刚性桩复合地基支承路堤的失稳破坏机理及其稳定分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路堤的整体稳定问题是在软土地区进行路堤快速填筑施工的关键问题。因此,为了满足路堤的整体稳定性要求或工后沉降的要求,越来越多地采用在软土地基中设置刚性桩形成复合地基支承路堤的方法。然而在实际工程中,即使采用刚性桩加固软土地基,路堤滑坡事故也时有发生,这主要是由于现存的稳定分析方法的不合理性造成的。
     为了合理评估刚性桩复合地基支承路堤的整体稳定性,本文首先对天然地基上的路堤、单排桩条件下和群桩条件下刚性桩复合地基支承路堤的失稳破坏机理进行离心模型试验。结果表明:路堤下不同位置桩体将先后发生弯曲破坏,而并不是同时发生弯曲破坏;当桩身抗弯刚度与强度较高、桩距较大且桩下端嵌入较硬土层足够深度时,可产生桩间土体沿桩的绕流甚至因产生绕流而导致路堤失稳破坏;当桩身抗弯刚度与强度较低时,桩体会首先在软硬土层交界面处发生弯曲破坏,并可在路堤失稳前在桩身上部发生第二次弯曲破坏或者整体倾覆破坏。
     同时,基于离心模型试验,采用三维有限差分数值方法对单排桩条件下和群桩条件下刚性桩复合地基支承路堤进行了数值分析,主要研究了不同抗弯刚度和强度、不同桩长细比、不同桩端嵌固条件、不同桩间距和土层分布条件下桩体的受力与变形性状、破坏模式以及路堤的失稳破坏机理。结果表明:数值分析结果与模型试验结果相似;路堤下桩体弯曲破坏比剪切破坏易于发生,且路堤下的各桩是一个渐进破坏过程,这样路堤发生失稳破坏也是一个渐进破坏过程;当桩体抗弯刚度和强度、桩长细比、桩端嵌固条件、桩间距、以及土层分布条件不同时,路堤下桩体存在多种破坏模式:(1)桩体弯曲破坏+桩体整体倾覆破坏;(2)桩体弯曲破坏+桩体弯曲破坏;(3)桩体整体倾覆破坏;(4)桩体向路堤中心侧发生了整体倾覆;(5)桩间土体绕流破坏。
     基于软土地基上刚性桩复合地基支承路堤的失稳破坏机理研究,提出了相应的简化稳定分析方法,并采用这些方法分别对无筋刚性桩(素混凝土桩)和钢筋混凝土桩复合地基支承路堤的稳定算例进行了大量计算。最后建议采用等效抗剪强度法、等效荷载法、等效砂桩法和英国BS8006规范方法对刚性桩复合地基支承路堤的稳定性进行综合分析。同时为了保证设计的冗余度,针对不同的稳定分析方法建议了相应的稳定安全系数。
Overall stability of an embankment is the key problem of embankment rapidconstruction on soft ground. To meet the requirements of the stability andpost-construction settlement of the embankment on soft subgrade, the compositeground reinforced with rigid piles is used extensively to support the embankment.However, due to the irrationality of the existing stability analysis methods, some casehistories have been reported that stability failure occurred to the embankmentssupported on composite ground reinforced with rigid piles.
     In order to evaluate the stability of the embankment supported on compositeground reinforced with rigid piles reasonably, centrifuge modeling tests are performedto study failure mechanisms of the embankments supported on soft ground andcomposite ground reinforced with rigid piles. The results show that the piles atdifferent locations under the embankment did not fail simultaneously but fail one byone by bending failure mode. For piles with a high bending stiffness and strength, alarge spacing, and a sufficient embedded depth into stiff stratum, the soil may flowaround the pile body and then it can further lead to overall failure of the embankment.But for piles with a low bending stiffness and strength, the piles would fail firstly bybending failure mode at the interface of the soft and stiff strata, and then thesecondary bending failure or collapse failure may occur to the upper part of the pilebefore the embankment failure.
     Based on the centrifuge modeling tests,3D finite difference numerical analysesare carried out to study the embankment supported on composite ground reinforcedwith rigid piles. The deformation behavior, load transfer and failure mechanisms ofthe piles and embankment are investigated with different pile bending stiffness andstrength, pile slenderness ratio, pile tip embedment,pile spacing and different soildistribution. The results show that the numerical simulation results confirm thecentrifuge test results, and bending failure of a pile is more critical than shear failure.The results also show that progressive failure occurs among the piles subjected toembankment loading and the embankment approaches failure progressively too. Withdifferent bending stiffness and strength, pile slenderness ratio, pile tip embedment,pile spacing and soil distribution, the piles would fail by different failure modes:(1) bending failure+collapse failure;(2) bending failure+bending failure;(3) collapsefailure;(4) sliding failure+tilting toward the embankment center;(5) soil flowaround the pile.
     Then based on the research of the failure mechanisms of the embankments onsoft subgrade reinforced with rigid piles, a few of simplified stability analysismethods are suggested and compared with each other by analyzing the stability of thetypical examples of the embankments on composite ground reinforced withunreinforced concrete piles (concrete piles) or reinforced concrete piles. It issuggested that a comprehensive analysis of the stability of the embankments oncomposite ground reinforced with rigid piles can be carried out by the equivalentshear strength method, the equivalent load method, the equivalent sand pile methodand the BS8006method. In order to ensure the redundancy of the design,differentsafety factor values are advised for different simplified stability analysis methods.
引文
[1]龚晓南,复合地基发展概况及其在高层建筑中的应用,土木工程学报,1999,32(6):3~10.
    [2]Gang Z,Liu S Y,Chen R P. State of advancement of column-type reinforcementelement and its application. Advances in Ground Improvement:Research topractice in the United States and China-Proceedings of the2009US-ChinaWorkshop on ground improvement technologies. ASCE Geotechnical SpecialPublication,188:12-25.
    [3]刘力,刚性桩加固路堤稳定分析方法研究,天津:天津大学,2010.
    [4]郑刚,李帅,刁钰,软土中无筋刚性桩复合地基支承路堤的整体稳定实用计算方法,中国公路学报,2012,25(2):9-19.
    [5]Terashi M and Juran I. Ground improvement-state of the art.
    [6]阎明礼,张东刚,CFG桩复合地基技术及工程实践,北京中国水利水电出版社,2001.
    [7]刘汉龙,费康,马晓辉等,振动沉模大直径现浇薄壁管桩技术及其应用(1):开发研制与设计,岩土力学,2003,24(2):164-168.
    [8]刘汉龙,郝小员,费康等,振动沉模大直径现浇薄壁管桩技术及其应用(2):工程应用与试验,岩土力学,2003,24(3):372-375.
    [9]Bruce D A,Cadden A W,Sabatini P J. Practical Advice for FoundationDesign-Micropiles for Structural Support, GSP131Contemporary Issues inFoundation Engineering:1-25.
    [10]吕凡任,陈云敏,梅英宝,小桩研究现状和展望,工业建筑,2003,33(4):56-59.
    [11]龚健,陈仁朋,陈云敏等,微型桩原型水平荷载试验研究,岩石力学与工程学报,2004,23(20):3542-3546.
    [12]姜春林,吴顺川,吴承霞等,复活古滑坡治理及微型抗滑桩承载机理,北京科技大学学报,2007,29(10):975-979.
    [13]周德培,王唤龙,孙宏伟,微型桩组合抗滑结构及其设计理论,岩石力学与工程学报,2009,28(7):1353-1362.
    [14]孙书伟,朱本珍,马惠民,杨让宏,微型桩群与普通抗滑桩抗滑特性的对比试验研究,岩土工程学报,2009,31(10):1564-1570.
    [15]肖世国,鲜飞,王唤龙,一种微型桩组合抗滑结构内力分析方法,岩土力学,2010,31(8):2553-2564.
    [16]闫金凯,殷跃平,门玉明,微型桩群桩受力分布规律及破坏模式的试验研究,南水北调与水利科技,2010,8(1):44-48.
    [17]李明,布袋注浆桩在高速铁路软土地基加固中的应用,石家庄铁道学院学报,2006,19(3):134~137
    [18]闻世强,陈育民,丁选明等,路堤下浆固碎石桩复合地基现场试验研究,岩土力学,2010,31(5):1559-1563.
    [19]刘汉龙,陈永辉,浆固碎石桩技术及其应用,岩土工程界,2006,9(7):27~30.
    [20]刘汉龙,任连伟等,高喷插芯组合桩荷载传递机制足尺模型试验研究,岩土力学,2010,31(5):1395~1401.
    [21]程万钊,乐茂华,王富永,赵维炳等,混凝土芯砂石桩复合地基加固堤防软基试验研究,水利学报(增刊),2007:675-680.
    [22]Saravut Jaritngam. Design concept of the soil improvement for road constructionon soft clay,Proceedings of the Eastern Asia Society for Transportation Studies,2003,4:313-322.
    [23]Stewart M E,Navin M P,Filze G M. Analysis of a column-supported testembankment at the I-95/Route1interchange, Geotechnical engineering fortransportation projects,2004:1337-1346.
    [24]Lambrechts J R,Ganse M A,Layhee C A. Soil mixing to stabilize organic clayfor I-95widening Alexandria,VA,Grouting and ground treatment,2004:575-585.
    [25]Murugesan S,Rajagopal K. Geosynthetic-encased stone columns:Numericalevaluation. Geotextiles and Geomembranes,2006,24:349~358.
    [26] Raithel M,Kirchner A,Schade C,et al. Foundation of construction on very softsoils with geotextile encased columns state of the art,GSP136Innovations inGrouting and Soil Improvement. ASCE,2005.
    [27]Yoo C,Song A R,Kim S B,and Lee D Y. Finite element modeling ofgeogrid-encased stone column in soft ground. Journal of Korean GeotechnicalSociety,2007,23(10):133–150.
    [28]Yoo C,and Kim S B. Numerical modeling of geosynthetic encased stone columns.Geosynthet. Int.,2009,16(3):116–126.
    [29]Yoo C. Performance of Geosynthetic-Encased Stone Columns in EmbankmentConstruction: Numerical Investigation. Journal of geotechnical andgeoenvironmental engineering,2010,136(8):1148–1160。
    [30]罗建敏,张锋等,砂桩处理软土地基的试验研究,路基工程,2006,3:70~73.
    [31]谭远发,水泥砂浆桩在高速铁路软基处理中的应用研究,铁道工程学报,2010,10:30~35.
    [32]蒋兴锟,铁路软土地基处理方法合理选择试验研究,铁道勘察,2010,2:22~2.
    [33]贾建林,吴世杰,粉喷桩处理公路软土地基施工评价,工程与建设,2006,20(6):777~778.
    [34]李跃军,张起森,Netlon碎石桩处理软土地基的应用研究,长沙交通学院学报,1997,13(2)54~61.
    [35]崔凯,振动碎石桩处理集丰高速公路软土地基的应用实践,内蒙古公路与运输,2010,5:8~10.
    [36]曹卫平,陈云敏,台华高速公路路堤失稳原因分析与对策,岩石力学与工程学报,2007,26(7):1504-1510.
    [37]张卫民,凌道盛,陈兰云等,粒料桩加固的软土地基上填筑路堤的稳定分析,铁道建筑,2007,11:46-49.
    [38]秦立新,王钊,某线铁路软土路堤失稳分析,路基工程,2007,2:42-43.
    [39]洪宝宁,陈析,CFG桩在高速公路滑塌路段软基处理中的应用,公路交通科技,2004,21(3):18~21.
    [40]王炳龙,杨龙才,周顺华等,CFG桩控制深厚层软土地基沉降的试验研究,铁道学报,2006,28(6):112~116.
    [41]李小和,袁悦,沈宇鹏,CFG桩在京津城际轨道交通工程北京段应用效果浅析,铁道工程学报,2007,12(增刊):117~123.
    [42]刘利群,碎石与组合桩在高速公路软基处理中的应用研究,湖南:湖南大学,2006.
    [43]魏瑞城,京津城际轨道交通北京试验段组合桩复合地基沉降特性研究,北京:北京交通大学,2008.
    [44]杨寿松,刘汉龙,周云东,费康,薄壁管桩在高速公路软基处理中的应用,岩土工程学报,2004,26(6):750-754.
    [45]ZENG J C,ZHANG J W,TONG X D,and TU Y M. Test evaluation ofpost-construction settlement of subgrade in Beijing-Shanghai high-speed railway.International conference on transportation engineering2009(ICTE2009):1275-1280.
    [46]徐向叶,预应力管桩桩网结构在高速铁路软土地基处理中的应用,高速铁路技术,2010,1(5):44-47.
    [47]曾开华,俞建霖,龚晓南,高速公路通道软基低强度混凝土桩处理试验研究,岩土工程学报,2003,25(6):715-719.
    [48]胡志,素混凝土桩复合地基试验研究及变形稳定性分析,重庆:重庆大学,2004.
    [49]白杰亮,素混凝土桩复合地基竖向承载力研究及其工程应用,四川:西华大学,2008.
    [50]田光盛,沪宁城际铁路软土地基处理设计与施工技术,铁道勘察,2011,3:77~80
    [51]Bucky P B. The use of models for the study of mining problems,Am Inst MetEng Tech Pub,1931,425:28~30.
    [52]包承纲,饶锡保,土工离心模型的试验原理,长江科学院院报,1998,15(2):1-7.
    [53]Kitazume M,Ikeda t,Miyajima S and Karastanev D. Bearing capacity ofimproved ground with column type DMM,Proc. of the second InternationalConference on Ground Improvement Geosystems,1996,1:503-508.
    [54]Kitazume M,Yamamoto M and Udaka Y. Vertical bearing capacity of columntype DMM ground with low improvement ratio, Proc. of the InternationalConference on Dry Mix Methods for Deep Soil Stabilization,1999:245-250.
    [55]Aslam R and Ellis E A. Centrifuge modelling of piled embankments,TheInternational Conferences on Physical Modelling in Geotechnics,2010,1297-1302.
    [56]Changdan Wang,Binglong Wang,Xu Wang,Shunhua Zhou. Centrifugal ModelTests on Settlement Controlling of Piled Embankment in High Speed Railway,Traffic and Transportation Studies,2010,1407-1416.
    [57]BUI Phudoanh,LUO Qiang,ZHANG Liang,ZHANG Minjing. GeotechnicalCentrifuge Experiment Model on Analysis of Pile-Soil Load Share Ratio onComposite Foundation of High Strength Concrete Pile,International Conferenceon Transportation Engineering,2009,3465-3470.
    [58]刘俊新,文江泉和邱恩喜,离心模型试验在粉喷桩处理软土地基沉降中的研究,工程地质学报,2005,13(3):371-375.
    [59]刘俊新,卿三惠,王春雷,邱恩喜,离心模型试验在碎石桩处理红层松软土地基沉降中的研究,四川大学学报,2005,37(5):36-40.
    [60]卢国胜,蒋昌贵,王迅,搅拌桩处理软土地基的离心机试验研究,岩土力学,2007,28(10):2101-2122.
    [61]黄茂松,李波,程岳,长短桩组合路堤桩荷载分担规律离心模型试验与数值模拟,岩石力学与工程学报,2010,29(12):2543-2550.
    [62]郭永建,尚新鸿,谢永利,管桩加固拓宽路堤地基的离心试验研究,工程勘察,2010,2:7-92.
    [63]翁效林,张留俊,李林涛等,拓宽路基差异沉降控制技术模型试验研究,岩土工程学报,2011,33(1):159-164.
    [64] Davies M C R,Parry R H G. Centrifuge Modelling of Embankments on ClayFoundations. Soils and Foundations,1985,25(4):19-36.
    [65]周小文,程展林,孙常青等,软土地基路堤施工控制的离心模拟试验研究,岩土力学,2009,30(5):1253-1263.
    [66]陈建峰,俞松波,叶铁锋,石振明,软土地基加筋石灰土路堤离心模型试验研究,岩石力学与工程学报,2008,27(2):287-293.
    [67]陈建峰,俞松波,叶铁锋,石振明,原状土地基石灰土路堤离心模型试验,同济大学学报,2010,38(3):335-345.
    [68] ALMEIDA M S S,DAVIES M C R and PARRY R H G. Centrifuge tests ofembankments on strengthened and unstrengthened clay foundations,Geotechnique,1985,35(4):425-441.
    [69]Priebe H. Abschatzung des Scherwiderstandes eines durgh Stopfverdichtungverbesserten Baugrundes,Die Bautechnik,1978,55(9):281-284.
    [70]Shinsha H,Takata K and Kurumada Y. Centrifuge model tests on clay groundpartly improved by sand compaction piles,Centrifuge91. Rotterdam:Balkema,1991:311-318.
    [71]MIYAKE M,AKAMOTO H,WADA M. Deformation characteristics of groundimproved by a group of treated soil,Centrifuge91. Rotterdam:Balkema,1991:295–302.
    [72] Hashizume H,Okochi Y,Dong J,Horii N, Toyosawa Y and Tamate S. Studyon the behavior of soft ground improved using deep mixing method,Proc. of theInternational Conference on Centrifuge98,1998:851-856.
    [73]Karastanev D,Kitazume M,Miyajima S and Ikeda T. Bearing capacity of shallowfoundation on column type DMM improved ground,Proc.14th ICSMFE,1997,3:1621-1624.
    [74]Kitazume M,Yamamoto M and Udaka Y. Vertical bearing capacity of columntype DMM ground with low improvement ratio, Proc. of the InternationalConference on Dry Mix Methods for Deep Soil Stabilization,1999:245-250.
    [75]TERASHI M,TANAKA H,KITAZUME M. Extrusion failure of the groundimproved by the deep mixing method,Proceedings of the7th Asian RegionalConference on Soil Mechanics and Foundation Engineering:Haifa,Israel,1983,1:313-318.
    [76]Kitazume M,Nakamura T and Terashi M. Reliability of clay ground improved bythe group columntype DMM with high replacement,Report of the Port andHarbour Research Institute,199130(2):305-326.
    [77]Kitazume M,Okano K,Miyajima S. Centrifuge model tests on failure envelopeof column type deep mixing method improved ground. Soils and Foundations,2000,40(4):43-55.
    [78]Kitazume M and Maruyama K. Collapse failure of group column type deepmixing improved ground under embankment,Proc of the International Conferenceon Deep Mixing,ASCE,2005245-254.
    [79]Kitazume M and Maruyama K. External stability of group column type deepmixing improved ground under embankment loading,Soils and Foundations,2006,46(3):323-340.
    [80]Kitazume M and Maruyama K. Internal stability of group column type deepmixing improved ground under embankment loading,Soils and Foundations,2007,47(3):437-455.
    [81]张良,罗强,周成,裴富营,基于离心模型试验的深厚层软基加固方案比较研究,岩土工程学报,2007,29(7):982-987.
    [82]于玉贞,李荣建,李广信,郑瑞华,抗滑桩静力与动力破坏离心模型试验对比分析,岩土工程学报,2008,30(7):1090-1093.
    [83]高长胜,魏汝龙,陈生水,抗滑桩加固边坡变形破坏特性离心模型试验研究,岩土工程学报,2009,31(1):145-148.
    [84]于玉贞,邓丽军,抗滑桩加固边坡地震响应离心模型试验,岩土工程学报,2007,29(9):1320-1323.
    [85]王丽萍,张嘎,张建民,李焯芬,抗滑桩加固黏性土坡变形规律的离心模型试验研究,岩土工程学报,2009,31(7):1075-1081.
    [86]于玉贞,李荣建,吕禾等,铜质模型桩加固边坡的动力离心试验,水文地质工程地质,2008,35(5):41-44.
    [87]李荣建,于玉贞,吕禾,李广信,饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究岩土力学,2009,30(4):897-902.
    [88]Knappett J A,O’Reilly K and Gilhooley P et al. Modelling precast concrete pilingfor use in the geotechnical centrifuge,The International Conferences on PhysicalModelling in Geotechnics,2010:141-146.
    [89]ITASCA. Fast Lagrangian Analysis of Continua,FLAC2D. Itasca ConsultingGroup,Ltd.2002.
    [90]ITASCA. Fast Lagrangian Analysis of Continua,FLAC3D. Itasca ConsultingGroup,Ltd.2002.
    [91]HAN J,CHAI J C,Leshchinsky D,et al. Evaluation of deep-seated slope stabilityof embankments over deep mixed foundations,ASCE Geo-Support,2004:1-10.
    [92]Han J,Sheth A R,Porbaha A and Shen S L. Numerical analysis of embankmentstability over deep mixed foundations,ASCE GeoTrans,2004:1385-1394.
    [93] HAN J,HUANG J,PORBAHA A.2D numerical modeling of a constructedgeosynthetic-reinforced embankment over deep mixed columns,ASCE GSP131,Contemporary Issues in Foundation Engineering,2005:1-11.
    [94]HUANG J,HAN J,PORBAHA A. Two and three-dimensional modeling of DMcolumns under embankments,ASCE GeoCongress,2006:1-5.
    [95]NAVIN M P,FILZ G M. Numerical stability analyses of embankments supportedon deep mixed columns,ASCE GSP152,Ground Modification and SeismicMitigation,2006.
    [96]NAVIN M P,FILZ G M. Reliability of Deep Mixing Method Columns forEmbankment Support,ASCE GeoCongress,2006.
    [97]NAVIN M P. Stability of Embankments Founded on Soft Soil Improved withDeep-Mixing-Method Columns. Doctoral Thesis,Virginia Polytechnic Institute andState University,2005.
    [98]Inagaki M,Abe T,Yamamoto M,et al. Behavior of cement deep mixing columnsunder road embankment,Physical Modelling in Geotechnics:ICPMG '02,Phillips,2002:967-972.
    [99]吴春秋,肖大平,复合地基加固路堤的稳定性分析,岩土力学,2007,28,supp.:905-908.
    [100]郑刚,刘力,韩杰,刚性桩加固软弱地基上路堤的稳定性问题(Ⅰ)——存在问题及单桩条件下的分析,岩土工程学报,2010,32(11):1648-1657.
    [101]郑刚,刘力,韩杰,刚性桩加固软弱地基上路堤的稳定性问题(Ⅱ)——群桩条件下的分析,岩土工程学报,2010,32(12):1811-1820.
    [102] ZHENG G,Liu L. Numerical analysis of the pile lateral behavior and Anti-slipmechanism of rigid pile supported embankments, Advances in GroundImprovement:Research to practice in the United States and China-Proceedings ofthe2009US-China Workshop on ground improvement technologies,2009:63-72.
    [103]Liu L,ZHENG G,Han jie. Numerical Analysis of the Pile Lateral Behavior andSoil Flow around the Pile of Rigid Pile Reinforced Embankments,GeoShanghai2010International Conference,ASCE GSP,2010:99-106.
    [104]Broms B B. Can lime/cement columns be used in Singapore and SoutheastAsia?,3rd GRC Lecture,Nov.19,Nanyang Technological University andNTU-PWD Geotechnical research Centre,1999,214.
    [105]Kivelo M and Broms B B. Mechanical behaviour and shear resistance oflime/cementcolumns,International Conference on Dry Mix Methods:Dry MixMethods for Deep Soil Stabilization,1999,193-200.
    [106]Coastal Development Institute of Technology, The Deep MixingMethod-Principle,Design and Construction,A.A. Balkema Publishers,2002.
    [107]British Standard BS8006Code of Practice for Strengthened/Reinforced Soilsand Other Fills,1995.
    [108]JGJ79-2002建筑地基处理技术规范,2002.
    [109]JTGD30-2004公路路基设计规范,2004.
    [110]JTS147-1-2010港口工程地基规范,2010.
    [111]TB10001-2005铁路路基设计规范,2005.
    [112]史旦达,单调与循环加荷条件下砂土力学性质细观模拟,上海:同济大学,2007.
    [113]聂守智,用圆锥试验确定粘性土性质指标的新方法,岩土工程学报,1984,6(6):18-29.
    [114]聂守智,用XC-1型袖珍触探仪测定液塑限的新方法,岩土工程学报,1995,17(5):74-79.
    [115]CECS54:93袖珍贯入仪试验规程,1993.
    [116]PHC管桩国家建筑标准图集规范10G409,2010.
    [117] BUI PHU DOANH,罗强等,基于离心模型试验的高强度桩复合地基桩问距效应分析,铁道学报,2009,31(6):69-75.
    [118]黄晶,路堤荷载作用下CFG桩复合地基试验分析,四川:西南交通大学,2008.
    [119]郑刚,王丽,竖向荷载作用下倾斜桩的荷载传递性状及承载力研究,岩土工程学报,2008,30(3):323~330.
    [120]贾堤,石峰,郑刚,徐舜华,安璐,深基坑工程数值模拟土体弹性模量取值的探讨,岩土工程学报,2008,30(supp):155~158.
    [121]Turmo J,Ramos G,Aparicio A C. Shear truss analogy for concrete members ofsolid and hollow circular cross section,Engineering Structures,2009,31:455-465.
    [122] JGJ79-2011建筑地基处理技术规范,2011.
    [123]冯忠居,任文峰,谢富贵等,公路路基特长箱涵顶进模拟试验,交通运输工程学报,2007,7(4):74-78.
    [124] GB50010-2010,混凝土结构设计规范,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700