高温超导磁悬浮径向轴承的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导磁悬浮径向轴承具有结构紧凑、旋转损耗小、应用前景好等优点,本论文面向其实用化,开展优化设计、刚度特性、旋转特性和动态特性的研究。
     对超导轴承的优化设计,通常采用实验测试的方法比较不同条件下超导轴承的刚度特征,选取最优结构和各个参数的最优值。这种方法的所需时间长、投入成本高且不具有通用性。为此,本论文提出采用高温超导磁悬浮三维数值计算程序进行优化设计的方法。首先采用高温超导磁悬浮三维数值计算程序,分析永磁转子磁极与超导块材籽晶相对排布结构对超导轴承刚度特性的影响,由此得到一种较优的结构。依据这种结构,由仿真计算得到聚磁铁环厚度、永磁环径向厚度、工作间隙、超导定子工作温度在不同取值时的刚度特性。结合实际运行状况,选取这四个参数的最优值而对超导轴承进行优化设计。以仿真计算为基础的优化设计,其优化结果可作为理论和实验研究的参考。
     高温超导磁悬浮径向轴承刚度特性的研究对象包括轴向刚度、径向刚度、偏转角刚度、交叉刚度、综合刚度。测试表明超导定子冷却效率越高,超导轴承轴向刚度受永磁转子旋转的影响越小。根据单块高温超导块材与永磁转子在相对位移时的作用力,推导出计算精度为98.6%的径向刚度计算方程;分析永磁转子偏转与由此引起的永磁转子各部分径向偏移的关系,推导出高温超导磁悬浮径向轴承的偏转角刚度计算方程;对交叉刚度进行理论分析,并讨论交叉刚度在应用中的影响。根据上述结果研究综合刚度特性,推导出永磁转子受径向力、轴向力和力矩作用时的位移和偏转角计算方程组。
     稳定性、旋转损耗和在旋转机械中应用的特性研究是高温超导磁悬浮径向轴承旋转特性的研究内容。永磁转子旋转自由衰减和变转速实验,表明提高超导块材性能、永磁转子磁场均匀性、转子动平衡性有助于提高旋转稳定性和减小旋转损耗,采用涡流阻尼器可提高旋转稳定性但需降低旋转损耗。利用刚度特性研究的结果,分析了采用超导轴承的旋转机械实验样机设计的合理性。国际上首次把高温超导磁悬浮径向轴承应用于液氮泵样机,该样机运行稳定、转速达到2245rpm。搭建采用超导轴承的高速电机样机,运行转速达到9901rpm,为目前国内超导磁悬浮轴承的最高转速。
     高温超导磁悬浮径向轴承动态特性研究围绕竖直振动中和长期运行时的稳定性,以及在移动载体中应用的力学问题开展研究。高温超导磁悬浮径向轴承在竖直振动中表现出振动隔离性,可维持运行的稳定性。针对长期运行的稳定性,探讨动态条件下高温超导磁悬浮径向轴承转子下降问题的解决方案。采用修正法恢复轴向力以此达到修正转子高度下降的目的。理论分析表明修正法实施的过程中,超导轴承保持径向稳定性。在考虑加速情况下,探讨了移动式高温超导磁悬浮飞轮储能系统中飞轮转子的质量和质心排布问题。
High temperature superconducting magnetic radial bearing (HTSB) has the advantages: compact structure, low rotational loss, good application prospects, and so on. For the practical application, research emphasis of this doctoral dissertation are optimization design, stiffness characteristic, rotational characteristic and dynamic characteristic of HTSB
     The course of optimization design is usually that measuring the stiffness characteristic of HTSB during different conditions firstly, and then choosing the best construct and the optimum values of the parameters. Disadvantages of this method are time consuming, hing cost, and the result is not common for any case. For overcoming these disadvantages, this doctoral dissertation introduces a new optimization design method basing on the3d simulation software. Influences of factors to the characterization of HTSB are analysed:relative position between magnetic poles of permanent magnetic (PM) rotor and seed crystals of high temperature superconductor bulks (HTSs), thickness of iron shim, difference of inside diameter and outside diameter of PM ring, working gas, working temperature. Practical running state is considered, the optimized structural parameters are selected. The results of this optimization design method contribute to theoretical research and experiment research.
     Characteristic of HTSB are researched theoretically and experimentally:axial stiffness, radial stiffness, deflection angle stiffness, coupled stiffness, intregated stiffness. Measurement shows that the higher efficiency of the refrigeration, the less influence of the rotation of permanent magnetic rotor to the stiffness. Forces between HTSs and PM rotor are analyzed when their relative positions are different, equations for the radial stiffness of HTSB are introduced and its precision is98.6%. Basing on the relation between deflection and radial displacement of PM rotor, deflection angle stiffness is deduced. The principle of coupled stiffness is explained theoretically, influence of the coupled stiffness to the application of HTSB is discussed. At last, when the permanent magnetic rotor is exerted by axial force, radial force and torque, three equations for deflection angle, axial displacement and radial displacement are introduced.
     Stability, rotational loss and the characteristic of HTSB, which is used in the rotational machinery, are the research contents of rotational characteristic of HTSB. In the experiments of free rotational speed decay and variational rotational speed, it is found that if performance of HTSs, homogeneity of PM rotor's magnetic field, dynamic balance of PM rotor is better, the rotational loss will be lower and stabiliy will be higher. Application of eddy current retarder can increase stability of HTSB, and the rotational loss of HTSB has to be reduced by optimize its construct. HTSB is used in the liquid nitrogen pump whose rotational speed reaches22245rpm, and it works stably during working. The construct of motor with HTSB is proved to be correct by the mechanical model, and its rotational speed reaches9901rpm which is the highest speed of high temperature superconducting magnetic bearing in China.
     Vertical vibration experiment showed that HTSB has the function of vibration isolation, so HTSB can work stability during vertical vibration. Then aiming at stable working of HTSB for long time, the rotor fall problem is discussed.In the experiment, decrease of axial force is measured due to asymmetry of magnetic field and large vibration of PM rotor. Then the revising rotor fall method is used to revise axial force, so that the rotor fall problem can be resolved. Theoretical analysis shows that HTSB is stable during the course of the revising rotor fall method. When HTSB is used in the mobile flywheel energy storage system and the acceleration is considered, mass and position of the centroid of the flywheel rotor is researched.
引文
[1]吴宗泽.机械设计.高等教育出版社,2001.
    [2]刘成斌.工业机器人轴承的研究与应用.机器人技术与应用,2008,4:9-11.
    [3]铁姆肯公司Timken先进轴承助力航空工业发展.航空制造技术,2008,24:24-25.
    [4]王永春,刘阳东,王环东.水电站机组推力轴承甩油原因及处理.电力安全技术,2011,8:57.
    [5]陈加云.发动机主轴轴承的保持架优化设计.机电信息,2011,27:158-159.
    [6]任海东,杨伯原,魏平,李建华,徐志栋.航天高速轴承动态摩擦力矩的预测.润滑与密封,2008,33(2):94-97.
    [7]李德安.金属切削机床和农业机械用的滚动轴承.轴承,1964,1:8-10.
    [8]王岩,解衡,赵雷.高温气冷堆动力转换单元电磁轴承冷却系统的分析.清华大学学报(自然科学版),2008,48(3):435-438.
    [9]何琳,帅长庚,杨雪.潜艇螺旋桨轴承降噪技术研究进展.舰船科学技术,2011,10:3-8.
    [10]李兆光,张人佶,王浪平,彭俊斌,周刚.空间飞轮轴承DLC涂层表面改性的工艺研究.新技术新工艺,2010,8:101-104.
    [11]闫焕景.抽油机减速器轴承润滑探讨分析.机械工程师,2011,10:135-136.
    [12]胡雪松.风力发电机变桨轴承润滑解决方案.价值工程,2011,13:35-36.
    [13]王如意,刘正林,王翔,张圣东.船用水润滑斜面平台瓦推力轴承润滑性能研究.船海工程,2011,6:119-122.
    [14]姚世卫,杨俊,张雪冰,王娟,饶柱石.水润滑橡胶轴承振动噪声机理分析与试验研究.振动与冲击,2011.2:214-216.
    [15]吴铸新,刘正林,王隽,杨俊.水润滑轴承推力瓦块材料摩擦磨损试验研究.兵工学报,2011,1:118-123.
    [16]王丽丽.气体轴承及磁悬浮轴承在低温透平膨胀机上的应用.石油与化工设备,2007,06:35-38.
    [17]马文琦,于贺春,孙昂.气体轴承-转子系统研究进展.润滑与密封,2010,35(6):121-125.
    [18]陈君辉,杨逢瑜,杨龙,王其磊.一种Halbach阵列永磁轴承的磁力模型研究.哈尔滨理工大学学报,2011,5:72-76.
    [19]张钢,殷庆振,阮娟,蒋德得,高刚.轴向磁化永磁轴承的刚度特性分析.轴承,2011,4:4-8.
    [20]唐苏亚.磁力轴承及其在工业上的应用.微电机,1994,27(4):28-31.
    [21]蒋科坚,祝长生.主动电磁轴承转子系统自适应不平衡补偿控制.浙江大学学报(工学版),2011,3:503-509.
    [22]杨纪华.具时滞电磁轴承系统的稳定性和分支存在性分析.宁夏师范学院学报,2011,32(3):4-9.
    [23]尚安利.参数变化率有界电磁轴承H2/H8控制.控制工程,2011,18(5):810-814.
    [24]王其磊,杨逢瑜,杨倩,关红艳,陈君辉.电磁轴承在立式高速泵中的应用.排灌机械工程学报,2010,28(1):88-92.
    [25]蒋科坚,祝长生.基于在线识别对转速不敏感的主动电磁轴承转子系统不平衡振动控制.中国电机工程学报,2010,30(6):93-99.
    [26]邓自刚.运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究.西南交通大学博士论文,2009.
    [27]F. Hellman, E. M. Gyorgy, D.W. Johnson, et al. Levitation of a magnet over a flat type II superconductor. J. Appl. Phys.,1987,63(2):447.
    [28]K. B. Ma, Y. V. Postrekhin, W. K. Chu. Superconductor and magnetic levitation devices. Rev. Sci. Instru.,2003,74(12):4989-5017.
    [29]U. Floegel-Delor, R. Rothfeld, D. Wippich, B. Goebel, T. Riedel, and F. N. Werfel. Fabrication of HTS Bearings With Ton Load Performance. IEEE Trans. Appl. Supercond.2007,17:2142-2144.
    [30]H. Walter, J. Bock, Ch. Frohne, K. Schippl, H. May, W.R. Canders, P. Kummeth, W. Nick, H.-W. Neumueller. First Heavy Load Bearing for Industrial Application with Shaft Loads up to 10 kN. Journal of Physics:Conference Series.2006,43:995-998.
    [31]W. G. Harter, A. M. Hermann, Z. Z. Sheng. Levitation effects involving high Tc thallium based superconductors.1988,53(12):1119.
    [32]T. Takamori, J. J. Boland, D. B. Dove. Magnetic field controlled levitation and suspension of a magnet above and below type II superconductor. Appl. Phys. Lett., 1989,55(14):1454.
    [33]邓自刚,林群煦,王家素,郑珺,张娅,王素玉.高温超导磁悬浮轴承动态测试平台.低温与超导,2009,37(3):1-4.
    [34]邓自刚,林群煦,王家素,郑珺,蒋冬辉,张娅,王素玉.高温超导磁悬浮轴承摩擦系数研究.低温物理学报,2009,31(5):227-230.
    [35]邓自刚,林群煦,王家素,郑珺,蒋冬辉,马光同,刘伟,王素玉,张娅.高温超导磁悬浮飞轮储能系统样机.低温物理学报,2009,31(4):311-314.
    [36]邓自刚,王家素,王素玉,郑珺,林群煦,张娅.高温超导磁悬浮轴承研发现状.电工技术学报,2009,24(9):1-8.
    [37]邓自刚,王家素,林群煦,郑珺,马光同,张娅,王素玉.高温超导磁悬浮轴承选择与设计.低温与超导,2009,37(5):20-23.
    [38]邓自刚,林群煦,王家素,郑珺,张娅,王素玉.高温超导磁悬浮轴承运行实验研究.电工理论与新技术.2008全国博士生学术论坛电气工程论文集,1836-1841.
    [39]邓自刚,王家素,王素玉,郑珺,马光同,林群煦,张娅.高温超导飞轮储能技术发展现状.电工技术学报,2008,23(12):1-10.
    [40]Z. Deng, Q. Lin, J. Zheng, G. Ma, L. Liu, Y. Zhang, S. Wang, J. Wang. Design and characteristics of a double-axial superconducting magnetic bearing system. Cryogenics, 2009,49(6):259-262.
    [41]Z. Deng, Q. Lin, G. Ma, J. Zheng, Y. Zhang, S. Wang and J. Wang. A Double-Superconducting Axial Bearing System for an Energy Storage Flywheel Model. Journal of Physics:Conference Series,2008,97:012283.
    [42]Qunxu Lin, Jiasu Wang, Zigang Deng, Guangtong Ma, Donghui Jiang, Suyu Wang, and Fu Li. A High Temperature Superconducting Magnetic Helix Transmission Mechanism. IEEE Transactions on Applied Superconductivity,2010,20(1):8-13.
    [43]Qunxu Lin, Jiasu Wang, Zigang Deng, Guangtong Ma, Donghui Jiang, Suyu Wang, and Fu Li. A High Temperature Superconducting Magnetic Transmission Device. IEEE Transactions on Applied Superconductivity,2009,19(5):3744-3749.
    [44]Q. X. Lin, D. H. Jiang, G. T. Ma, J. S. Wang, Z. G. Deng, J. Zheng, and S. Y. Wang, Research of radial high temperature superconducting magnetic bearings for cryogenic liquid pumps.22nd International Conference on Magnet Technology, Marseille France, September 12-16,2011.
    [45]Q. Lin, D. Jiang, J. Wang, G. Ma, F. Yen, Z. Deng, J. Zheng, S. Wang, A measurement testing setup of the characteristic properties for high temperature superconducting bearing systems. EUCAS-Superconductivity Centennial Conferenceh, The Hague, The Netherlands, September 18-23,2011.
    [46]汪京荣,吴晓祖,周廉.高温超导磁悬浮与飞轮储能.物理,1997,26(4):226-232.
    [47]周宇,蒋书运,赵雷.磁悬浮储能飞轮系统研究进展.低温与超导,2003,31(1):42-46.
    [48]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状[J].太阳能学报,2000,21(4):417-433.
    [49]Fang J R, Lin L Z, Yan L G, et al. A New Flywheel Energy Storage System Using Hybrid Superconducting Magnetic Bearings. IEEE Trans. Appl. Supercond.,2003, 11(1):1657-1660.
    [50]Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Gerhard Reiner, and Niels Wehlau. Towards High-Capacity HTS Flywheel Systems. IEEE Trans. Appl. Supercond.,2010,20(4):2272-2275.
    [51]Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel. HTS magnetic bearings in prototype application. IEEE Trans. Appl. Supercond.2010,20(3):874-879.
    [52]F N Werfel, U Floegel-Delor, T Riedel, R Rothfeld, D Wippich, B Goebel,G Reiner, N Wehlau.250 kW Flywheel with HTS Magnetic Bearing for Industrial Use. Journal of Physics:Conference Series,2008,97:012206.
    [53]Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Gerhard Reiner, and Niels Wehlau. A Compact HTS 5 kWh/250 kW Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.,2007,17(2): 2138-2141.
    [54]F N Werfel, U Floegel-Delor, T Riedel, R Rothfeld, D Wippich, B Goebel. Flywheel Challenge:HTS Magnetic Bearing. Journal of Physics:Conference Series,2006,43: 1007-1010.
    [55]F. N. Werfel, U. Floegel-Delor, T. Riedel, R. Rothfeld, D. Wippich, B. Goebel. Encapsulated HTS Bearings:Technical and Cost Considerations. IEEE Trans. Appl. Supercond.,2005,15(2):2306-2311.
    [56]F. N. Werfel, U. Floegel-Delor, T. Riedel, R. Rothfeld, D. Wippich, B. Goebel. HTS magnetic bearing in prototype (PPT). October 16,2009.
    [57]F NWerfel, U Floegel-Delor, R Rothfeld, B Goebel, D Wippich, T Riedel. Modelling and construction of a compact 500 kg HTS magnetic bearing. Supercond. Sci. Technol., 2005,18:S19-S23.
    [58]F N Werfel, U Floegel-Delor, T Riedel, R Rothfeld, D Wippich, B Goebel. Operation and design selection of high temperature superconducting magnetic bearings. Supercond. Sci. Technol.,2004,17:1192-1195.
    [59]F. N. Werfel, U. Floegel-Delor, T. Riedel, R. Rothfeld, D. Wippich, B. Goebel, P. Kummeth, H.-W. Neumueller, and W. Nick. Progress Toward 500 kg HTS Bearings. IEEE Trans. Appl. Supercond.2003,13(2):2173-2178.
    [60]Frank N. Werfel, Uta Flogel-Delor, Rolf Rothfeld, Dieter Wippich, Thomas Riedel. HTS magnetic bearings. Physica C,2002,372-376:1482-1486.
    [61]Frank N. Werfel, Uta Flogel-Delor, Rolf Rothfeld, Dieter Wippich, Thomas Riedel. Centrifuge advances using HTS magnetic bearings. Physica C,2001,354:13-17.
    [62]Frank N. Werfel, Uta Floegel-Delor, Rolf Rothfeld, Dieter Wippich, Thoinas Riedel. Laser Beam Deflection Polygon Scanner Using HTS Bearings. IEEE Trans. Appl. Supercond.,2001,11(1):1737-1740.
    [63]P. Kummeth, W. Nick, H.-W. Neumueller. Progress in development of high capacity magnetic HTS bearings. Physica C,2005,426-431:739-745.
    [64]P. Kummeth, W. Nick, G. Ries, H.-W. Neumuller. Development of superconducting magnetic bearings. Physica C,2002,372-376:1470-1473.
    [65]P Kummeth, G Ries, W Nick and H-WNeumuller. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor. Supercond. Sci. Technol.,2004,17:S259-S263.
    [66]S O Siems, W-R Canders. Advances in the design of superconducting magnetic bearings for static and dynamic applications. Supercond. Sci. Technol.2005,18: S86-S89.
    [67]S O Siems, W-R Canders, H Walter, J Bock. Superconducting magnetic bearings for a 2 MW/10 kWh class energy storage flywheel system. Supercond. Sci. Technol.,2004,17: S229-S233.
    [68]H. May, R. Palka, E. Portabella, W.-R. Canders. Evaluation of the magnetic field-high temperature superconductor interactions. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2004,23(1):286-304.
    [69]Sven Olav Siems, Wolf-Rudiger Canders. Experimental investigation of linear and rotatory HTSC bearing for industrial applications. International Journal of applied electromagnetics and mechancics,2004,19:199-202.
    [70]H. Walter, S. Arsac, J. Bock, S. O. Siems, W.-R. Canders, A. Leenders, H. C. Freyhardt, H. Fieseler, M. Kesten. Liquid Hydrogen Tank With Cylindrical Superconducting Bearing for Automotive Application. IEEE Trans. Appl. Supercond.,2003,13(2): 2150-2153.
    [71]A. Leenders, M. Ullrich, H.C. Freyhardt, M. Kesten, H. Fieseler, W.R. Canders, H. May, H. Weh, S. Gauss, J. Bock. Fabrication of HTS Monoliths for a Bearing System in a Cryogenic Vessel. IEEE Trans. Appl. Supercond.,1999,9(2):992-995.
    [72]S. Gauss, J.H. Albering, J. Bock, M. Kesten, H. Fieseler, W.R. Canders, H. May, H.C. Freyhardt, M. Ullrich. Cryotank with superconducting, magnetic suspension of the interior tank. IEEE Trans. Appl. Supercond.,1999,9(2):1004-1007.
    [73]W.-R. Canders, H. May, R. Palka. Topology and performance of superconducting magnetic bearings. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.1998,17(5/6):628-634.
    [74]B. Bringmann, H. Walter, Ch. Jooss, A. Leenders, H.C. Freyhardt. Preparation of high-quality HTS rings for application in the magnetic bearing of cryotanks and pinning in grain boundaries. Physica C,2002,372-376:1478-1481.
    [75]H. Walter, S. Arsac, J. Bock, S. O. Siems, W.-R. Canders, A. Leenders, H. C. Freyhardt, H. Fieseler, M. Kesten. Liquid Hydrogen Tank With Cylindrical Superconducting Bearing for Automotive Application. IEEE Trans. Appl. Supercond.,2003,13(2): 2150-2153.
    [76]Andreas Leenders, Heribert Walter, Boris Bringmann, Marie-Pierre Delamare, Christian Jooss, Herbert C. Freyhardt. High-quality HTS tiles designed for the application in magnetic bearings of cryotanks and flywheels. IEEE Trans. Appl. Supercond.,2001,11(1):3728-3731.
    [77]M. Strasik, J.R. Hull, P.E. Johnson, J. Mittleider,K.E. McCrary, C.R. Mclver, A.C. Day. Performance of a conduction-cooled high-temperature superconducting bearing. Materials science and energineering B,2008,151(3):195-198.
    [78]M. Strasik, P. E. Johnson, A. C. Day, J. Mittleider, M. D. Higgins, J. Edwards, J. R. Schindler, K. E. McCrary, C. R. McIver, D. Carlson, J. F. Gonder, and J. R. Hull. Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing. IEEE Trans. Appl. Supercond.,2007, 17(2):2133-2137.
    [79]Arthur C. Day, John R. Hull, Michael Strasik, Phil E. Johnson, Kevin E. McCrary, John Edwards, John A. Mittleider, James R. Schindler, Richard A. Hawkins, and Michael L. Yoder. Temperature and Frequency Effects in a High-Performance Superconducting Bearing. IEEE Trans. Appl. Supercond.,2003,13(2):2179-2184.
    [80]Mike Srrasik. Flywheel electricity system. Superconductivity partnership with industry. 2003,01-13.
    [81]Ki B. Ma, Yong Zhang, Yevgeniy Postrekhin, Wei-Kan Chu. HTS Bearings for Space Applications:Reaction Wheel With Low Power Consumption for Mini-Satellites. IEEE Trans. Appl. Supercond.,2003,13(2):2275-2278.
    [82]John R. Hull, Arthur C. Day. Development of Flywheel Energy system. DOE Annual Peer Review Meeting, Washington, DC. July 18,2002.
    [83]Yong Zhang, Yevgeniy Postrekhin, Ki Bui Ma, Wei-Kan Chu. Reaction wheel with HTS bearings for mini-satellite attitude control. Supercond. Sci. Technol.2002,15: 823-825.
    [84]A M Wolsky. An overview of flywheel energy systems with HTS bearings. Supercond. Sci. Technol.2002,15:836-837.
    [85]Yong Zhang, Yevgeniy Postrekhin, Ki Bui Ma, Wei-Kan Chu. Reaction wheel with HTS bearings for mini-satellite attitude control. Supercond. Sci. Technol.,2002,15: 823-825.
    [86]Thomas M. Mulcahy, John R. Hull, Kenneth L. Uherka, Robert G. Abboud, John J. Juna. Test Results of 2-kWh Flywheel Using Passive PM and HTS Bearings. IEEE Trans. Appl. Supercond.,2001,11(1):1729-1732.
    [87]A C Day, M Strasik, K E McCrary, P E Johnson, JWGabrys, J R Schindler, R A Hawkins, D L Carlson, M D Higgins, J R Hull. Design and testing of the HTS bearing for a 10 kWh flywheel system. Supercond. Sci:Technol.,2002,15:838-841.
    [88]John R Hull. Superconducting bearings. Supercond. Sci. Technol.,2000,13:R1-R15.
    [89]汪京荣.美国能源部和波音公司签订了发展高温超导飞轮储能装置协议.稀有金属快报.2000,2:15-16.
    [90]K. B. Ma, Q. Y. Chen, E. Postrekhin, H. Ye, Y. Zhang, W. K. Chu. High Temperature Superconductor Levitation Bearings for Space Application. Physica C,2000,341-348: 2517-2520.
    [91]Thomas M. Mulcahy, John R. Hull, Kenneth L. Uherka, Ralph C. Niemann, Robert G. Abboud, John P. Juna, John A. Lockwood. Flywheel energy storage advances using HTS bearings. IEEE Trans. Appl. Supercond.,1999,9(2):297-300.
    [92]Larry R. Turner. Fields and Forces in Flywheel Energy Storage with High-Temperature Superconducting Bearings. IEEE Trans. Appl. Supercond.,1997,33(2):2000-2003.
    [93]Thomas M. Mulcahy, John R. Hull, Kenneth L. Uherka, Robert G. Abboud, James H. Wise, David W. Carnegie, Charles E. Bakis, Christopher W. Gabrys. A Permanent-Magnet Rotor for a High-Temperature Superconducting Bearing. IEEE Trans. Appl. Supercond.,1996,32(4):2609-2612.
    [94]Mike Srrasik. Flywheel energy storage systems (PPT). Boeing phantom Works.
    [95]Phil Johnson. Design, fabrication, and test of a 5 kWh flywheel energy storage system utilizing a high temperature superconducting magnetic bearing (PPT). EESAT October, 2005.
    [96]Phil Johnson. Design, fabrication, and test of a 5 kWh flywheel energy storage system utilizing a high temperature superconducting magnetic bearing. Energy storage systems (PPT), EESAT October,2005.
    [97]Arthur Day. Superconducting flywheel development (PPT). ESS FY2002 peer review.
    [98]Arthur Day. Superconducting flywheel Development (PPT). ESS FY2001 Peer review.
    [99]Mike Strasik. Flywheel electricity system with superconducting bearings for utility applications (PPT). Boeing phantom Works.
    [100]N. Koshizuka. R&D of superconducting bearing technologies for flywheel energy storage systems. Physica C,2006,445-448:1103-1108.
    [101]T. Ichihara, K. Matsunaga, M. Kita, I. Hirabayashi, M. Isono, M. Hirose, K. Yoshii, K. Kurihara, O. Saito, S. Saito, M. Murakami, H. Takabayashi, M. Natsumeda, N. Koshizuka.Fabrication and evaluation of superconducting magnetic bearing for 10 kW h-class flywheel energy storage system. Physica C,2005,426-431:752-758.
    [102]Takumi Ichihara, Koji Matsunaga, Makoto Kita, Izumi Hirabayashi, Masayuki Isono, Makoto Hirose, Keiji Yoshii, Kazuaki Kurihara, Osamu Saito, Shinobu Saito, Masato Murakami, Hirohumi Takabayashi, Mitsutoshi Natsumeda, Naoki Koshizuka. Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system. IEEE Trans. Appl. Supercond.,2005,15(2):2245-2248.
    [103]Koji Matsunaga, Masaru Tomita, Nobuhiko Yamachi, Kazumasa Iida, Junko Yoshioka, Masato Murakami. YBCO bulk of the superconducting bearing for a 10 kWh flywheel. Supercond. Sci. Technol.,2002,15:842-845.
    [104]N. Koshizuka, K. Matsunaga, N. Yamachi, A. Kawaji, H. Hirabayashi, M. Murakami, M. Tomita, S. Une e, S. Saito, M. Isono, H. Nasu, T. Maeda, F. Ishikawa. Construction of the stator installed in the superconducting magnetic bearing for a 10 kWh flywheel. Physica C,2004,412-414:756-760.
    [105]N. Koshizuka, F. Ishikawa, H. Nasu, M. Murakami, K. Matsunaga, S. Saito, O. Saito, Y. Nakamura, H. Yamamoto, R. Takahata, Y. Itoh, H. Ikezawa, M. Tomita. Progress of superconducting bearing technologies for flywheel energy storage systems. Physica C, 2003,386:444-450.
    [106]K. Matsunaga, N. Yamachi, M. Tomita, M. Murakami, N. Koshizuka. Characterization of YBCO bulk superconductors for 100 kWh flywheel. Physica C,2003,392-396: 723-728.
    [107]N. Koshizuka, F. Ishikawa, H. Nasu, M. Murakami, K. Matsunaga, S. Saito, O. Saito, Y. Nakamura, H. Yamamoto, R. Takahata, T. Oka, H. Ikezawa, M. Tomita. Present status of R&D on superconducting magnetic bearing technologies for flywheel energy storage system. Physica C,2002,378-381:11-17.
    [108]K. Matsunaga, M. Tomita, N. Yamachi, K. Iida, J. Yoshioka, M. Isono, M. Hirose, H. Nasu, H. Kameno, A. Kubo, R. Takahata, N. Kitai, H. Yamamoto, Y. Nakamura, N. Koshizuka, M. Murakami. Fabrication and evaluation of superconducting bearing module for 10 kWh flywheel. Physica C,2002,378-381:883-887.
    [109]Koji Matsunaga, Masaru Tomita, Nobuhiko Yamachi, Kazumasa Iida, Junko Yoshioka, Masato Murakami. YBCO bulk of the superconducting bearing for a 10 kWh flywheel. Supercond. Sci. Technol.,2002,15:842-845.
    [110]Y.Miyagawa, H.Kameno, R.Takahata, H.Ueyama. A 0.5 kWh flywheel energy storage system using a high-Tc superconducting magnetic bearing. IEEE Trans. Appl. Supercond.,1999,9(2):996-999.
    [111]Hironori Kameno, Yasukata Miyagawa, Ryouichi Takahata Hirochika Ueyama. A Measurement of Rotation Loss Characteristics of High-Tc Superconducting Magnetic Bearings and Active Magnetic Bearings. IEEE Trans. Appl. Supercond.,1999,9(2): 972-975.
    [112]Issei Masaie, Kazuyuki Demachi, Takumi Ichihara, Mitsuru Uesaka. Rotational loss modeling in superconducting magnetic bearing. IEEE Trans. Appl. Supercond.,2006, 16(2):1807-1810.
    [113]Issei Masaie, Kazuyuki Demachi, Takumi Ichihara, Mitsuru Uesaka. Numerical Evaluation of Rotational Speed Degradation in the Superconducting Magnetic Bearing for Various Superconducting Bulk Shapes. IEEE Trans. Appl. Supercond.,2005,15(2): 2257-2260.
    [114]Kazuyyki Demachi, Koji Matsunaga. Numerical and experimental evaluation of rotation speed degradation of superconducting magnetic bearing. Physica C,2004, 412-414:789-794.
    [115]Issei Masaie, Kazuyuki Demachi, Koji Matsunaga, Mitsuru Uesaka. Numerical evaluation of rotation speed degradation of SMB in the 100 kWh superconducting flywheel. Physica C,2004,412-414:784-788.
    [116]Ryosuke Shiraish, Kazuyuki Demachi, Mitsuru Uesaka. Numerical simulation of coupled problem of electromagnetic field and heat conduction in superconducting magnetic bearing. Physica C,2003,392-396:734-738.
    [117]ShigeoNagaya, Naoki Hirano, MakotoTakenaka, Masaharu Minami, Hiroshi Kawashima. Fundamental Study on High Tc Superconducting Magnetic Bearings for Flywheel System. IEEE Trans. Appl. Supercond.,1995,5(2):643-649.
    [118]Masanori Tsuchimoto, Toshihisa Honma. Numerical Evaluation of Levitation Force of HTSC Flvwheel. IEEE Trans. Appl. Supercond.,1994,4(4):211-215.
    [119]Ryousuke Shiraishi, Kazuyuki Demachi, Mitsuru Uesaka, Ryoichi Takahata. Numerical and Experimental Analysis of the Rotation Speed Degradation of Superconducting Magnetic Bearings. IEEE Trans. Appl. Supercond.,2003,13(2):2279-2282.
    [120]S. Nagaya, N. Kashima, H. Kawashima, Y. Kakiuchi, A. Hoshino, S. Isobe. Development of the axial gap type motor/generator for the flywheel with superconducting magnetic bearings. Physica C,2003,392-396:764-768.
    [121]S. Nagaya, K. Komura, N. Kashima, H. Kawashima, S. Unisuga, Y. Kakiuchi. Development of the composite superconducting magnetic bearing for superconducting flywheel. Physica C,2003,392-396:719-722.
    [122]S. Nagaya, K. Komura, N. Kashima, H. Kawashima, Y. Kakiuchi, M. Minami. Improvement and enlarging of the CFRP flywheel with superconducting magnetic bearings. Physica C,2003,392-396:769-772.
    [123]Kazuyuki Demachi, Kenzo Miya, Ryoichi Takahata, Hironori Kameno, Hiromasa Higasa. Numerical evaluation of rotation speed degradation of superconducting magnetic bearing caused by the electromagnetic phenomena. Physica C,2002,378-381: 858-863.
    [124]Shigeo Nagaya, Naoj i Kashima, Masaharu Minami, Hiroshi Kawashima, Shigeru Unisuga. Study on High Temperature Superconducting Magnetic Bearing for 10 kWh Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.,2001,11(1): 1649-1653.
    [125]Shigeo Nagaya, Naoj i Kashima, Masaharu Minami, Hiroshi Kawashima, Shigeru Unisuga, Y. Kakiuchi, H. Ishigaki. Study on characteristics of high temperature superconducting magnetic thrust bearing for 25 kWh flywheel. Physica C,2001, 357-360:866-869.
    [126]Kazuyuki Demachi, Ryusuke Numata, Ryota Shimizu, Kenzo Miyaa, Hiromasa Higasa. AC loss of HTSC bulks for magnetic levitation. Journal of Materials Processing Technology,2001,108:141-144.
    [127]Hidekazu Teshima, Taichi Tawara, Jun Kobuchi, Tatsuo Suzuki, Ryunchi Shimada. Ring-shaped flywheel energy storage systems with superconducting levitation. PCC-Nagaoka'97.1997,701-706.
    [128]M. Kubota, N. Uchiyama, E. Suzuki, Y. Yamauchi, M. Fujii; H. Nakashima, H. Ohsaki. Characteristics of superconducting magnetic bearings for 50kWh-class flywheel system. Papers of Technical Meeting on Transportation and Electric Railway, IEE Japan.2006. 6(64-69):17-20.
    [129]Yusuke YAMAUCHI, Nobuhito UCHIYAMA, Eiji SUZUKI, Michiaki KUBOTA, Madoka FUJII, Hiroyuki OHSAKI. Development of 50kWh-class Superconducting Flywheel Energy Storage System. SPEEDAM 2006, International Symposium on Power Electronics, Electrical Drives, Automation and Motion. S15:16-18.
    [130]K. Murakami, M. Komori, H. Mitsuda, A. Inoue. Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB). Cryogenics,2007,47:272-277.
    [131]O. Tsukamoto, A. Utsunomiya. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator. Physica C, 2007,463-465:1267-1270.
    [132]H. Konishi, M. Isono, H. Nasu, M. Hirose. Suppression of rotor fall for radial-type high-temperature superconducting magnetic bearing. Physica C,2003,392-396: 713-718.
    [133]Rubens de Andrade, Jr., Guilherme G. Sotelo, Antonio C. Ferreira, Luis G. B. Rolim, Jose L. da Silva Neto, Richard M. Stephan, Walter I. Suemitsu, Roberto Nicolsky. Flywheel Energy Storage System Description and Tests. IEEE Trans. Appl. Supercond., 2007,17(2):2154-2158.
    [134]Guilherme Goncalves Sotelo, Rubens de Andrade, Jr., Antonio Carlos Ferreira. Magnetic Bearing Sets for a Flywheel System. IEEE Trans. Appl. Supercond.,2007, 17(2):2150-2153.
    [135]Guilherme G. Sotelo, Antonio C. Ferreira, Rubens de Andrade, Jr. Halbach Array Superconducting Magnetic Bearing for a Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.,2005,15(2):2253-2256.
    [136]Rubens de Andrade, Jr., Antonio C. Ferreira, Guilherme G. Sotelo, Jose L. Silva Neto, Luiz G. B. Rolim, Walter I. Suemitsu, Marcio F. Bessa, Richard M. Stephan, Roberto Nicolsky. Voltage Sags Compensation Using a Superconducting Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.,2005,15(2):2265-2268.
    [137]R. de Andrade Jr., A.C. Ferreira, G.G. Sotelo, W.I. Suemitsu, L.G.B. Rolim, J.L. Silva Neto, M.A. Neves, V.A. dos Santos, G.C. da Costa, M. Rosario, R. Stephan, R. Nicolsky. A superconducting high-speed flywheel energy storage system. Physica C, 2004,408-410:930-931.
    [138]Z. Kohari, I. Vajda. Losses of flywheel energy storages and joint operation with solar cells. Journal of Materials Processing Technology,2005,161:62-65.
    [139]Z. Kohari, V. Tihanyi, I. Vajda. Loss Evaluation and Simulation of Superconducting Magnetic Bearings. IEEE Trans. Appl. Supercond.,2005,15(2):2328-2331.
    [140]Istvan Vajda, Zalan Kohari, Laszlo Benko, Victor Meerovich, Wolfgang Gawalek. Investigation of Joint Operation of a Superconducting Kinetic Energy Storage (Flywheel) and Solar Cells. IEEE Trans. Appl. Supercond.,2003,13(2):2169-2172.
    [141]Istvan Vajda, Zalan Kohari, Tamas Porjesz, Laszlo Benko, V. Meerovich, Sokolovsky, W. Gawalek. Operational characteristics of energy storage high temperature superconducting flywheels considering time dependent processes. Physica C,2002, 372-376:1500-1505.
    [142]T. A. Coombs, I. Samad, D. Ruiz-Alonso, K. Tadinada. Superconducting Micro-Bearings. IEEE Trans. Appl. Supercond.,2005,15(2):2312-2315.
    [143]Amit Rastogi, T. A. Coombs, A. M. Campbell, R. Hall. Axial Stiffness of Journal Bearings in Zero-Field and Field-Cooled Modes. IEEE Trans. Appl. Supercond.,2005, 15(2):2242-2244.
    [144]Amit Rastogi, David Ruiz Alonso, T. A. Coombs, A. M. Campbell. Axial and Journal Bearings for Superconducting Flywheel Systems. IEEE Trans. Appl. Supercond.,2003, 13(2):2267-2270.
    [145]T A Coombs, A Cansiz, A M Campbell. A superconducting thrust-bearing system for an energy storage flywheel. Supercond. Sci. Technol.,2002,15:831-835.
    [146]A. Cansiz, A.M. Campbell, T.A. Coombs. An Evershed type superconducting flywheel bearing. Physica C,2003,390:305-310.
    [147]R J Storey, T A Coombs, A M Campbell. Stability and stiffness of superconducting bearings
    [148]T.A. Coombs, A.M. Campbell. A bearing system for an energy storage flywheel.
    [149]T.A. Coombs. Bearinas and energy storage. IEE Colloquium on High Tc Superconducting Materials as Magnets.1995.
    [150]T. Coombs, A. M. Campbell, R. Storey, R Weller. Superconducting Magnetic Bearings for Energy Storage Flywheels. IEEE Trans. Appl. Supercond.,1999,9(2):968-971.
    [151]Kangwon Lee, Bongsu Kim, Junseok Ko, Sangkwon Jeong, Seung S Lee. Advanced design and experiment of a small-sized flywheel energy storage system using a high-temperature superconductor bearing. Supercond. Sci. Technol.2007,20:634-639.
    [152]Bongsu Kim, Junseok Ko, Sangkwon Jeong and Seung S Lee. Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing. Supercond. Sci. Technol.2006,19:217-222.
    [153]Eunjeong Lee, Bongsu Kim, Junseok Ko, Chi Young Song, Seong-Jin Kim, Sangkwon Jeong, Seung S. Lee. An Integrated Micro HTS System for Energy Storage and Attitude Control for Three-Axis Stabilized Nanosatellites. IEEE Trans. Appl. Supercond.,2005, 15(2):2324-2327.
    [154]Eunjeong Lee. A Micro HTS Renewable Energy/Attitude Control System for Micro/Nano Satellites. IEEE Trans. Appl. Supercond.,2003,13(2):2263-2266.
    [155]Eunijeong Lee. A high-temperarture superconductot-magnet energy storage and attitude control system for space MEMS. IEEE AC paper.2002,5:2365-2372.
    [156]Junghyun Lee, Junseok Ko, Youngkwon "Kim, Sangkwon Jeong, Taehyun Sung, Younghee Han, Jeong-Phil Lee, Seyong Jung. Experimental study on the double-evaporator thermosiphon for cooling HTS (high temperature superconductor) system. Cryogenics,2009,49:390-397.
    [157]Seyong Jung, Jisung Lee, Byungjun Park, Sangkwon Jeong, Junseok Ko, Jeonghyun. Double-Evaporator Thermosiphon for Cooling 100 kWh Class Superconductor Flywheel Energy Storage System Bearings. IEEE Trans. Appl. Supercond.,2009,19(3): 2103-2106.
    [158]Jeong-Phil Lee, Nyeon-Ho Jeong, Young-Hee Han, Sang-Chul Han, Se-yong Jung, Byung-Jun Park, Tae-Hyun Sung. Assessment of the Energy Loss for SFES With Rotational Core Type PMSM/G. IEEE Trans. Appl. Supercond.,2009,19(3): 2087-2090.
    [159]Y. H. Han, J. R. Hull, S. C. Han, N. H. Jeong, T. H. Sung, Kwangsoo No. Design and Characteristics of a Superconductor Bearing. IEEE Trans. Appl. Supercond.,2005, 15(2):2249-2252.
    [160]Tae-Hyun Sung, Young-Hee Han, Jun-Sung Lee, Sang-Chul Han, Nyeon-Ho Jeong, Kwang-Seok Oh, Byung-Sam Park, Je-Myung Oh. Effect of a Passive Magnetic Damper in a Flywheel System With a Hybrid Superconductor Bearing Set. IEEE Trans. Appl. Supercond.,2003,13(2):2165-2168.
    [161]Y.H. Han, J.-S. Lee, T.-H. Sung, S.-C. Han, Y.-C. Kim, S.-J. Kim. Design a hybrid high Tc superconductor bearings for flywheel energy storage system. Physica C,2002, 372-376:1457-1461.
    [162]T.-H. Sung, J.-S. Lee, Y.H. Han, S.-C. Han, S.-K. Choi, S.-J. Kim.300 Wh class superconductor flywheel energy storage system with a horizontal axle. Phusica D,2002, 372-376:1451-1456.
    [163]T.H. Sung, S.C. Han, Y.H. Han, J.S. Lee, N.H. Jeong, S.D. Hwang, S.K. Choi. Designs and analyses of flywheel energy storage systems using high-Tc superconductor bearings. Cryogenics,2002,42:357-362.
    [164]T. H. Sung, J. S. Lee, Y. H. Han, S. C. Han, C. J. Kim, G. W. Hong, etc. Flywheel energy storage system with a horizontal axle mounted on high Tc superconductot bearings. Cryogneics,2001,41:461-467.
    [165]E Perini, G Giunchi. Field Cooling of a MgB2 cylinder around a permanent magnets stack:prototype for superconductive magnetic bearing. Superconductor Science & Technology.2009,22(4):045021.
    [166]Decher R, Peters P N, Sisk R C, Urban E W, Vlasse M, Rao D K. Appl. Supercond. 1993,1:1265.
    [167]Rivetti, A., Martini, G., Goria, R. and Lorefice, S. Turbine flow meter for liquid helium with the rotor magnetically levitated. Cryogenics,1987,27:8-11.
    [168]Anup Patel, Ryszard Palka, Bartek Glowacki. New Fully Superconducting Hybrid Bearing Concept Using the Difference in Irreversibility Field of Two Superconducting Components (PPT).
    [169]A Patel, R Palka, B A Glowaski, Y. Shi. etc. Superconducting bearings with high force density using bulk MaB2 and magnetized YBCO bulks as a field source.22nd International Conference on Magnet Technology, Marseille France, Sep 12-16 2011.
    [170]Static properties of high temperature superconductor bearings for a 10 kWh class superconductor flywheel energy storage system, physica C.2010,470(20):1772-1776.
    [171]J. R. Hull, M. Strasik, J. A. Mittleider, J. F. Gonder, P. E. Johnson, K. E. McCrary, C. R. McIver. High rotational-rate rotor with high-temperature superconducting bearings. IEEE Trans. Appl. Supercond.,2009,19(3):2078-2082.
    [172]Hiroshi Seino, et al. Study of a High-temperature Superconducting Magnetic Bearing for Flywheel Energy Storage Systems. QR of RTTI.2009,50(3):179-184.
    [173]Fang J R, Lin L Z, Yan L G, et al. A New Flywheel Energy Storage System Using Hybrid Superconducting Magnetic Bearings. IEEE Trans. Appl. Supercond.,2003, 11(1):1657-1660.
    [174]李永亮,方进,郭明珠.一种新型超导混合磁悬浮轴承的悬浮力特性分析[C].第九届全国超导学术研讨会,西安,2007,12月7日~11日
    [175]徐同申,俞蓬.内装式电主轴在国内外机床行业中的发展.金属加工.2010,6:18-19.
    [176]杨兰玉,马岩.电主轴技术在亚纳米木粉粉碎机中的应用研究.机床与液压.2010,38(1):51-54.
    [177]熊万里,侯志泉,吕浪,阳雪兵.气体悬浮电主轴动态特性研究进展.机械工程学报.2011,47(5):40-58.
    [178]闫红卫,徐同申.国内高速电主轴的应用与发展.现代制造.2007,3:58-60.
    [179]田杰,李香滨.考虑磨削力的磁悬浮磨床电主轴转子系统动态特性分析.2010,21(24):3005-3008.
    [180]李彦.数控机床高速电主轴技术及应用.哈尔滨轴承.2010,31(2):46-49.
    [181]徐龙祥,周波.磁浮多电航空发动机的研究现状及关键技术.航空动力学报.2003,18(1):51-59.
    [182]王戈一.磁悬浮多电发动机的研究.燃气涡轮试验与研究.2007,4:15-19.
    [183]张剀,戴兴建,张小章.磁轴承超临界高速电机系统控制器设计.清华大学学报(自然科学版).2010,50(11):1785-1788.
    [184]周凤争,刘宝成,唐庆华,王凯,沈建新.高速永磁无刷直流电机设计和试验.电机与控制应用.2010,37(1):13-16.
    [185]贾普照.稳态加速度模拟试验设备——离心机的设计(1).航天器环境工程.2009,26(1):86-101.
    [186]金绿松,林元喜.离心分离.化学工业出版社,2008.
    [187]闻宝联,涂光备.高速气体离心机取料器能耗试验研究.化工机械,2004,31(3):125-129.
    [188]时爱民,黄东涛,付瑞峰.高速旋转气体离心机流场的数值模拟.清华大学学报,1982,22(2):15-29.
    [189]汪希平,张直明,于良,万金贵.电磁轴承在透平制氧膨胀中的应用研究进展.中国机械工程,2000,11(4):379-383.
    [190]陈汝刚,侯予,袁秀玲,陈纯正.微小型气体轴承高速透平机械研究进展.润滑与密封.2008,33(9):85-90.
    [191]杨志轶.飞轮电池储能关键技术研究.合肥:合肥工业大学博士学位论文,2002.
    [192]Aearniey P P, Mecrow B C, Burdess J S, et al. An Integrated Flywheel/Machine Energy Store for Road Vehicles. IEE Colloquium on New Topologies for Permanent Magnet Machines,1997:9/1-9/6.
    [193]Wall R W, Johnson B K. Regenerative Train Control Networks for Gas Turbine Powered High-Speed Rail Locomotive with Flywheel Energy Storage. The 28th Annual Conference of Industrial Electronics Society,2002,3:2155-2160.
    [194]Edwards J, Aldrich J W, et al. Flight Test Demonstration of a Flywheel Energy Storage System on the International Space Station. Proceeding of the 26th Intersociety Energy Conversion Engineering Conference,1991,1-6:D312-D318.
    [195]Eunjeong Lee, Bongsu Kim, Junseok Ko, Chi Young Song, Seong-Jin Kim, Sangkwon Jeong, and Seung S. Lee. An integrated micro HTS system for energy storage and attitude control for three-axis stabilized nanosatellites. IEEE Trans. Appl. Supercond.,2005, 15(2):2324-2327.
    [196]Kangwon Lee, Bongsu Kim, Junseok Ko, Sangkwon Jeong, Seung S Lee. Advanced design and experiment of a small-sized flywheel energy storage system using a high-temperature superconductor bearing. Supercond. Sci. Technol.2007, (20): 634-639.
    [197]马光同.高温超导磁悬浮三维理论模型及其数值研究.西南交通大学博士学位论文,2009.
    [198]Guang-tong Ma, Jia-su Wang, and Su-yu Wang.3-D Modeling of High-Tc Superconductor for Magnetic Levitation/Suspension Application—Part Ⅱ:Validation With Experiment. IEEE Trans. Appl. Supercond.2010,20(4):2228-2234.
    [199]Guang-tong Ma, Jia-su Wang, and Su-yu Wang.3-D Modeling of High-Tc Superconductor for Magnetic Levitation/Suspension Application—Part Ⅰ:Introduction to the Method. IEEE Trans. Appl. Supercond.2010,20(4):2219-2227.
    [200]荆华.不同温度下高温超导磁悬浮系统悬浮性能实验研究.西南交通大学博士学位论文,2009.
    [201]S.Y. Wang, J.S. Wang, C.Y. Deng, et al. An update High-Temperature Superconducting Maglev Measurement System. IEEE Trans. Appl. Supercond.,2007, 17(2):2067-2070.
    [202]http://www.bksv.cm
    [203]郑珺.平移对称式高温超导磁悬浮系统的动态特性.西南交通大学博士学位论文,2007.
    [204]刘立,马立山.流体力泵与风机.中国电力出版社,2004.
    [205]Masaru Tomita, Masato Murakami. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature,421:517-520.
    [206]王家素,王素玉,黄海于,张翠芳,林国彬,曾佑文,王少华,邓昌延,许志沛,任仲友,江河,朱敏,唐启雪.高温超导磁悬浮测试系统.高技术通讯,2000,10:55-58.
    [207]http//www.dpflex.com
    [208]G.T. Ma, J.S. Wang, Q.X.Lin, M.X.Liu, Z.G.Deng, X.C.Li, H.F.Liu, J.Zheng, S.Y. WangLateral restorable characteristic of the high-Tc superconducting maglev above the NdFeB guideway. Physica C.2009,469(21):1954-1957.
    [209]Q.X. Lin, G.T. Ma, Z.G. Deng, J.S. Wang, W. Liu, Y.J. Qin, S.Y. Wang. Characteristic of the Guidance Force in the High-Tc Superconducting Levitation System with Pre-Load Process. Journal of Superconductivity and Novel Magnetism,2009,22(8): 791-796.
    [210]H. Song, O. Haas, C. Beyer, et al. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system. Appl. Phys. Lett.,2005,86:195206(3pp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700