用户名: 密码: 验证码:
钢纤维混凝土界面应力传递及脱粘过程的细观力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料中的应力是通过纤维和基体之间的界面进行传递的,界面区域的力学性能及界面的应力传递过程,对整个复合材料的宏观力学性能都会产生重要影响。因此,纤维增强复合材料的界面问题是工程中十分关注的问题。本论文以纤维混凝土复合材料为研究对象,通过对其界面力学行为进行细观层次的研究,分析了纤维对基体增强、增韧、阻裂机理,研究界面附近的应力、应变规律,为纤维混凝土界面力学模型建立提供有价值的实验数据。
     采用三维数字光弹性实验应力分析方法,对直线形及异形端钩钢纤维与树脂基界面残余应力分布进行了测试。实验结果表明:在单纤维与基体界面的埋入端及埋入末端附近出现界面残余剪应力的极值,纤维增强复合材料中界面残余应力传递主要集中在纤维的埋入端及埋入末端附近。
     对在拉拔荷载和热残余应力联合作用下直线形单丝钢纤维拔出树脂基复合材料界面剪应力进行了研究。实验结果表明:力、热荷载作用下纤维界面剪应力呈抛物线分布,单丝埋入端附近是应力的主要传递区域,最先达到危险应力,出现界面脱粘破坏,然后剪应力沿纤维埋入长度由纤维埋入端附近向埋入末端逐渐传递。
     研究了在拉拔荷载和热残余应力共同作用下,异形钢纤维拔出树脂基复合材料界面剪应力传递行为。实验结果表明:纤维埋入端附近是主要的应力传递区域,最先达到危险应力而出现界面脱粘破坏。在界面脱粘之前,剪应力峰值随荷载增加由纤维埋入端附近沿纤维向内部传递,在异形纤维弯折段受到阻碍而传递停滞。随荷载增加界面开始脱粘时,剪应力可以传递到异形纤维弯折段。
     采用数字图像相关方法和单纤维拉拔试验相结合的实验方法,直接测量了直线形和异形钢纤维从混凝土基体中拉拔过程中全场及界面应变分布及演化规律。实验结果表明:微细观上的应变局部化导致纤维界面剪切破坏的局部化现象,这种界面脱粘破坏逐次发生、发展和转移的应变局部化现象在时间和空间上是呈明显的相互间隔特征。
     采用MARC有限元计算程序,模拟光弹实验条件下,直线形和端钩形纤维界面残余剪应力及热、力载荷共同作用下纤维界面剪应力沿纤维长度分布,与实验结果进行了对比,并探讨了纤维长度、直径对界面剪应力的影响。分析结果表明:改变增强纤维长度和直径对界面残余剪应力影响不大;拉拔荷载和热残余应力联合作用下,改变增强纤维长度,对界面剪应力影响不大,但纤维直径的变化会影响到界面起始脱粘开裂的位置。改变增强纤维长度,对端钩形纤维直线段界面剪应力影响不大,但会减缓弯折段应力集中程度;改变端钩形纤维直径,对界面剪应力影响较大,端钩形纤维直径越小,纤维界面剪应力越大。
The stress in fiber reinforced composites is transferred through the interface of the fiber and the matrix, so the mechanical properties of the interfacial region and the stress transfer behavior of the interface play an important role in the macroscopic mechanical properties of the whole composites. As a result, the interface of fiber reinforced composites has always been a critical part in engineering. This paper, focused on fiber-concrete composites, makes some experimental studies on the interfacial stress behaviors, analyzes the mechanism of the fiber reinforcement, toughness, and failure-resistance, and discusses the characteristics and patterns of the stress and strain near the interface, and therefore to provide some valuable experimental data for the setup of interfacial mechanical model of fiber-concrete composites.
     First, three-dimensional digital photo-elasticity method is used to test the interfacial residual stress distribution between the linear and specially designed hooked fiber and the resin matrix. The results show that the value of the interfacial residual shear stress reaches its peaks near the fiber’s embedded ends in the interface of the single fiber and the matrix, and the interfacial residual stress transfer is also concentrated around the two ends of the fiber.
     Second, the three-dimensional interfacial shear stress near a straight fiber under the combined actions of pullout loading and thermal residual stress is studied. The interfacial shear stress has a parabolic distribution, and the transferring area mainly focuses on the region of the embedded end of the fiber where the stress reaches its critical point, causing the debonding of the interface, and then the shear stress transfers along the imbedded fiber length to the other end.
     In addition, the interfacial sheer stress transfer behavior near a specially designed hooked fiber under the combined actions of pullout loading and thermal residual stress is measured. The stress transfer mainly focuses on the region of the embedded end of the fiber where the stress reaches its critical point, causing the debonding of the interface. Before the debonding, as the pullout loading increases, the peak value of the shear stress transfers along the fiber from the imbedded top to the interior of the matrix, and then stops at the hooked part of the fiber. When the interface begins to debond as the load increases, the shear stress can be transferred to the fiber’s hooked part.
     A direct measurement of both the whole field and the interfacial strain distributions and patterns is performed when the straight and specially designed hooked fibers are being pulled out from the concrete matrix using the digital image correlation method and the single fiber pullout experiment. The microscopic strain localization can result in the localization of the interfacial shear failure which includes the initiation, development and propagation of the interfacial debonding. This localization shows an apparent characteristic of time and spatial intervals.
     Finally, MARC finite element software is used to simulate the photo-elasticity experiment of the interfacial residual shear stress in the straight fiber and the specially designed hooked fiber composites, and the photo-elasticity experiment of the interfacial shear stress distributions along the fiber length under the combined actions of pullout loading and thermal residual stress. The simulation results are compared with the experiment results. The influence of the fiber’s length and diameter on the interfacial shear stress is discussed. The change of the reinforced fiber’s length and diameter does not influence the interfacial residual shear stress significantly. Under the combined actions of pullout loading and thermal residual stress, changing the fiber’s length does not influence the interfacial shear stress much, but the change of its diameter leads to the change of the initial position of interfacial debonding and cracking. In addition, changing the fiber’s length does not significantly influence the interfacial shear stress of the straight part of the hooked fiber, but it can reduce the stress concentrations at the hooked part; on the other hand, the change of the fiber’s diameter has a significant influence on the interfacial shear stress—the smaller the diameter, the larger the interfacial shear stress.
引文
[1]肖长发,纤维复合材料-纤维、基体、力学性能,北京:中国石化出版社,1995。
    [2]沈荣熹,王璋水,崔玉忠,纤维增强水泥与纤维增强混凝土,北京:化学工业出版社, 2006。
    [3]赵国藩,彭少民,黄承逵,钢纤维混凝土结构,北京:中国建筑工业出版社,1999。
    [4] H.L. Cox, The elasticity and strength of paper other fibrous materials, British Journal of Applied Physics, 1952, 3:72-79.
    [5]杨庆生,复合材料细观结构力学与设计,北京:中国铁道出版社,2000。
    [6]王恒武,玻璃纤维/聚合物基复合材料界面粘结强度的实验与理论研究,武汉理工大学硕士学位论文,2003。
    [7] B.W. Rosen, Mechanics of composite strengthening in fiber composite materials, Metals Park, Ohio: ASM Publication, 1965:37-86.
    [8] C.H. Hsueh, Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites, Materials Science and Engineering, 1990, A123:1-11.
    [9] C.H. Hsueh, Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites,Ⅱ. Non-constant interfacial bond strength, Materials Science and Engineering, 1990, A125: 67-73.
    [10] J.K. Kim, C.Baillie, Y.W. Mai, Interfacial debonding and fiber pull-out stressesⅠ: Critical comparison of exiting theories with experiments, Journal of Materials Science, 1992, 27: 3143-3154.
    [11] L.M. Zhou, K.J. Kyo, Y.W. Mai, Interfacial debonding and fiber pull-out stressesⅡ, Anew model based on the fracture mechanics approach, Journal of Materials Science, 1992, 27: 3155-3166.
    [12] C.Y. Yue, W.L. Cheung, Interfacial properties of fibrous composites.Ⅰ, Model for the debonding and pull-out processes, Journal of Materials Science, 1992, 27:3173-3180.
    [13] K.J. Kyo, L.M Hou, Y.W. Mai, Stress transfer in the fiber fragmentation testⅠ, An improved analysis based on a shear strength criterion, Journal of Materials Science, 1993, 28: 6233-6245.
    [14] Z.F. Li, D.T. Grubb, Single-fiber polymer compositeⅠ, Interfacial shear strength and stress distribution in the pull-out test, Journal of Materials Science, 1994, 29:189-202.
    [15] C.H. Hsueh, Interfacial debonding and fiber pull-out stresses of fiber-reinforced compositesⅦ, Improved analysis for bonded interfaces, Materials Science and Engineering, 1992, A154:125-132.
    [16] C.H. Hsueh, Consideration of radial dependences of axial stresses in the shear-lag model for fibre pull-out, Journal of Materials Science, 1994, 29:1801-1806.
    [17] M.J. Starink, S. Syngellakis, Shear lag models for discontinuous composites: fiber end stresses and weak interface layers, Materials Science and Engineering, 1999, A270:270-277.
    [18] H.C. Tsai, A.M. Arocbo, L.W. Gaus, Predicrion of fiber matrix interphase properties and their influence on interface stress displacement and fracture toughness of composite materials, Materials Science and Engineering, 1990, A126:295-304.
    [19] J.I. Achenbach, H. Zhu, Effect of interfacial zone on mechanical behaviour and failure of fiber reinforced composites, Journal of the Mechanics and Physics of Solids, 1989, 37: 381-393.
    [20] L.J. Broutman, B.D. Agarwal, Atheotitical study of the effect of interfacial layer on properties of composites, Polymer Engineering and Science, 1974, 14:581-588.
    [21]崔维成,复合材料结构破坏的计算机模拟,复合材料学报,1996,13:102-108。
    [22]杨庆生,复合材料的界面破坏力学,第八届全国复合材科学术会议文集,南京:1994。
    [23] Z. Hashin, Composite materials with viscoelstic inrephase: creep and relaxation, Mechanics of Materials, 1991, 11:135-148.
    [24] M. Gosz, B. Moran, J.D. Achenbach, Effect of viscoelstic inrephase on the transverse behaviour of fiber reinforced composites, International Journal of Solids and Structures, 1991, 27:1757-1771.
    [25] W. Yang, C.F. Shih, Fracture along an interlaye, International Journal of Solids Structures, 1994, 31: 985-1002.
    [26] M.S. Stucke, A.J. Majumdar, Microstructure of glass fiber-reinforced cement composites, Journal of Materials Science, 1976, 11: 1019-1030.
    [27] A. Bentur, S. Diamond, The microstructure of the steel fiber–cement interface, Journal of Materials Science, 1985, 20: 3610-3620.
    [28] A. Katz, V.C. Li, A. Kazmer, Bond properties of carbon -fibers in cememtitious matrix, Journal of Materials in Civil Engineering, 1995, 7:125-128.
    [29] S. Igarashi, A. Bentur, S. Mindess, The effect of processing on the bond and interfaces in steel fiber reinforced cement composites, Cement and Concrete Research, 1996, 18:313-322.
    [30] N. Banthia, G. Yan, Bond-slip characteristics of steel fiber in high reactivity metakaolin (HRM) modified cement-based matrices, Cement and Concrete Research, 1996, 26: 657-662.
    [31] M.J. Shannag, R. Brincker, W. Hansen, Pull-out behavior of steel fibers from cement-based composites, Cement and Concrete Research, 1997, 27: 925-936.
    [32] H.G. Wu, V.C. Li, Fiber/cement interface tailoring with plasma treatment, Cement and Concrete Composites, 1999, 21: 205-212.
    [33] Y. Guerrero, A.E. Naaman, Effect of mortar fineness and adhesive agents on pullout response of steel Fibers, ACI Materials Journal, 2000, 97: 12-20.
    [34] N. Banthia, J.F. Tottier, Concrete reinforced with deformed steel fibers, Part II: toughness characterization, ACI Materials Journal, 1995, 92(2): 147-154.
    [35]王文安,邓训,陈黎明,异型钢纤维混凝土路面的强度试验研究,第5届纤维混凝土会议论文集,广东:1994,341-345。
    [36]吴文强,曾文锦,施寿昌,异型钢纤维混凝上的特性研究,第5届全国纤维混凝土会议论文集,广东:1994,154-162。
    [37]金芷生,赵水禄,钢纤维与基体界面粘结性能的研究,武汉工业大学学报,1991,1: 55-60。
    [38] A.E. Naaman, H. Najm, Bond-slip mechanisms of steel fibers in concrete, ACI Materials Journal, 1991, 88:135-145.
    [39]谢秉洪,邹东明等,异型钢纤维抗拔性能对比试验研究,第4届全国纤维水泥与纤维混凝土学术会议论文集,南京:1992,108-115。
    [40] N. Banthia, J.F. Ottier, Deformed steel fiber pull-out: Material characteristics and metallurgical processes, In: A.E. Naaman, H.W. Reinhardt, eds, Proceeding of the 1st International Workshop High Performance Fiber Reinforced Cement Composites, Mainz, Germany, 1991, London: E&FN Spon, 1992, 456-466.
    [41] N. Banthia, J.E.Tlhottier, Concrete reinforced with deformed steel fibers, Part I: Bond-slip mechanisms, ACI Materials Journa, 1994, 91: 435-446.
    [42]黄承逵,田稳苓,赵国藩,钢纤维与水泥砂浆粘结强度试验研究,见:程庆国编.第七届全国纤维水泥与纤维混凝上学术会议论文集,井冈山:1998年11月。中国铁道出版社,北京:1998, 134-138。
    [43]田稳苓,异型钢纤维粘结机理研究,见:陈义荣,刘卫东编,第8届全国纤维混凝土会议论文集,济南:2000年10月。混凝土与水泥制品杂志社,苏州:2000,23-25。
    [44]曾滨,金芷生,钢纤维混凝土纤维增强作用,北京科技大学学报,1995,17:485-488。
    [45] N. Chanvillard, On the modeling of the pull out behaviour of steel fibers, In: A.E. Naaman, H.W.Reinhardt, eds, Proceeding of the 1st International Workshop High Performance Fiber Reinforced Cement Composite, Mainz, Germany, 1991, London:E&FN Spon, 1992, 467-478.
    [46] N. Chanvillard, Modeling the pullout of the wire-drawn steel fibers, Cement and Concrete Research, 1999, 29:1027-1037.
    [47] J.M. Alwan, A.E. Naaman, Effect of mechanical clamping on the pull-out response of hooked steelfibers embedded in cementitious matrices, Concrete Science and Engineering, 1999, 1: 15-25.
    [48] C. Sujivorakul, A.M. Waas, A.E. Naaman, Pullout response of a smooth fiber with an end anchorage, Journal of Engineering Mechanics, 2000, 126: 986-993.
    [49] A. Kelly, W.R. Tyson, Tensiles properties of fiber-reinforced metals: copper/tungsten and copper molybdenum, Journal of Mechanics Physics Solids, 1965, 13:329-350.
    [50] A.S. Nowiek,B.S. Befry, An elastic relaxation in crystalline solids, Academic press, New York,1972.
    [51] G. Weiqun, Interfacial adhesion evaluation of uni-axial fiber-reinforced-polymer composites by vibration damping of cantilever beam, Ph.D, Ameriean,1997.
    [52] L.J. Broutman, Glass-resin joint strengths and their effect on failure mechanisms in reinforced plastics, Polymer Engineering and Science, 1966, 7: 263-271.
    [53] J.P. Favre, J. Perrin, Carbon fibre adhesion to organic matrices, Journal of Materials Science, 1972, 7:1113-1118.
    [54]董振英,李庆斌,纤维增强脆性复合材料细观力学若干进展,力学进展, 2001, 31: 555-582。
    [55] J.D. Hughes, The Carbon Fiber/Epoxy Interface a Review, Composites Science and Technology, 1991, 41:13.
    [56] F.S. Zhandarov, V. P. Elena, The local bond strength and its determination by fragmentation and pull-out tests, Composites Science and Technology, 1997.57: 957-964.
    [57] C.Y. Hui, S. L. Phoenix, D. Shia, The single-filament-composite test: a new statistical theory for estimating the interfacial shears strength and weibull parameters for fiber strength, Composites Science and Technology, 1997.57:1707-1725.
    [58] S. Lee, T. Nguyen, J. Chin, T. Chuang, Analysis of the single-fiber fragmentation test, Journal of Materials Science, 1998, 33:1-8.
    [59] A.N. Netravali, Z.F. Li, W. Sachse, H.F. Wu, Determination of fibre/matrix interfacial shear strength by an acoustic emission technique, Journal of Material Science, 1991, 26:6631-6638.
    [60] M. Miwa, T. Ohsawa , K. Tahara, J. Appl. Polymer Sci, 1980, 24:795.
    [61] M.R. Gurvich, A.T. Dibenedetto, Evaluation of the statistical parameters of a weibull distribution, Journal of Materials Science, 1997, 32: 3711-3716.
    [62] J.H. Franco, L.T. Drzal, Comparison of methods for the measurement of fibre/matrix adhesion in composites, Composites, 1992, 23: 2-27.
    [63] B. Miller, P. Muri , L. Rebenfeld, A microbond method for determination of the shear strength of afiber/resin interface, Composites Science and Technology, 1987, 28:17-32.
    [64] B.Miller, P.Muri, L.Rebenfeld, A micro-bond method for determination of the shear strength of a fiber/ resin interface, Composites Science and Technology, 1987, 28:17-32.
    [65] V. Rao, H. Franco, P. Ozzello, A direct comparison of the fragmentation test and the micro-bond pull-out test for determining the interfacial shear strength, Journal of Adhesion, 1991, 34: 65-77.
    [66] J.F. Mandell, E.J. Chen, F. J. McGarry, A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials, International Journal of Adhesion and Adhesives, 1980, 1:40-44.
    [67] J.F. Mandell, D.H. Grande, T.H. Tsiang, F.J. McGarry, In Composite Materials, Testing and Design, ASTM STP 893, American Society for Testing and Materials, 1986:87.
    [68] J.A. Naim, P.L. Zoller, Matrix solidification and the resulting residual thermal stresses in composites, Journal of Material Science, 1985, 20:355-367.
    [69] W.L. Morris, R.V. Inman, B.N. Cox, Microscopic deformation in a heated unidirectional graphite-epoxy composite, Journal of Material Science, 1989, 24: 199-204.
    [70] D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, 1981.
    [71] R.H. Maloff, I.M. Daniel, Three-dimensional photoelastic analysis of a fiber-reinforced composite model, Experimental Mechanics, 1969, 9:156-162.
    [72] N. Hadjis, M.R. Piggott, The effect of matrix stresses on fibre pull-out forces, Journal of Material Science, 1977, 12:358-364.
    [73] M.R. Piggott, Debonding and friction at fibre-polymer interfaces. I: Criteria for failure and sliding, Composites Science and Technology, 1987,30:295-306.
    [74] M.R. Piggott, The internal pressure mechanical properties and water absorption of carbon fibre composites with spiro-epoxy copolymer matrices, Composites Science and Technology, 1985, 23:247-262.
    [75] T.U. Marston, A.G.. Atkins, D.K. Felbck, Interfacial fracture energy and the toughness of composites, Journal of Material Science, 1974, 9: 447-455.
    [76]许金全,界面力学,科学出版社,北京:2006。
    [77]蒋咏秋,关于复合材料设计的宏观力学、细观力学与微观力学的讨论和研究动向,复合材料学报,1996,3:26。
    [78] W.L. Morris, R.V. Inman, B.N. Cox, Microscopic deformation in a heated unidirectional graphite-epoxy composite, Journal of Material Science, 1989, 24:199-204.
    [79] T. Koufopoulos, P.S. Theocari, J.Compos.Mater,1969, 3:308.
    [80] C. Galiotis, Interfacial studies on model composites by laser Raman spectroscopy, Composites Science and Technology, 1991, 42:125-150.
    [81] Y. Saado, J.R. Wood, G.. Marom, Thermal shrinkage induced compressive fragmentation in composite materials, Composite Intefaces, 1997, 5:177-124.
    [82] X.J. Wang, D.L. Chung, Residual stress in carbon fiber embedded in epoxy, studied by simultaneous measurement of applied stress and electrical resistance, Composite Intefaces, 1998, 5: 277-281.
    [83] P.S. Chua, M.R. piggott, Compos, The glass fibre-polymer interface: III—Pressure and coefficient of friction, Composites Science and Technology, 1985, 22:185-196.
    [84] J.L. Bobet, C. Masuda, Measurements of thermal residual stresses in SiC/Ti-15-3 composites, Journal of Thermal stresses, 1996, 19:579-587.
    [85] P. Rangaswamy, B. Mam, P.K. Wright, The influence of thermal-mechanical processing on residual stresses in titanium matrix composites, Materials Science and Engineering: A, 1997, 224: 200-209.
    [86] Y.M. Xing, Y.T anaka, S. Kishimoto, Shinya N. Determining interfacial thermal residual stress in SiC/Ti-15-3 composites, Scripta Materialia, 2003, 48: 701-706.
    [87] Y.M. Xing, S.Kishimoto, N.Shinya, An ovelmethod for determining interfacial residual stress in fiber-reinforced composite, Journal of Composites Materials, 2004, 38:137~148.
    [88] X.W. Yang, X.H. Ji, Y.M. Xing, Y.W. Qin, Interfacial residual stress measurement of SiC/epoxy composites by microphotoelastic method, Key Engineering Materials, 2006, (326-328): 273-276.
    [89] W.SchneiderKunststoffe, 1971,61:273.
    [90] ,B.E. Gatewood, Quart.Appl.Math.1984,6:84.
    [91] J.A. Naim, Thermoelastic analysis of residual stresses in unidirectional, high-performance composites, Polym.Compos. 1985, 6:123-130.
    [92] J. Haener, N.j. Ashbaugh ,j.Compos.Mater. 1967,1:54.
    [93] Y. Mikata, M.J. Taya, Thermal stress in a coated short fiber composite, Appl. Mech, 1986,53: 681-689.
    [94] W. Szyszkowski, J.A. King, Pro.ICCM-10.,1995,VI:533.
    [95] A. Abedian, W. Szyszkowsk. Influence of the free surface on the thermal stresses in unidirectional composites, Composties Part A, 1997,28:573-579.
    [96] L.N. McCartney, New theoretical model of stress transfer between fibre and matrix in a uniaxiallyfibre-reinforced composites, Proc R Soc Lond, 1989, A425: 215-244.
    [97] L.S. Sigl, A.Ca. Evana, Effects of Residual stress and frictional eliding on cracking and pull-out in brittle matrix, Composite, 1989, 8: 112-133.
    [98] C.H. Hsueh, Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part III: With residual and axial stresses, Materials Science and Engineering, 1991, A145: 135-142.
    [99] C.H. Hsueh, Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part IV: Sliding due to residual stresses, Materials Science and Engineering, 1991, A145: 143-150.
    [100]J.W. Hutchinson, H.M. Jensen, Models of fiber debonding and pull-out in brittle composites with friction, Mechanics of Materials, 1990, 9: 139-163.
    [101]D.B. Marshall, Analysis of fiber debonding and eliding experiment in brittle matrix composites, Acts Metall Mater, 1992, 40: 427-441.
    [102]H.Y. Liu, L.M. Zhou, Y.W. Mai, On fiber pull-out with a rough interface, Philosophical Magazine A, 1994, 70: 359-372.
    [103] E.G. Coker, L.N. Filon, A Treatise on Photoelasticity 2rd Ed, Cambridge University Press, 1957.
    [104] M.Frocht, Photoelasticity(I), New York :John Wiley & Sons, Inc.,1941(陈森译光测弹性力学(I),北京:科学出版社,1964)。.
    [105] M.Frocht, Photoelasticity(Ⅱ) . New York : John Wiley & Sons, Inc.,1948(陈森译光测弹性力学(Ⅱ),北京:科学出版社,1966)。.
    [106]大连工学院数理力学系光测组(云大真执笔),光弹性实验,北京:国防工业出版社,1978。
    [107]云大真,于万明,结构分析光测力学,大连:大连理工大学出版社,1996。
    [108]天津大学材料力学教研室光弹组(贾有权主编),光弹性原理及测试技术,北京:科学出版社,1980。.
    [109] Kobayashi, Handbook on experimental mechanics, New Jersey: Prentice-Hall, Englewood Clifls, 1987.
    [110]李伯芹,刘光廷,彭光履等,水工建筑物光测应力分析,北京:水利电力出版社,1988。
    [111] D. Brewster, P.R. Trans, Soc London. 105:60 ,1815; 106:156,1816
    [112] F.E.NeumanBerichte, Konifl, Preuss. Akad,Wissensch, 1840, Abh.der Konigl. Akad der Wissensch. Berlin PartⅡ.50 ,1841.
    [113] J.C. Maxwell, R.Trans, Soc. Edinburgh, 1853, 20 :87-185
    [114] G..T. Reid, Automatic fringe pattern analysis: a review, Optics and Lasers in Engineering, 1986,7:37-68.
    [115] Toyohiko, Yatagai, Automated fringe analysis techniques in Japan. Optics and Lasers Engineering, 1991, 15:79 -91.
    [116] J.S. Sirkis, M. Chen, A.Y. Cheng, Computerized optical fringe pattern analysis in photomechanics: a review, Optical Engineering, 1992, 31:304-314.
    [117] E.A. Patterson, W. Ji, Z.F. Wang, On image analysis for birefringence Measurements in photoelasticity, Optics and Lasersin Engineering, 1997, 28:17-36.
    [118] K. Ramesh, S.K. Manal, Data acquisition techniques in digital photoelasticity: a review, Optics and Lasers Engineering, 1998,30:53 -75.
    [119] A. Ajovaiasit, B. Aarone, G. Petcucci, A review of automated methods for the collection and analysis of phtoelastic data, Journal of Strain Analysis, 1998, 33:75 -91.
    [120] K. Remesh, Digital photoelasticity: advance techniques and applications, Berlin, Germany :Springer, 2000.
    [121]伍小平,实验力学现代光学方法的发展与应用前景,机械强度,1995,17:20-25。
    [122] G. Oppel, The photoelastic investigation of three-dimensional stress and stain conditions, NACA TM No 824(Translation by Vernier J), 1937.
    [123] R.A. Weler, New method for photoelasticity in three-dimensions, Journal of Applied Physics, 1939, 10:266.
    [124] J.W. Daly, An introduction to dynamic photoelasticity, Experimental Mechanics, 1980, 20:40 9-416.
    [125] C.P. Burger, Thermal modeling, Experimental Mechanics, 1975, 15:430-442.
    [126] R. Hiltscher, Forschung aufdem gebiete des ingenieurwesens, 1938, 9: 91-103.
    [127] J. Javornicky, Photoplasucrty, Elsebier Scientific Publishing Company, New York, 1974
    [128]朱明海,范琳,现代光塑性,北京:国防工业出版社,1995。.
    [129]云大真等,圆柱壳开孔问题—开单圆自由孔受轴拉的光弹性实验,大连工学院学刊, 1965,34:73-76。
    [130]大连工学院固体力学研究室(云大真执笔),薄壳应力—光学规律的探讨,全国固体力学实验技术报告会,上海:1966.
    [131]大连工学院固体力学研究室(云大真执笔),壳体开孔的光弹性实验,全国固体力学实验技术报告会,上海:1966。
    [132] H.Aben, Integrated photoelasticity, McGraw-Hill Inc, Britain, 1979.
    [133] P.S. Theocaris, E.E. Gdoutos, Matrix Method in Photoelasticity, Springer Verlag, Berlin,1979. (西奥卡里斯P S.,格道托斯E.E ,光测弹性力学矩阵理论,科学出版社,北京:1987,116-125).
    [134]云大真,皮道华,Jones矩阵运算在光弹性中的应用,大连工学院学报, 1981,20:53-61.
    [135]钱振明,光弹性中的矩阵理论和散光法,科学技术文献出版社重庆社,重庆:1990.
    [136] A. Mesnager, Compt, Rend.155:1071,1912
    [137] A. Mesnager, Ann, Po nts Chaussees.4:129,1901
    [138] A. Mesnager, Compt, R nd, 190:1249.1930.
    [139] F. Zandman, S. Redner, J.W. Dally, Photoelastic coating, Society for Experimental Stress Analysis, Monograph No.3,1977. (高瑞亭等译,光弹性贴片法,机械工业出版社,北京:1980).
    [140] R.B. Heywood, Designing by photoelasticity .Chapman and Hall Ltd, London, 1952.
    [141] B. Durig, F. Zhang , R.M. Neill , Y.J. Chao, W. H. Peters, A study of mixed mode fracture by photoolasticity and digital image analysis, Optics and Lasers in Engng. 1991, 14:203-215.
    [142] B. Han , A.L. Wang, Isochromatic fringe sharpening and interpolation along an isoclinic contour with application to fracture mechanics, Esp. Mech, 1996, 36:305-311,.
    [143]佟景伟,伍洪泽,实验应力分析,湖南科学技术出版社,长沙:1983。
    [144] A.S. Kobayashi, Handbook on experimental mechanic, New Jersey: Prentice-Hall, Englewood Cliffs, 1987.
    [145]李德才,带网状系杆拱连续梁桥光弹性应力分析与图像处理,天津大学硕士学位论文,1994。
    [146]杨建国,斜交刚构连续梁桥的光弹性应力分析和有限元计算,天津大学硕士学位论文,2001。
    [147]唐明,斜拉桥塔锚固区光弹性应力分析与图像处理,天津大学硕士学位论文,1992。
    [148]吕忠久,边文宽,陶志强,锥山桥V墩隅节点光弹性应力分析,第五届光测力学学术会议,长沙:1986,11。
    [149]胡德林,张烈,二潍电站雅碧江斜拉桥拉索锚固区光弹性应力分析,第七届全国实验力学学术会议,1992,10:821一824。
    [150] J.W. Zandman, F, Redner, S. Dally, Photoelastic Coatings, Published Jointly by the Iowa State University Press and Society for Experimental Stress Analysis (SESA), First Edition, 1977.
    [151]牛炎州,涂传林,用光弹贴片法研究大骨料混凝土裂缝扩展过程,水力发电学报,1991,4:38-44。
    [152]徐世梁,赵国藩,光弹贴片法研究混凝土裂缝扩展过程,水力发电学报,1991,5:8一18。
    [153]刘佳毅,混凝土双K断裂参数及其尺寸效应,大连理工大学硕士学位论文,2000。
    [154]吴智敏,赵国藩,宋玉普,黄承逵,光弹贴片法研究砼在疲劳荷载作用下裂缝扩展过程,实验力学,2000,15:286-292。
    [155]栾兰,光弹性贴片法研究混凝土非标准三点弯曲梁裂缝扩展过程,粮食流通技术,2005,2:7-10。
    [156]宋淑慧,钢筋混凝土构件应力状态的光弹贴片法监测,山东工程学院学报,2001,15:61-64。
    [157] D.M. Schuster, E. Scala, The mechanical interaction of Sapphire whiskers with a birefringent matrix, Transactions of the metallurgical society of AIME, 1964, 10:1635-1640.
    [158] W.R. Tyson, G.J. Davies, A photoelastic study of the shear stresses associated with the transfer of stress during fibre reinforcement, Br J Phys, 1965, 16:199-205.
    [159] B. Fiedler, K. Schulte, Photoelastic analysis of fiber-reinforced model composite materials, Composites Science and Technology , 1997, 57:859–867.
    [160] S. Lutze, S. Ritter, G. Ritter, Observation of fibre–fibre interactions in single-fibre model samples, CD-ROM Proceedings of ICCM12, Paris 1999.
    [161] S. Lutze, Confocal laser scanning photoelasticity: improvement of precisionfor quantitative photoelastic studies on model composite materials, Scanning, 2001, 23:273–8.
    [162] K.A. Pawla, A. Galeski, Determination of stresses around beads in stressed epoxy resin by photoelasticity, Journal of Applied Physics , 2002, 86, 1436–1444.
    [163] F.M. Zhao, S.A. Hayes, A.E. Patterson, R.J. Young, Measurement of micro stress fields in epoxy matrix around a fibre using phase stepping automated photoelasticity, Composites Science and Technology , 2003, 63:1783–7.
    [164] F.M. Zhao, S.A. Hayes, A.E. Patterson, R.J. Young, Photoelastic measurement of matrix stress field and interfacial shear stress in single glass fiber model composites, Proc. ECCM 11 (11th European conference on composite materials) from nanoscale interactions to engineering structures, ESCM, 2004, CD Rom.
    [165] A.C. Johnson, F.M. Zhao, S.A. Hayes, F.R. Jones, Influence of a matrix crack on stress transfer to anα-alumina fiber in epoxy resin using FEA and photoelasticity, Composites Science and Technology, 2006, 13:2023-2029.
    [166] F.M. Zhao, S.A. Hayes, E.A. Patterson and F.R. Jones, Phase-stepping photoelasticity for the measurement of interfacial shear stress in single fiber composites, Composites Part A: Applied Science and Manufacturing, 2006, 37:216-221
    [167] P.J. Withers, E.M. Chorley, T.W. Clyde, Use of the frozen-stress photoelastic method to exploreload partitioning in short-fiber, composites. Mater Sci Eng A, 1991, 13:5173–8.
    [168] S. Yoneyama, M. Shimizu, Photoelastic analysis with a single tricolor image. Optics and Lasers Engineering, 1998, 29:423–35.
    [169] S.B. Ritter, In situ observation of the stress field of the failure process in single fiber reinforced polymers, Review of progress in quantitative nondestructive evaluation, Volume 17B, USA: Plenum Publishing Corp, 1998, 1201–1208.
    [170] J.A. Quiroga, A.G. Cano, Phase measurement method for stress analysis from photoelastic data. IUTAM Symp Adv Opt Method Appl Solid Mech Appl, 2000, 82:17–24.
    [171] F. Wan, X. Himin, A note on stress and strain analysis for materials with different elastic modulus and a photoelastic solution of the stress state for points in the interface, Journal of Mater Process Technol, 1997, 65:165–171.
    [172] J. Hobbs, R. Burguete, A photoelastic analysis of crescent-shaped cracks in bolts, Journal of strain Analysis, 2000, 36:93–9.
    [173] L. Zhenkun, Y. Dazhen, Y. Wanming, Whole determination of isoclinic parameter by five-step color phase shifting and it’s error analysis, Optics and Lasers Engineering , 2003, 40:189–200.
    [174] C.P. Burger, A.S. Kobayashi, Photoelasticity cap 5, Handbook of Experimental Mechanics, second revised edition, 1993.
    [175] Y. Kinomoto, M. Torij, Photoelastic analysis of polymerization contraction stresses in resin composite restorations, J Dent, 1998, 26:165–171.
    [176] H.M. Ziada, J.F. Orr, Photoelastic stress analysis in a pier retainer of an anterior resin-bonded fixed partial denture, J Prosthet Dent, 1998, 80:661–5.
    [177] J.A. Quiroga, C.A. Gonzalez, Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique, Applied Optics , 2000, 39, 31–40.
    [178]王安强,万建松,苟文选,矫桂琼,岳珠峰,单纤维界面强度光弹性实验和理论研究,复合材料学报,2003,20,47-150。
    [179] J.M. Vazquez, P.J. Herrera, P.I. Gonzalez, Analysis of the interface between a thermoplastic fiber and athermosetting matrix using photoelasticity, Composites Part A: applied science and manufacturing, 2007, 38: 819 -827.
    [180]云大真,雷振坤,于万明,基十彩色图像处理的光弹性数据自动确定法,机械强度,2002, 24 : 232-236。
    [181]雷振坤,云大真,亢一澜,邵龙潭,数字光弹性法综述,实验力学,2004,19,393-402。
    [182] P. Pinit, E. Umezaki, Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique, Optics and Lasers in Engineering, 2007, 45:795-807.
    [183] J.A. Quiroga, A.G. Cano, Phase measuring algorithm for extraction of isochromatics of photoelastic fringe patterns, Applied Optics, 1997, 36: 8397-8402.
    [184] I. Yamaguchi, Speckle displacement and deformation in the diffraction and image fields for small object deformation, Opt.Acta, 1981, 28:1359-1376.
    [185] W.H. Peters, W.F. Reson, Digital tmaging techniques in experimental mechanics, Optical Engineering, 1982, 21:427-431.
    [186] W.H. Peters, W.F. Reson, T.C. Suton, Application of digital correlation Methods to rigid body Mechanics, Optical Engineering, 1983, 22:738-742.
    [187] M.A. Sutton,M.Q. Cheng, Application of an optimized digital image correlation method to planar deformation analysis,Image and Vision Computing, 1986, 4:143-150.
    [188] M.A. Sutton, S.R. McNeill, S.J. Jin, Effects of subpixel image restoration on digital correlation error estimates, Optical Engineering, 1988, 27:173-175.
    [189]茵嘉白,金观昌,徐秉业,一种新的数字散斑相关方法及其应用,力学学报1994, 26: 599-607。
    [190]陈金龙,计算机辅助散斑计量技术及其在粘接界面质量检测中的应用,天津大学博士学位论文,1996。
    [191] G. Borgefors, G. Ramella, A.D. Baja, Shape and topology preserving multi-valued image pyramids for multi-resolution skeletonization, Pattern Recognition Letters, 2001, 22:741-751.
    [192] S. Yoneyama, Y. Morimoto, Accurate displacement measurement by correlation of colored random patterns, JSME INT J A-SOLID M, 2003, 46:178-184.
    [193] S. Melikian, Geometric searching improves machine vision, Lasers & Optronics, 1999, 18: 13-15.
    [194] U. Seifert,B. Michaelis, Estimating motion parameter from image sequences by self-organizing maps. In: Proceedings of the 39th international scientific colloquium, Technical University of Ilmenau, Germany, 1994, 1-8.
    [195] M. Ajay,A. Pilch, T.C. Chu, Intelligent image correlation using genetic algorithms for measuring surface deformations in the autonomous inspection of structures. In: Proceedings of the American Contro1 C0nference, Chicaago, Illinois, 2000, 460-461.
    [196] D. Amodio, G.B. Brogiato, F. Campana, Digital speckle correlation for strain measurement by image analysis, Society for Experimenta1 Mechanics, Optical Engineering, 2003, 43: 396-402.
    [197] M. Peters, W.F. Ransom M.A. Sutton, T. C. Chu, J. Anderson, Application of digital correlation Methods to rigid body Mechanics, Optical Engineering, 1983, 22:738-742.
    [198] S.R. Russel, M.A. Sutton, Image Correlation quantitative NDE of and fabrication damage in a glass fiber reinforced composite system, J. Mater. Eval, 1989, 47:550-558.
    [199] J.D. Helm, S.R. McNeil, M.A. Sutton Improved three-dimensional correlation for surface displacement measurement, Optical Engineering, 1996, 35:1911-1912.
    [200]杨福俊,房亮,何小元,基于单幅数字散斑投影及图像相关的离面振动测量,光学技术,2007, 32: 323-326。
    [201] S.R. Russel, M.A. Sutton,Image Correlation quantitative NDE of and fabrication damage in a glass fiber reinforced composite system, J. Mater. Eval, 1989, 47:550-558.
    [202] Y.C. Chan, Nondestructive detection on miniaturial meltilayer ceramic capacitors using digital speckle correlation techniques, IEEE transaction components, packaging and manufacturing technology, 1995, 18:677-682.
    [203] Y.J. Chao, P.F. Luo, J.F. kalthoff, An experimental study of the deformation fields around a propagation crack tip, Experimental Mechanics, 1998, 38:79-85.
    [204] J.L. Rand, D.A. Grant, Optical measurement of biaxial strain in thin film polymers, ASTM Special Technical Publication, 1997, 1318:123-137.
    [205] F. Chevalier, S. Calloch, F. Hild, Y. Marco, Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. European.Journal of Mechanics And Solids, 2001, 20:169-187.
    [206] I. Yamaguchi, K. Kobayashi, L. Yaroslavsky, Measurement of surface roughness by speckle correlation, Optical Engineering, 2004, 43:2753-2761.
    [207] J.L. Chen, C.R. Sun , Y.W. Qin, Marking 2dots digital image correlation and application to studies of spinal biomechanics, Proceedings of SPIE’s 3rd International Conference on Experimental Mechanics, 2005, 5852: 455-461.
    [208]陈金龙,罗少华,秦玉文,计欣华,金属表面改性中界面力学性能的实验研究,实验力学2006, 21:758-762。
    [209]孙伟,何小元,胥明,数字图像相关方法在膜材拉伸试验中的应用,工程力学,2007,24:34-38。
    [210]孔宪宾,用数字图象相关分析法测量桩—土相互作用,四川建筑科学研究,2000,,26: 45-48。
    [211]蒋崇喜,谢强,大理岩细观破坏行为的实时观察与分析,西南交通大学学报,1999,34:87-92。
    [212]赵永红,梁海华,熊春阳,方竞,用数字图像相关技术进行岩石损伤的变形分析,岩石力学与工程学报,2002,21:3-76。
    [213]李元海,朱合华,上野胜利等,基于图像分析的试验模型变形场量测标点法,同济大学学报,2003,,31:1141-1145。
    [214]李元海,靖洪文,曾庆有,岩土工程数字照相量测软件系统研发与应用,岩石力学与工程学报,2006, 25:3859-3866。
    [215]李元海,朱合华,上野胜利等.基于图像相关分析砂土试验模型变形场量测,岩土工程学报,2004,, 26:36-41。
    [216]李元海,靖洪文,朱合华,上野胜利,基于图像相关分析的土体剪切带识别方法,岩土力学,2007,28:522-526.。
    [217]张嘎,牟太平,张建民,基于图像分析的土坡离心模型试验变形场测量, 2007, 29:94-97。
    [218]阎春霞,混凝土结构健康监测与诊断光力学新方法研究,天津大学博士论文,2005。
    [219]王静,李鸿琦,邢冬梅,金波,佟景伟,李林安,数字图像相关方法在桥梁裂缝变形监测中的应用,力学季刊,2004,24:512-516。
    [220]徐振斌,孙伟,何小元,数字图像相关法研究疲劳荷载下混凝土的性能,山西建筑,2006,32:10-11。
    [221]单宝华,散斑图像相关数字技术及在结构监测中的应用,哈尔滨工业大学硕士学位论文, 2001。
    [222]王言磊,欧进萍,散斑图像相关数字技术在海洋平台结构模型振动位移测量中的应用,世界地震工程,2006,,22:94-98。
    [223]王言磊,欧进萍,散斑图像相关数字技术在薄壁钢管混凝土长柱变形测量中的应用,实验力学,2006,21:527-532。
    [224] U. Icardi, Through-the-thickness displacements measurement in laminated composites using electronic speckle photography, Mechanics of Materials, 2003, 35:35-51.
    [225] Y.T. Pei, V. Ocelík , J. Th, M.D. Hosson, Interfacial adhesion of laser clad functionally graded materials, Materials Science and Engineering A, 2003, 342:192-200.
    [226] H. Tan, C. Liu , Y. Huang, P.H. Geubelle, The cohesive law for the particle/matrix interfaces in high explosives, Journal of the Mechanics and Physics of Solids, 2005, 53:1892-1917.
    [227] V. Kolluru, C. Carloni, L. Nobile, Width effect in the interface fracture during shear debonding of FRP sheets from concrete, Engineering Fracture Mechanics, 2007, 74:578-594.
    [228] F.B. Schultek, A shear-lag approach to the early stage of interfacial failure in the fiber direction in notched two-dimensional unidirectional composites, Composites Science and Technology, 1997, 57:775-785.
    [229] S. Ocial, H.M. Tadanobu, Shear-lag simulation of the progress of interfacial debonding in unidirectional composites, Composites Science and Technology, 1999, 59:77-88.
    [230] Y.F. Liu, C. Masluda, R. Yuuki, Effect of micro-structural parameters on the fracture behavior of fiber reinforced ceramics, Mechanics of Materials, 1998, 29:111-121.
    [231] Y.F. Liu, Y, Kagawa, Analysis of debonding and frictional sliding in fiber reinforced brittle matrix composites: basic problems, Materials Science and Engineering, 1996, 212:75-86.
    [232] G. Rauchs, P.J. Withers, Computational assessment of the influence of load ratio on fatigue crack growth in fiber-reinforced metal matrix composites, International Journal of Fatigue, 2002, 24: 1205-1211.
    [233] G. Rauchs, P.F. Thomason, P.J. Withers, Finite element modeling of frictional bridging during fatigue crack growth in fiber-reinforced metal matrix composites, Computational Materials Science, 2002, 25:166-173.
    [234]蔡长庚,许家瑞,异形纤维复合材料研究进展,纤维复合材料,2003,,53:53-56。
    [235]董振英,李庆斌,纤维增强脆性复合材料细观力学若干进展,力学进展,,2001,,31:555-582。
    [236]田稳苓,黄承奎,异形钢纤维粘结机理研究,混凝土与水泥制品, 2000,,115:23-25。
    [237] N. Chanvillard, Modeling the pullout of the wire-drawn steel fibers, Cement and Concrete Research, 1999, 29:1027-1937.
    [238]陈应波,梅华东,范小春,非直钢纤维拔出过程的数值模拟,武汉理工大学学报,2006, 28: 78-81.
    [239] C.Y. Yue, M.Y. Quek, On failure phenomenon in single-fibre pull-out tests, Journal of Materials Science Letters, 1995, 14:528-530.
    [240] M.Y. Quek, C.Y. Yue, Axisymetric stress distribution in the single filament pull-out test, Materials Science and Engineering, 1994, A189: 105-116
    [241] M.Y. Quek, C.Y. Yue, An improved analysis for axisymetric stress distributions in the single fiber pull-out test, Journal of Materials Science, 1997, 32:5457-5465.
    [242]王安强,万建松,苟文选,矫桂琼,单纤维界面强度光弹性实验和理论研究,复合材料学报,2003,20:147-150。
    [243] J.M. Vazquez, P.J.Herrera, P.I. Gonzalez, Analysis of the interface between a thermoplastic fiber andathermosetting matrix using photoelasticity, Composites Part A: applied science and manufacturing, 2007, 38: 819-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700