基于多尺度线调频小波路径追踪的机械故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械设备的状态监测与故障诊断对于保证设备的安全、可靠、高效运行具有重要的理论意义和实用价值。通过采用各种信号处理方法从机械设备故障振动信号中提取故障特征信息,是机械设备故障诊断的关键。机械故障振动信号通常为非平稳振动信号,选择合适的非平稳信号分析方法是有效诊断机械故障的前提。
     变转速条件下,以等时间间隔拾取的齿轮振动信号通常为低信噪比的多分量非平稳信号,这使得采用目前常用的信号处理技术从中提取故障特征信息非常困难。另一方面,转子发生碰摩故障的早期阶段,故障特征信号非常微弱,常淹没于强大的工频背景信号中,使得故障难以实现早期检测。多尺度线调频小波路径追踪(Multi-scale Chirplet Path Pursuit, MCPP)方法是近年来提出的一种自适应的非平稳信号分析方法,该方法具有自适应匹配分析信号中能量最大的信号分量并准确估计其瞬时频率的能力,适合用于分析频率呈大范围变化的非平稳振动信号,因此可用于解决变转速下齿轮振动信号故障特征难以提取以及转子早期碰摩故障特征难以检测的问题。论文在国家自然科学基金项目(项目编号:50875078)和高等学校博士学科点专项科研基金项目(项目编号:20090161110006)的资助下,将MCCP方法引入旋转机械故障诊断中,深入研究了MCPP方法在变转速齿轮故障诊断及转子碰摩故障早期检测中的应用。
     论文主要研究工作和创新性成果有:
     (1)针对升、降速状态下拾取的齿轮振动信号具有非平稳性,频谱分析将产生频谱模糊,且不具有物理意义的问题,分析了FrFT方法用于处理升、降速状态下拾取的齿轮振动信号的可行性及存在的问题,提出基于MCPP与FrFT的升、降速齿轮故障诊断方法,该方法采用MCPP方法从升、降速阶段获得的齿轮振动信号中提取适合采用FrFT分析的齿轮振动信号段,并估计FrFT的最佳分析阶次,从而实现FrFT在升、降速阶段齿轮故障诊断中的应用。
     (2)针对变转速下齿轮振动信号的调制边频带会随转速变化而变化,使得解调分析变得非常困难的问题,将MCPP方法用于齿轮转速估计,以实现齿轮振动信号的阶比分析;针对工程实际中获取的齿轮振动信号信噪比低的特点,将多尺度形态学分析这一具有良好抗噪性能的方法应用于齿轮振动信号分析,提出基于MCPP方法的多尺度形态学解调方法,研究表明该方法适合用于低信噪比非平稳振动信号的解调分析。
     (3)针对齿轮发生故障时,由于存在噪声与调制现象,振动信号表现出一定的非线性和非高斯性,使得其状态难以准确判断的问题,将双谱分析和MCPP方法相结合,提出了基于MCPP的阶比双谱分析方法,并将其应用于诊断变转速状态下的齿轮故障。实验研究表明,该方法能正确区分不同状态的齿轮。
     (4)合理设置频率偏置搜寻范围和调频率搜寻范围是MCPP方法成功应用的关键,针对如何合理设置频率偏置搜寻范围和调频率搜寻范围的问题,提出了基于奇异值分解(Singular Value Decomposition)的MCPP方法,该方法将SVD方法用于振动信号预处理,从预处理后信号的Winger-ville分布时频图上得到对振动信号频率偏置范围及调频率范围的估计,有效解决了MCPP方法中频率搜寻范围和调频率搜寻范围的合理设置问题。
     (5)针对转子发生碰摩故障的早期阶段,故障特征信号非常微弱,容易被强大的工频信号所淹没的问题,将基于MCPP与信号稀疏分解的多尺度线调频基稀疏信号分解(Multi-scale Chirplet Sparse Signal Decompositon, MCSSD)方法用于转子早期碰摩故障检测,提出了基于MCSSD的转子碰摩故障早期检测方法。仿真和实验分析验证了基于MCSSD的转子碰摩故障早期检测方法的有效性和优越性。
     MCPP方法能以具有线性频率的chirplet原子逐段自适应匹配分析信号中能量最大的信号分量并准确估计其瞬时频率,根据MCPP方法的这一性质,本文针对变转速条件下拾取的齿轮振动信号具有低信噪比、非平稳、非线性、非高斯等特点,将MCPP方法分别与FrFT、多尺度形态学分析、双谱分析、SVD方法相结合,应用于变转速条件下的齿轮故障诊断。仿真分析和应用实例表明:将MCPP方法与FRFT、多尺度形态学分析等信号处理方法相结合,可实现各种信号处理方法的优势互补,能有效诊断变转速条件下的齿轮故障。本文还针对转子早期碰摩故障特征微弱而难以检测的问题,将基于MCPP与稀疏信号分解的MCSSD方法应用于转子碰摩故障早期检测,仿真分析和应用实例验证了MCSSD方法应用于转子碰摩故障早期检测的有效性。
The mechanical fault diagnosis is very important to ensure the normal operation of the rotating machinery. Therefore, it has extremely significant reality meaning and practical merit. As we all know, extracting the fault feature from the vibration signals is the key of fault diagnosis. Most of the fault vibration signals of the rotating machinery are non-stationary. Consequently, selecting appropriate non-stationary signal processing methods is the precondition for the success of fault diagnosis.
     In general, the gear vibration signals which measured at equal-time-interval are the multi-component non-stationary signals and have the low signal-to-noise ratio, which makes it is very difficult to extract the fault features from the gear vibration signals with the existing signal processing techniques. On the other hand, under the early stage of rotor's rub-impact failure, the fault feature is very weak and is always hidden in the strong power frequency signal component. Hence, it is very difficult to be detected. The multi-scale chirplet path pursuit (MCPP) method is a non-stationary signal processing method which is proposed in recent years. With the best path algorithm of the MCPP method, the signal component with the largest energy in the original vibration signal and its instantaneous frequency can be estimated by connecting the selected chirplets and their corresponding piecewise linear frequencies, respectively. For this reason, the MCPP method is suitable to analyze the non-stationary signals whose instantaneous frequencies change in wide range. In the early stage of rotor's rub-impact failure, the power frequency component whose energy is the maximal among all the components in the rotor vibration signal can be picked up from the original rotor vibration signals by MCPP method. Thus, the MCPP method can be used to fault diagnosis of the gears with time-varying rotational speed, and can also be used to detect the weak rubbing fault features from the rotor vibration signal. Supported by National Natural Science Foundation (No.50875078) and Specialized Research Foundation for the Doctoral Program of Higher Education (No.20090161110006), this dissertation takes deep researches on the fault diagnosis of gears with time-varying rotating speed and the early detection of the rubbing fault of rotors based on MCPP method.
     The main researches and the acquired innovative achievements are as follows:
     (1) The gear vibration signals which obtained under speed-up and speed-down process are non-stationary. Therefore, the FFT-based spectral analysis of these gear vibration signals will be blurring, and have no physical meaning. Aimed at this problem, whether or not the FrFT method can be used to process the gear vibration signals which measured under speed-up and speed-down process is discussed, and the difficulties existing in the application of FrFT is further studied. Then, based on MCPP and FrFT, a novel approach for gear fault detection under speed-up and speed-down process is proposed. For a given gear vibration signal which collected under speed-up and speed-down process, the gear vibration signal segment for which FrFT is useful can be extracted from it (with the MCPP method), and the best order of FrFT for the extracted gear vibration signal segment can be calculated out, simultaneously. This is then followed by the FrFT spectrum of the extracted gear vibration signal segment. If the modulation sidebands are visible in the FrFT spectrum, we can judge the existing fault on the gear.
     (2) Under the time-varying rotational speed condition, the modulation sidebands of the gear vibration signals are always varying with the rotational speed, which makes the demodulation analysis of these gear vibration signals are very difficult. Because the MCPP method can estimate the instantaneous frequency of the signal component whose energy is the largest among all the components of the original gear vibration signal, it can be used to estimate the rotational speed of the gear. Then, the order-tracking of the gear vibration signal is feasible. Furthermore, the gear vibration signal which obtained from the engineering practice always has the low signal-to-noise ratio. Hence, the morphology analysis which is an effective tool to extract impulsive signal components of the vibration signal and has the robust anti-noise ability is introduced. Then the order multi-scale morphology modulation method based on multi-scale chirplet path is proposed.
     (3) When the mechanical systems broke down, the vibration signals are always companied with noise and modulations, and that they are always showed determined nonlinearity and non-Gaussian, which makes it very difficult to discern the condition of mechanical systems. Aimed at this problem, by combining the bi-spectrum analysis and the MCPP method, a novel approach namely the order bi-spectrum analysis based on the MCPP method is proposed to detect the fault of the gears under the time-varying rotational speed condition. The experimental study indicates that the proposed method can distinguish different conditions of gears.
     (4) Setting up the suitable searching range of the frequency offset and the frequency slope rate is the key for a successful application of the MCPP method. In order to acquire the suitable searching range of the frequency offset and the frequency slope rate, the singular value decomposition (SVD) method is introduced, and then the MCPP method based on SVD is presented. The proposed method uses the SVD method for preprocessing the vibration signal, and then from the Wigner-ville spectrogram of the preprocessed signal, the scopes of the frequency offset and the frequency slope rate of the vibration signal can be roughly estimated.
     (5) In the early stage of rotor's rub-impact failure, the fault feature is very weak, which is always hidden in the strong power frequency signal component. A new signal decomposition method, i.e. the multi-scale chirplet sparse signal decomposition (MCSSD) method which is proposed by combing MCPP and the sparse signal decomposition method is used for early detecting the rub-impact fault of the rotor systems. Then, an early detection method of the rubbing fault for rotors which based on the MCSSD method is proposed. The simulations and the experiments confirmed the validity and the superiority of the proposed method.
     The MCPP method can use the chirplet atoms whose instantaneous frequency curves are linear straight lines to adaptively match the signal component with the largest energy in a multi-component vibration signal. Meanwhile, the instantaneous frequency of this signal component with the largest energy can be estimated by jointing the piecewise linear frequencies of the chirplets which is used by the MCPP method. Owing to the above ability, the MCPP method is suitable for processing non-stationary signals. Under the time-varying rotational speed condition, the gear vibration signals which measured at equal-time-interval always have low signal-to-noise ratio and possess some properties, such as non-stationarity, nonlinearity and non-Gaussianity, which makes the fault diagnosis more complex. Therefore, as a novel non-stationary signal processing technique, the MCPP method is introduced in and combined with FrFT, multi-scale morphology analysis, bi-spectrum, and SVD. Then, various combination methods are proposed and applied for fault diagnosis of gears under time-varying rotating speed. The results of the simulations and experiments indicate that the combination methods can be effectively applied to the fault diagnosis of gears under the variable rotational speed condition. Furthermore, considering at the early stage of rotor's rub-impact failure, the rub-impact fault feature is too weak to be detected directly. The MSCCD method which proposed by joining MCPP and the sparse signal decomposition method is applied to detect the feeble fault feature. The simulations and experiments show that the MSCCD method is feasible for characteristics detection of the rub-impact fault in the rotor system.
引文
[1]钟秉林,黄仁.机械故障诊断学.北京:机械工业出版社,2002.
    [2]郭瑜,秦树人,汤宝平等.基于瞬时频率估计的旋转机械阶比跟踪.机械工程学报,2003,39(3):32-36.
    [3]Li Z N, Wu Z T, He Y Y, et al. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mechanical Systems and Signal Processing,2005,19(2):329-339.
    [4]Meltzer G, Ivanov Y Y. Non-stationary rotational speed-part 1:the time-frequency approach. Mechanical Systems and Signal Processing,2003,17 (5):1033-1047.
    [5]胡茑庆,张雨,刘耀宗等.转子系统动静件间尖锐碰摩时的振动特征试验研究.中国机械工程,2002,13(9):777-780.
    [6]孙云岭,张永祥,常汉宝.基于定子振动的转子碰摩故障诊断方法研究.振动工程学报,2009,22(4):391-394.
    [7]陈仲生,温熙森,杨拥民等.基于谱线再生技术的电机转子早期碰摩故障检测.中国电机工程学报,2004,24(8):124-128.
    [8]Ikeda T, Ishida Y, Yamamoto T. Nonlinear forced oscillations of an unsymmetrical shaft and an unsymmetrical rotor with quartic nonlinearity. Bulletin of the JSME, Series III,1988,31(3):530-538.
    [9]Meltzer G, Nguyen P D. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps. Mechanical Systems and Signal Processing,2004,18(5):985-992.
    [10]Kim B S, Lee S H, Lee M G, et al. A comparative study on damage detection in speed-up and coast-down process of grinding spindle-typed rotor-bearing system. Journal of Materials Processing Technology,2007,187-188:30-36.
    [11]Jordi-Roger R R, Antonio G E, Luis R, et al. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions. Electric Power Systems Research,2010(80):1277-1285.
    [12]Fan X F, Zuo M J. Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical Systems and Signal Processing,2006,20(4):966-982.
    [13]Li Z N, He Y Y, Chu F L, et al. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mechanical Systems and Signal Processing,2005,19 (2):329-339.
    [14]Bizarro J P S, Figueiredo A C A, JET EFDA. Contributons time-frequency analysis of fusion plasma signals beyond the short-time Fourier transform paradigm:An overview. Fusion Engineering and Design,2008,83(2-3):350-353
    [15]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [16]纪跃波,秦树人,汤宝平.Wigner分布干扰项抑制及其算法.重庆大学学报(自然科学版),2001,24(4):26-30.
    [17]邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000.28(9):78-84.
    [18]李雨青,水鹏朗,林英.基于多谱图叠加阈值的抑制WVD交叉项的新方法.电子与信息学报,2006,28(8):1435-1438.
    [19]姜鸣,陈进,汪慰军.几种Cohen时频分布的比较及应用.机械工程学报,2003,39(8):129-134.
    [20]Choi H I, Williams W J, Zaveri H. Analysis of event related potentials: Time-frequency energy distribution. Biomed Sci Instrum,1987,23:251-258.
    [21]Choi H I, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kerenels. IEEE Transactions Acoustics, Speech, and Signal Processing,1989,37(6):862-871.
    [22]Zhao Y, Altas L E, Marks R J. The used of cone-shaped kernels for generalized time-frequency representations of nonstationary signals. IEEE Transactions Acoustics, Speech, and Signal Processing,1990,38(6):862-871.
    [23]Jenog J, Williams W J. Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing,1992,40(2):402-412.
    [24]邹红星,戴穷海,李衍达.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性.中国科学(E辑),2001,31(4):348-354.
    [25]Huang N E, Wu M L C, Long S R. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc A,2003,459(2037): 2317-2345.
    [26]Deng Y J, Wang W. Boundary processing technique in EMD method and Hilbert transform. Chinese Science Bulletin,2001,46(11):257-263.
    [27]康海英,栾军英,郑海起等.基于阶次包络谱的轴承故障诊断研究.振动与冲击,2006,25(5):166-167,174.
    [28]徐敏强,黄文虎,张嘉钟.旋转机械高速启动过程振动信号分析方法的研究.振动工程学报,2000,13(2):216-221.
    [29]贾继德,刘志刚,张平.基于阶比双谱分析的发动机故障特征提取.内燃机学报,2004,22(5):462-469.
    [30]孔庆鹏,宋开臣,陈鹰.发动机变速阶段振动信号时频分析阶比跟踪研究.振动工程学报,2005,18(4):448-452.
    [31]郭瑜,秦树人,汤宝平等.基于瞬时频率估计的旋转机械阶比跟踪.机械工程学报,2003,39(3):32-36.
    [32]Shao H, Jin W, Qian S E. Order tracking by discrete gabor expansion. IEEE Trans on instrumentation and measurement,2003,52(3):754-761.
    [33]Pan M C, Chiu C C. Investigation on improved Gabor order tracking technique and its applications. Journal of Sound and Vibration,2006(295):810-826.
    [34]李辉,郑海起,唐力伟.瞬时频率估计的齿轮箱升降速信号阶次跟踪.振动、测试与诊断,2007,27(2):125-128.
    [35]刘耀宗,胡茑庆.Jeffcott转子碰摩故障试验研究.振动工程学报,2001,14(1):96-99.
    [36]杨定新,胡茑庆,张朝众.基于复杂度分析的电机转子—轴承系统早期故障检测方法.中国电机工程学报,2004,24(11):126-129.
    [37]褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性.清华大学学报.1996,36(6):52-57.
    [38]张思进,陆启韶,王琪.转子与定子几何不对中引起的碰摩分析.振动工程学报,1998,11(4):492-496.
    [39]李允公,刘杰,张金萍.基于实测冲击响应的转子碰摩故障特征提取方法.机械工程学报,2007,43(4):224-228.
    [40]Choi Y S, Noah S T. Nonlinear steady-state response of a rotor-support system. Transactions of the ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design,1987,109:255-261.
    [41]Chu F, Zhang Z. Bifurcation and chaos in a rub-impact Jeffcott rotor system. Journal of Sound and Vibration,1998,210(1):1-18.
    [42]Ehrich F F. Observations of Subcritical superharmonic and chaotic response in rotordynamics. Transactions of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1992,114(1):93-100.
    [43]Ehrich F F. Some observations of chaotic vibration phenomina in high-Speed rotordynamics. Transactions of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1991,113(1):50-57.
    [44]Piccoli H C, Weber H I. Experimental observation of chaotic motion in a rotor with rubbing. Nonlinear Dynamics,1998,16(1):55-70.
    [45]Edwards S, Lees A W, Friswell M I. The influence of torsion on rotor/stator contact in rotating machinery. Journal of Sound and Vibration,1999,225(4): 767-778.
    [46]Lin F, Schoen M P, Korde U A. Numerical investigation with rub-related vibration in rotating machinery. Journal of Vibration and Control,2001,7(6): 833-848.
    [47]Muszynska A. Rotor-to-stationary element rub-related vibration phenomena in rotating machinery:Literature survey. The Shock and Vibration Digest,1989, 21(3):3-11.
    [48]胡茑庆,温熙森.转子碰摩故障振动特征的数值分析与辨识方法.中国电机工程学报,2002,22(12):70-74.
    [49]陈敏,胡茑庆,秦国军.参数调节随机共振在机械系统早期故障诊断中的应用.机械工程学报,2009,45(4):131-135.
    [50]褚福磊,张正松.转子—轴承系统发生动静件碰摩时的混沌路径.应用力学学报,1998,15(2):81-86.
    [51]Chu F L, Zhang Z S. Bifurcation and chaos in a rub-impact Jeffcott rotor system. Journal Sound and Vibration,1998,210(1):1-18.
    [52]卢文秀,褚福磊.转子系统碰摩故障的实验研究.清华大学学报(自然科学版),2005,45(5):614-617.
    [53]褚福磊,王庆禹,卢文秀.用声发射技术与小波包分解确定转子系统的碰摩位置.机械工程学报,2002,38(3):139-143.
    [54]王凤利,赵德友.基于提升小波和局域波的故障特征提取.仪器仪表学报,2010,31(4):789-793.
    [55]程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用.振动、测试与诊断,2006,26(1):24-27.
    [56]姜洪开,何正嘉.基于改进第二代小波算法的发电机组碰摩故障特征提取.2008,28(8):127-131.
    [57]李允公,刘杰,张金萍.基于实测冲击响应的转子碰摩故障特征提取方法.机械工程学报,2007,43(4):224-228.
    [58]胡茑庆,陈敏,刘耀宗等.非线性转子碰摩现象的动力学仿真.国防科技大学学报,2000,22(6):101-104.
    [59]Tandon N, Choudhury A. A review of vibration and acoustic measurement methods of the detection of defects rolling element bearings. Teratology International,1999,32(8):469-480.
    [60]Andrade F A, Esat I, Badi M N M. A new approach to time-domain vibration condition monitoring:gear tooth fatigue crack detection and identification by the kolmogorov-smirnov test. Journal of Sound and Vibration.2001,240(5): 909-919.
    [61]Antoni J, Randall R B. The spectral kurtosis:application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing.2006,20(2):308-331.
    [62]Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mechanical Systems and Signal Processing, 2007,21(6):2616-2633.
    [63]Braun S. The extraction of periodic waveforms by time domain averaging. Acustica,1975,32 (2):69-77. [62] McFadden P D. A revised model for the extraction of periodic waveforms by time domain averaging. Mechanical Systems and Signal Processing,1987,1(1): 83-95.
    [65]McFadden P D. Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration. Mechanical Systems and Signal Processing,1987,1(2):173-183.
    [66]McFadden P D, Toozhy M M. Application of synchronous averaging to vibration monitoring of rolling element bearings. Mechanical Systems and Signal Processing,2000,14(6):891-906.
    [67]Wang W Y. Early detection of gear tooth cracking using the resonance demodulation technique. Mechanical Systems and Signal Processing,2001,15(5): 887-903.
    [68]Li Z W, Fu Y. Adaptive noise cancelling technique and bearing fault diagnosis. Journal of Aerospace Power,5(3):199-203.
    [69]Shao Y, Nezu K. Detection of self-aligning roller bearing fault by asynchronous adaptive noise cancelling technology. JSME International Journal, Series C,1999, 42(1):33-43.
    [70]丁康,李魏华,朱小勇.齿轮及齿轮箱故障诊断实用技术.北京:机械工业出版社,2005.
    [71]丁康,朱小勇,陈亚华.齿轮箱典型故障振动特征与诊断策略.振动与冲击,2001,20(3):7-12.
    [72]王志杰,丁康.汽车变速箱故障振动诊断的试验研究.汽车工程,1994,10(4):242-248.
    [73]蔡艳平,李艾华,石林锁.Hilbert解调技术在柴油机失火故障诊断中的应用.机械科学与技术,2009,10:1349-1352
    [74]王延春,谢民.包络分析方法及其在齿轮故障振动诊断中的应用.重庆大学学报,1995,18(1):87-91.
    [75]孟涛,廖明夫,李辉.齿轮故障诊断的时延相关解调法.航空动力学报,2003,18(1):197-201.
    [76]何俊,陈进,毕果等.谱相关函数的解调原理分析.机械科学与技术,2005,24(7):771-774.
    [77]丁康,孔正国,李魏华.振动调频信号的循环平稳解调原理与实现方法.振动与冲击,2006,25(1):5-9.
    [78]何俊,陈进,毕果等.循环平稳度解调频原理分析及其在齿轮故障诊断中的应用.上海交通大学学报,2007,41(11):1862-1866.
    [79]Liang M, Bozchaloo I S. An energy operator approach to joint application of amplitude and frequency-demodulations for bearing fault detection. Mechanical Systems and Signal Processing,2010,24(5):1473-1494.
    [80]Cheng J S, YU D J, Yang Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mechanical Systems and Signal Processing,2007,21(2):668-677.
    [81]Cheng H, Cheng M H. The Application of cepstrum in gear fault diagnosis. Journal of Taiyuan University of Technology,2003,34(6):661-663.
    [82]CAPDESSUS C, SIDAHMED M. Analyse des vibrations d'un engrenage:cepstre, correlation, spectre. Traitement du Signal,1992(8):65-372.
    [83]李辉,郑海起,唐力伟.基于倒阶次谱分析的齿轮故障诊断研究.振动与冲击,2006,25(5):65-68.
    [84]Zheng G T, Wang W J. A new cepstral analysis procedure of recovering excitations for transient components of vibration signals and applications to rotating machinery condition monitoring. Transactions of the ASME, Journal of Vibration and Acoustics,2001,123(2):222-229
    [85]杨江天,陈家骥,曾子平.双谱分析及其在机械诊断中的应用.中国机械工程,2000,11(4):424-426.
    [86]张贤达.时间序列分析—高阶统计量方法.北京:清华大学出版社,1996.
    [87]王凯,张永祥,李军.齿轮裂纹故障的双谱分析.机械强度,2006,28(3):346-348.
    [88]熊良才,史铁林,杨叔子.基于双谱分析的齿轮故障诊断研究.华中科技大学学报.2001,29(11):4-5.
    [89]杨其俊,徐长航.双谱分析在往复泵故障诊断中的应用研究.振动工程学报,2001,14(4):465-468.
    [90]郑海波,陈心昭.基于双谱的齿轮故障特征提取与识别.振动工程学报,2002,15(3):354-358.
    [91]Chow T W S, Gou F. Three phase induction machines asymmetrical faults identification using bispectrum. IEEE Transactions on Energy Conversion,1995, 10(4):688-693.
    [92]李军伟,韩捷,李志农等.小波变换域双谱分析及其在滚动轴承故障诊断中的应用.振动与冲击,2006,25(5):92-95.
    [93]Kocur D, Stanko R. Order bispectrum:a new tool for reciprocated machine condition monitoring. Mechanical Systems and Signal Processing,2000,14(6): 871-890.
    [94]Gersch W, Bortherton T, Braun S. Nearest neighbor-time series analysis classification of faults in rotating machinery. Journal of Vibration, Acoustics, Stress, and Reliability in Design,1983,105(2):178-184.
    [95]AltmannJ, Mathew J. Multiple band-pass autoregressive demodulation of rolling-element bearing fault diagnosis. Mechanical Systems and Signal Processing, 2001,15(5):963-977.
    [96]贾继德,刘志刚,张平等.基于阶比双谱分析的发动机故障特征提取.内燃机学报,2004,22(5):462-469.
    [97]来五星,轩建平,史铁林,等Wigner-Ville时频分布研究及其在齿轮故障诊断中的应用.振动工程学报,2003,16(2):247-250.
    [98]李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究.机械工程学报,2005,41(4):119-122.
    [99]Cohen L. Time-frequency distribution-a review. Proceeding of the IEEE,1989, 77(7):941-981.
    [100]Qian S, Chen D. Joint time-frequency analysis. IEEE Transactions on Signal Processing,1999,16(2):52-67.
    [101]胡晓依,何庆复,王华胜等.基于STFT的振动信号解调方法及其在轴承故障检测中的应用.振动与冲击,2008,27(2):82-86.
    [102]Stazewski W J, tomlinson G R. Local tooth fault detection in gearboxes using a moving window Procedure. Mechanical Systems and Signal Processing,1997, 11(3):331-350.
    [103]Kim Y H. Fault detection in a ball bearing systems using a moving window. Mechanical Systems and Signal Processing,1991,5(6):461-473.
    [104]纪跃波,秦树人,汤宝平.基于多分辨分析的时频分析.振动与冲击,2002,21(1):12-15.
    [105]郑建明,李言,肖继明等.伸缩窗口短时Fourier分析.振动、测试与诊断,2000,20(4):254-258
    [106]Ville J. Theorie et applications de la notion de signal analytique. Cables et Transmission.1948,2A:61-74.
    [107]张贤达.现代信号处理(第二版).北京:清华大学出版社,2002.
    [108]Lee S K, White P R. Higher-order time-frequency analysis and its application to fault detection in rotating machinery. Mechanical Systems and Signal Processing,1997,11(4):637-650.
    [109]来五星,轩建平,史铁林等.Wigner-Ville时频分布研究及其在齿轮故障诊断中的应用.振动工程学报,2003,16(2):247-250.
    [110]Meng Q, Du L. Rotating machinery fault diagnosis using Wigner distribution. Mechanical Systems and Signal Processing,1991,5(5):155-166.
    [111]Staszewski W J, Worden K, Tomlinson G R. Time-frequency analysis in gearbox fault detection using the Wigner-ville distribution and pattern recognition. Mechanical Systems and Signal Processing,1997,11(5):673-692.
    [112]Wang W J, McFadden P D. Early detection of gear failure by vibration analysis-I. calculation of the time-frequency distribution. Mechanical Systems and Signal Processing,1993,7(3):193-203.
    [113]孙云岭,朴甲哲,张永祥Wigner-Ville时频分布在内燃机故障诊断中用.中国机械工程,2004,15(6):506-507.
    [114]邵忍平,沈允文,郭万林.基于时频分布的齿轮系统辨识研究.中国机械工程,2001,12(7):738-740.
    [115]张金玉,张优云,谢友柏.时频分析方法在冲击故障早期诊断中的应用研究.振动工程学报,2000,13(2):222-228.
    [116]杨福生.小波变化的工程分析与应用.北京:科学出版社,1999.
    [117]Peng Z, Chu F, He Y. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. Journal of Sound and Vibration,2002,253(5): 1087-1100.
    [118]Lin J, Qu L S. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration,2000,234(1): 135-148.
    [119]Yen G G, Lin K C. Wavelet packet feature extraction for vibration monitoring.2000,47(3):650-667.
    [120]Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing,2002,16(2-3):447-457.
    [121]林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断.机械工程学报,2000,36(12):95-100.
    [122]徐金梧,徐科.小波变换在滚动轴承故障诊断中的应用.机械工程学报,1997,33(4):50-55
    [123]陈涛,屈梁生,耿中行.小波分析及其在机械诊断中的应用.机械工程学报,1996,33(3):76-79.
    [124]马辉,宋雪萍,赵鑫等.小波包分析在转子裂纹故障检测中的应用.振动、测试与诊断.2006,26(4):300-304.
    [125]邹剑,陈进,邹军等.裂纹转子故障诊断的小波时频分析方法.上海交通大学学报,2002,36(6):865-869.
    [126]赵纪元,何正嘉.小波包-自回归谱分析及在振动诊断中的应用.振动工程学报,1995,8(3):198-203.
    [127]Fan X F, Zou M J. Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical Systems and Signal Processing.2006,20(4):966-982.
    [128]Xiong L C, Shi T L, Yang S Z, et al. A novel application of wavelet-based bispectrum analysis to diagnose faults in gears. International Journal of Comadem,2002,5(3):31-38.
    [129]Luo G Y, Osypiw D, Irle M. Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement. Journal of Sound and Vibration,2000,236(3): 413-430.
    [130]Chen D, Wang W J. Classification of wavelet map patterns using multi-layer neural networks of gear fault detection. Mechanical Systems and Signal Processing,2002,16(4):695-04.
    [131]PaYa B A, Esat I I, Badi M N M. Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a preprocessor. Mechanical Systems and Signal Processing,1997,11(5):751-765.
    [132]Lou X S, Kenneth K A, Loparo A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 200418(5):1077-1095
    [133]訾艳阳,何正嘉,张周锁.小波分形技术及其在机械设备非平稳故障诊断中的应用.西安交通大学学报,2000,34(9):82-87.
    [134]刘占生,刘成敏,刘数春.小波分析和分形几何在转子动静碰摩故障诊断中的应用.哈尔滨工业大学学报,1999,31(1):55-56.
    [135]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用.振动与冲击,2008,27(2):91-94.
    [136]张波,李健君.利用小波变换与SVD识别振动系统模态频率.系统仿真学报,2006,18(8):2227-2229.
    [137]Sweldens W. The Lifting Scheme:A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis,1996, 3(2):186-200.
    [138]Sweldens W. The lifting scheme:a construction of second generation wavelets.
    SIAM Journal of Mathematical Analysis,1997,29 (2):511-546.
    [139]Li Z, He Z J, Zi Y Y, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme. Mechanical Systems and Signal Processing,2008, 22(3):542-556.
    [140]张继春,杨建国,林波.第二代小波变换在汽油机爆震分析中的应用.哈尔滨工业大学学报,2008,40(5):775-778.
    [141]Jiang H K, He Z J, Duan C D, et al. Gearbox fault diagnosis using adaptive redundant lifting scheme. Mechanical Systems and Signal Processing,2006, 20(2):1992-2006
    [142]Li Z, He Z J, Zi Y Y, et al. Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme. Mathematics and Computers in Simulation,2008,79(3):318-338.
    [143]Sliwa T, Voisin Y, Diou A. Adaptivity with near orthogonality constraint for high compression rates in lifting scheme framework. Proceeding of SPIE: Mathematics of Data/Image Coding, Compression, and Encryption VI, with Applications,2004,5208:107-115.
    [144]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non linear non-stationary time series analysis. Porc. R. Soc. Lond. A,1998,454(1971):903-995.
    [145]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the Hilbert spectrum. Annual Review of Fluid Mechanics,1999,31:417-457.
    [146]程军圣,于德介,杨宇.基于EMD和奇异值分解技术的齿轮故障诊断方法.振动工程学报,2004,17(S):461-463.
    [147]马孝江,王凤利,蔡悦等.局域波时频分布在转子系统早期故障诊断中的应用研究.中国电机工程学报,2004,24(3):61-64.
    [148]李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究.振动与冲击,2006,25(1):133-145.
    [149]程军圣,于德介,杨宇.基于EMD和分形维数的转子系统故障诊断.中国机械工程,2005,16(12):1088-1091.
    [150]胡劲松,杨世锡,吴昭同.基于经验模态分解的旋转机械振动信号滤波技术研究.振动、测试与诊断,2003,23(2):96-98.
    [151]Raia V K, Mohanty A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mechanical Systems and Signal Processing.2007,1(6):2607-2615.
    [152]Cheng J S, YU D J, Tang J S. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis. Mechanism and Machine Theory,2008,46(3):712-723.
    [153]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法.机械工程学报,2005,41(1):140-144.
    [154]程军圣,于德介,杨宇.经验模态分解方法中内禀模态函数判据问题研究.中国机械工程,2004,15(20):1861-1864.
    [155]盖强,马孝江,张海勇等.一种消除局域波法中边界效应的新方法.大连理工大学学报,2002,42(1):115-117.
    [156]Wu Z H, Huang N E. Ensemble empirical mode decomposition:a noise assisted data analysis method. Advances in Adaptive Data Analysis,2009,1 (1):1-41.
    [157]Richard G, Douglas L J. A signal-dependent time-frequency representation: optimal kernel design. IEEE Transactions on Signal Processing,1993,41(4): 1589-1602.
    [158]Richard G B, Douglas L J. Signal-dependent time-frequency analysis using a radially Gaussian kernel. Signal processing,1993,32(3):263-284.
    [159]Douglas L J, Richard G B. An adaptive optimal-kernel time-frequency representation. IEEE Transactions on Signal Processing,1995,43(10):2361-2371.
    [160]Richard N C, Douglas L J. Adaptive cone-kernel time-frequency analysis. IEEE Transactions on Signal Processing,1995,43(7):1715-1719.
    [161]Wu D S, Morris J M. Time-frequency representations using a radial Butterworth kernel. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis,1994:60-63.
    [162]王成栋.时频图像及其在机械设备故障自动诊断中的应用研究.西安交通大学,博士学位论文.2004.
    [163]张子瑜,陈进.径向高斯核函数时频分布及在故障诊断中的应用.振动工程学报,2004,14(1):53-59.
    [164]王胜春,韩捷,李志农等.自适应径向抛物线核时频分布及其在故障诊断中的应用.机械强度,2007,29(2):180-184.
    [165]Qian S, Chen D P. Signal representation using adaptive normalized Gaussian functions. Signal Processing,1994,36(1):1-11.
    [166]Qian S, Chen D P. Decomposition of the Wigner-Ville distribution and time-frequency distribution series. IEEE Transactions on Signal Processing, 1994,42(10):2836-2842.
    [167]Mallet S G, Zhang Z F. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [168]Chen S S, Donoho D L. Saunders M A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.1998,20(1):33-61.
    [169]Goodwin M M, Vetterli M. Matching pursuit and atomic signal models based on recursive filter banks. IEEE Transactions on Signal Processing,1999,47(7): 1890-1902.
    [170]Goodwin M. Matching pursuit with damped sinusoids. IEEE International Conference on Acoustics, Speech, and Signal Processing,1997,3:2037-2040.
    [171]Bultan A. A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing,1999,47(3):731-744.
    [172]Mann S, Haykin S. The chirplet transform:Physical considerations. IEEE Transactions on Signal Processing,1995,43(11):2745-2761.
    [173]Yin Q Y, Qian S, Feng A G. A fast refinement for adaptive Gaussian chirplet decomposition. IEEE Transactions on Signal Processing,2002,50(6): 1298-1306.
    [174]Zou H X, Dai Q H, Wang R M, et al. Parametric TFR via windowed exponential frequency modulated atoms. IEEE Signal Processing Letters,2001,8(5): 140-142.
    [175]戴琼海,邹红星,刘智新等人FMmlet变换的性质及收敛性分析.中国科学E辑:技术科学,2002,32(1):48-55.
    [176]ZOU H X, DAI Q H. The of FMmlet transformation. Science in China (Series E),2001,31(5):463-469.
    [177]ZOU H X, DAI Q H. Subspaces of FMmlet transform. Science in China (Series E),2002,45(2):152-160.
    [178]王胜春,韩捷,李志农等.一种自适应chirplet分解方法及其在机械故障中的应用.振动工程学报,2007,20(6):607-612.
    [179]Liu B, Ling S F, Gribonval R. Bearing failure detection using matching pursuit. NDT&E International,2002,35(4):255-262.
    [180]Yang H Y, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit. Mechanical Systems and Signal Processing,2005,19(2):341-356.
    [181]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术.振动与冲击,2003,22(2):26-29.
    [182]孟庆丰,范虹.匹配追踪信号分解与往复机械故障特征提取技术研究.西安交通大学学报,2005,31(7):696-699.
    [183]Candes E J, Charlton P R, Helgason H. Detecting highly oscillatory signals by chirplet path pursuit. Applied and Computational Harmonic Analysis,2008, 24(1):14-40.
    [184]Almeida L B. The fractional Fourier transform and time-frequency presentations. IEEE Trans on Signal Processing,1994,42(11):3084-3091.
    [185]Zayed A I. On the relationship between the Fourier and the fractional fourier transform. IEEE Signal Processing Letters,1996,3(12):310-311.
    [186]Zhang L J, Xu J W, Yang J H, et al. Multiscale morphology analysis and its application to fault diagnosis. Mechanical Systems and Signal Processing,2008, 22:597-610.
    [187]周宇,韩捷,李志农等.分数阶Fourier变换在滚动轴承故障诊断中的应用.煤矿机械,2007,28(6):183-185.
    [188]梁玉前,秦树人,郭瑜.旋转机械升降速信号的瞬时频率估计.机械工程学报2003,39(9):75-80.
    [189]Li Z N, He Y Y, Chu H L, et al. Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and Factorial Hidden Markov Model. Journal of Sound and Vibration, 2006,291(1-2):60-71.
    [190]张帆,丁康.广义检波解调分析的三种方法及其局限性研究.振动工程学报,2002,15(2):243-248.
    [191]张帆,丁康.平方解调分析原理及在机械信号故障诊断中的应用.汕头大学学报(自然科学版),2002,17(1):42-47.
    [192]朱利民,钟秉林,黄仁.齿轮故障振动信号检波解调分析中的混频效应.振动工程学报,1999,12(3):33-337.
    [193]刘红星,陈涛,屈梁生等.能量算子解调方法及其在机械信号解调中的应用.机械工程学报,1998,34(5):85-90.
    [194]郝如江,卢文秀,褚福磊.滚动轴承故障信号的数学形态学提取方法.中国 电机工程学报,2008,28(6):65-70.
    [195]唐贵基,王维珍,胡爱军.数学形态学在旋转机械振动信号处理中的应用.汽轮机技术,2005,47(4):271-272.
    [196]杜必强,王松岭,唐贵基.形态学降噪在转子分形故障状态识别中的应用.中国电机工程学报,2008,28(26):71-76.
    [197]章立军,徐金梧,阳建宏.自适应多尺度形态学分析及其在滚动轴承故障诊断中的应用.北京科技大学学报,2008,30(4):441-445.
    [198]干敏梁,刘红星.关于振动加速度信号幅值解调的五种方法.振动与冲击,2000,19(1):32-33.
    [199]杨江天,陈家骥,曾子平.基于高阶谱的旋转机械故障症状提取.振动工程学报,2001,14(1):13-18.
    [200]王太勇,王正英,胥永刚等.基于SVD降噪的经验模式分解及其工程应用.振动与冲击,2005,24(4):96-98.
    [201]袁小宏,史东峰.奇异值分解技术在齿轮箱故障诊断中的应用.振动、测试与诊断,2000,20(2):91-96
    [202]彭培英,申永军,李黎阳.基于奇异值分解技术的离心机故障诊断.动力学与控制学报,2008,6(2):165-168.
    [203]李建,刘红星,屈梁生.探测信号中周期性冲击分量的奇异值分解技术.振动工程学报,2002,15(4):415-418.
    [204]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社,2006.
    [205]彭富强,于德介,刘坚.一种基于多尺度线调频基的稀疏信号分解方法.2010,23(3):333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700