nozzle; the other is peripheral flow that comes from resisted radial flow having changed its flowing direction. The two flow directions make extremely high mixing in just a few millimeters.
    The second experiment is to measure the liquid residence time distribution in the packing. There are two conductivity sensors fixed on the rotor. When the tracer is injected into the packing, the two sensors give out relationships between conductivity and time. Aided by a computer, the residence time distributions are gotten under a series operating conditions. The results show that the rough range of mean residence time is about several hundred milliseconds, and it does not change with the countercurrent gas flow rate. The results also
引文
1. Balasundaram V., Porter J.E. and Ramshaw C , 'Process Intensification: A Rotary Seawater Deaerator', Separation of Gases, Special Publication No. 80, The Proceedings of the Fifth BOC Priestley Conference Sponsored by BOC Limited and Organized by the Royal Society of Chemistry in Conjunction with the University of Birmingham, Birmingham, Sep., 19-21 (1989) pp306-327
    
    2. Basic A. and Dudukovic M.P., 'Hydrodynamics and Mass Transfer in Rotating Packed Beds', Heat and Mass Transfer in Porous Media, Elsevier Sciencs Publishers, B.V. ISBN 044489498-5 (1992) pp651-662
    
    3. Basic A. and Dudukovic M.P., 'Liquid Holdup in Rotating Packed Beds:Examination of the film flow Assumption', AIChE Journal, 41(2), (1995) pp301-316
    
    4. Basta N., 'Facelift for distillation', Chemical Engineering, Mar. 2, (1987) pp14-16
    
    5. Bird R.B., Stewart WE. and Lightfoot E.N., Transport Phenomena, John Wiley & Sons, Inc.,(1960)
    
    6. Brauer H., 'Mass Transfer Machines — the Road to Better Design of Equipment in the Processing Industries', International Chemical Engineering, 28(2), (1988) pp207-220
    
    7. Bucklin R.W. and Won K.W., 'HIGEE Contactors for Selective H_2S Removal and Superdehydration', Laurance Reid Gas Conditioning Conference, Univ. of Oklahoma, USA Mar., 2-4 (1987)
    
    8. Burns JR. and Ramshaw C, 'Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds', Chem. Eng. Sci, 51(8) (1996) ppl347-1352
    
    9. European Patent 0002568 (1979)
    
    10. European Patent 0023745 (1981)
    
    11. European Patent 0024097 (1981)
    
    12. European Patent 0084410 (1983)
    
    13. Fowler R. and Balasundaram V., 'De-Aeration Under the Action of Centrifugal Force', Water Management Offshore, Aberdeen, Nov.,1&2 (1989)
    
    14. Fowler R. and Khan AS., 'VOC Removal with a Rotary Air Stripper', AIChE Annual Meeting, New York, Nov., 15-17 (1987)
    
    15. Fowler R., 'HIGEE — A Status Report', Chemical Engineer, Jan. (1989) pp35-37
    16. Fowler R., 'Intensified Mass Transfer with HIGEE', Association Francaise Technicians Petrole, May, 13, (1986)
    17. Fowler R., 'Potential Application of HIGEE Offshore', Institute of Chemical Engineers Seminar on Offshore Separation Processes, Teeside, England (1986)
    18. Fowler R., Gerdes K. F. and Nygaard H. F., 'A Commercial Scale Demonstration of HIGEE for Bulk CO_2 Removal and Gas Dehydration', 21st Annual Offshore Technology Conference, Houston, Texas, USA May, 1-4 (1989)
    19. Keyvany M. and Gardner N. C., 'Operating Characteristics of Rotating Bebs' Chemical Engineering Progress Sept. (1989) PP48-52
    20.Krich E.,实验室蒸馏指南—中间工厂蒸馏的导论,(中译本),化学工业出版社(1988)
    21. Kumar M. P. and Rao D. P., 'Studies on a High-Gravity Gas-Liquid Contactor' Ind. Eng. Chem. Res., 29(5), (1990) pp917-920
    22. Martin C. L. and Martelli M., 'Preliminary Distillation Mass Transfer and Pressure Drop Result Using a Pilot Plant Scale High Gravity Contacting Unit', AIChE Spring Meeting, New Orleans, La. Mar., 29-APR., 2(1992)
    23. Mersmann A., Voit H. and Zeppenfeld R., 'Do we need mass transfer machines?', International Chemical Engineering, 28(1), (1988) pp1-13
    24. Mohr R. J. and Khan A. S., 'HIGEE—A New Approach in Groundwater Clean-Up', AQET Conference, Montreal, Canada (1987)
    25. Mohr R. J., 'The Role of HIGEE Technology in Gas Processing', GPA(Gas Processing Association) meeting, Dallas, USA (1985)
    26. Munjal S., Dudukovic M. P. and Ramachandran P. A., 'Mass-Transfer in a Rotating Packed-Bed with Countercurrent Gas-Liquid Flow', 77th Annul AIChE Meeting, Chicago, Illinois. Nov. 10-15 (1985)
    27. Munjal S., Dudukovic M. P. and Ramachandran P. A., 'Mass-Transfer in rotating packed beds-Ⅰ. Development of Gas-Liquid-Solid Mass-Transfer Correlations' Chem. Eng. Sci. 44(10), (1989) pp2245-2256
    28. Munjal S., Dudukovic M. P. and Ramachandran P. A., 'Mass-Transfer in rotating packed beds-Ⅱ, Experimental Results and Comparison with Theory and Gravity flow' Chem. Eng. Sci., 44(10), (1989)pp2257-2268
    29. Placek A., US Patent 1936524 (1933)
    30. Placek A., US Patent 2281616 (1942)
    31. Podbielniak W. J., US Patent 2003308 (1935)
    32. Podbielniak W. J., US Patent 2044996 (1936)
    33. Podbielniak W. J., US Patent 2281796 (1942)
    34. Ramshaw C., "HIGEE' Distillation—An Example of Process Intensification', The Chemical Engineer, Feb., (1983) pp13-14
    35. Ramshaw C., 'Opportunities for exploiting centrifugal fields', The Chemical Engineer, June, (1987) pp17-21
    36. Ramshaw C., 'Process intensification by miniature mass transfer', Process Engineering, Jan., (1983) pp29-31
    37. Short H., 'New mass transfer find is a matter of gravity', Chemical Engineering, Feb. 21, (1983) pp23-29
    38. Singh S. P., 'Air Stripping of Volatile Organic Compounds from Groundwater: an Evaluation of a Centrifugal Vapor-Liquid Contactor', Doctoral Dissertation, The University of Tennessee (1989)
    39. Smelser S. C. et al, 'Selective Acid Gas Removal Using the HIGEE Absorber', AIChE Spring Meeting, Orlando, Florida, Mar., 18-22 (1990)
    40. Starkey P. E. and Dobson B., 'Potential Offshore Applications for ICI HIGEE Technology', Institute of Chemical Engineers, Offshore Gas Technology Seminar, London, England Nov. 10, (1983)
    41. Todd D. B. and Maclean D. C., 'Centrifugal vapor-liquid contacting' British Chemical Engineering, 14(11), (1969) pp598-601
    42. Tomlinson F. M., US Patent 2291849 (1942)
    43. Tung H. and Mah R. S. H., 'Modeling Liquid Mass Transfer in HIGEE Separation Process', Chem. Eng. Commun. 39, (1985)pp147-153
    44. US. Patent 4283255 (1981)
    45. US. Patent 4382045 (1983)
    46. US. Patent 4382900 (1983)
    47. Versteeg G. F., 'Mass Transfer and Chemical Reaction Kinetics in Acid Gas Treating Processes', Doctoral Dissertation, University of Twente, Netherlands (1986)
    48. Vivian J. E, Brian P. L. T. and Krukonis V. J., 'The Influence of Gravitational Force on Gas Absorption in a packed Column' AIChE, J., 11(6), (1965) pp1088-1091
    49.万冬梅,‘超重机技术用于工业尾气脱硫化学吸收过程的研究’,硕士学位论文,北京化工大学(1995)
    50.王刚,‘旋转床中拟塑性非牛顿流体性质的研究’,硕士学位论文,北京化工大学(1995)
    51.王桂轮,‘旋转床超重力场中传质机理的研究’,硕士学位论文,北京化工大学(1994)
    52.王玉红,‘旋转床超重力场装置的液泛和传质研究’,硕士学位论文,北京化工大学(1992)
    53.中华人民共和国专利 91109255.2
    54.中华人民共和国专利 91111028.3
    55.中华人民共和国专利 91229204.0
    56.中华人民共和国专利 92100093.6
    57.中华人民共和国专利 92102061.9
    58.朱慧铭,‘超重力场传质过程的研究及其在核潜艇内空气净化中的应用’,硕士学位论文,天津大学(1991)
    59.杨村,‘旋转床超重力场流体力学传质特性及应用研究’,硕士学位论文,北京化工大学(1991)
    60.沈浩、施南庚,‘用离心传质机对含氨废水进行吹脱’,《南京化工学院学报》 16(4)(1994)pp60-64
    61.宋云华,‘油田注水脱氧用超重力场分离机的设计与研究’,硕士学位论文,北京化工大学(1995)
    62.张健,‘旋转床超重力场分离气溶胶的研究’,硕士学位论文,北京化工大学(1994)
    63.陈文炳、金光海、刘传富,‘新型离心传质设备的研究’,《化工学报》5,(1989)pp635-639
    64.陈甘棠,纪学反应工程,化学工业出版社(1981)
    65.竺洁松,‘旋转床超重力场中传质特性的研究’,硕士学位论文,北京化工大学(1994)
    66.郝靖国(Jimkuo Haw), 'Mass Transfer of Centrifugally Enhanced Polymer Devolatilization by Using Foam Metal Bed', MS. Dissertation, Case Western Reserve University (1995)
    67. Ai-Shaban K., Balasundaram V., Howarth C. R., Ramshaw C. and Peel J. R. A., 'The Hydrodynamic and Mass Transfer Characteristics of a Large Centrifugal Water Deoxygenator' Personal communication
    68.周绪美,郭锴,王玉红,冯元鼎,郑冲,单永年,张希俭,周秋柱 ‘超重力场技术用于油田注水脱氧的工业研究’,石油化工,23(12),(1994)807-812
    69.‘化工部超重力工程技术研究中心可行性报告’,北京化工大学,(内部资料)(1995)
    70.中华人民共和国专利 95215430.7
    71. Chong Zheng Kai Guo Yuanding Feng Cun Yang Nelson C. Gardner, 'Pressure Drop of Centripetal Gas Flow Through Rotating Beds' 待发表
    72. Sharma and Danckerts, P. V., 'Chemical Methods of measuring interfacial area and mass transfer coefficients in two fluid systems', Br. Chem. Engng, 15, (1970) pp522-528

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700