冻土水热耦合分离冰冻胀模型的发展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寒区建设工程及人工冻结工程中,土体的过量冻胀造成的危害屡见不鲜。冻土冻胀的机理研究一直是冻土界研究的热点,国内外学者提出了大量的冻胀模型,然而在一些观点上尚未达成一致。水热耦合分离冰冻胀模型能够描述分凝冰反复形成及生长特性,但该模型存在假设土体为刚性孔隙、没有考虑外荷载作用、分凝冰形成准则物理意义不清、临界分离压力取经验值等问题和不足。本文在水热耦合分离冰冻胀模型的基础上,考虑外荷载、土体孔隙变形、临界分离压力对于土体冻胀过程的影响,建立了能够描述土体一维冻结过程中分凝冰演变规律的冻胀模型;通过数值计算得到了土体冻结初期的冻缩现象;通过试验和数值计算对不同外荷载作用下的土体冻胀分凝冰演变规律进行了研究。
     基于能量守恒定律、傅里叶定律推导了传热微分方程;以等效水压力为水分迁移驱动力,基于质量守恒定律、达西定律推导了传质微分方程。假设土颗粒、孔隙冰为刚性介质,但土骨架考虑体积变化;考虑外荷载及土体孔隙变形对土体冻结过程的影响,改进、完善了饱和颗粒土一维冻结过程中的水热耦合控制方程。考虑临界分离压力修正了分凝冰形成准则,即以冰水交界面水膜压力为土层联系破坏力,冰水交界面水膜压力克服土体外荷载及抗拉强度时形成新的分凝冰。结合文中改进的水热耦合控制方程、修正后的分凝冰形成准则发展了更为完备的冻土水热耦合分离冰冻胀模型。
     对冻结缘温度变化范围内的高温冻土进行径向压裂试验,获得了冻结缘温度变化(0~-2.0℃)范围内高温冻土抗拉强度的变化规律,为土体冻胀理论模型的验证与应用提供了重要的参数。
     基于有限体积法对控制方程、定解条件进行离散,利用Matlab进行编程计算,将土体冻胀理论模型的数值计算结果与试验结果进行对比分析,验证了模型的适用性。通过数值计算得到了土体冻结初期的冻缩现象,与试验进行对比分析,结果基本吻合。采用刚性孔隙假设的冻胀理论模型不能获得土体冻缩现象,因为其假设土体孔隙在整个冻胀过程中不发生变化,只有产生的分凝冰才计入冻胀量,故其冻胀量计算值不可能小于零。
     对不同外荷载作用下饱和颗粒土的一维冻结过程进行了试验研究,结果表明,土体补水量、冻胀量随外荷载的增大而减小,并对该现象产生的机理进行了解释。基于土体冻结过程中电阻场的变化特征,提出了一种土体冻深测试新方法及装置,通过该方法得到的土体冻深曲线与热敏电阻测试结果吻合,为土体冻胀试验提供了一种新的量测手段。采用可视化、图像二值化处理等手段和方法对饱和颗粒土冻结过程中分凝冰演变规律进行试验研究,得到了饱和粉质粘土、饱和黄粘土平均分凝速率随外荷载变化的拟合函数。
     利用本文提出的冻胀模型进行了数值计算,结果表明,分凝冰演变规律与室内试验结果一致。通过数值计算得到饱和颗粒土冻胀过程中最暖分凝冰厚度随外荷载的增大呈指数规律减小。
     该论文有图110幅,表21个,参考文献138篇。
There are so many hazards associated with excessive frost heave in cold regions and engineerings using artificial freezing method. Study on the mechanism of frost heave in freezing soils has been put great effort on, lots of frost heave models have been proposed by researchers, however, some different opinions still exists. Separated ice model represents characteristics of segregation ice, but some shortcoming exists, such as rigid soil porosity, ignorance of overburden pressure, critical separation pressure using empirical value. Based on the separated ice model, considering overburden pressure, deformation of soil porosity and critical separation pressure, we formulated governing equations coupled heat and moisture transfer and built up frost heave model which could explain the evolving rules of segregation ice during soil freezing. Frost shrink phenomenon was obtained during the initial period of soil freezing by numerical calculation. Finally, the evolving rules of segregation ice in different overburden pressure were studied by tests and calculations.
     Heat transfer differential equation was deduced based on the law of Conservation of Energy and Fourier Law; setting equivalent water pressure as driving force of water migration, moisture transfer differential equation was deduced based on the law of Conservation of Mass and Darcy Law. Soil particles and ice phase were supposed as rigid medium, soil skeleton was thought as elastomer, considering the influence of overburden pressure and deformation of soil porosity, governing equations coupled heat and moisture transfer in soil freezing were formulated. Formation standard of segregating ice was improved by using moisturefilm pressure in ice-water interface as the collapsing force, which means the segregation ice would be born when the collapsing force overcome the overburden pressure and tensile strength of soil. Separated ice model coupled heat and moisture transfer was developed by combining the governing equations and improved formation standard of segregating ice.
     This paper carried out split tests on high-temperature frozen soils in the temperature range of frozen fringe, obtained tensile strength of high-temperature frozen soils which varied from 0 to -2.0℃, supplied important parameters for numerical calculations.
     This paper discretized governing equations and definite conditions using finite volume method, calculated with Matlab and conducted comparison of calculated and experimental results, which confirmed the model feasible. Frost shrink was obtained during the initial period of soil freezing by numerical calculation which agreed well with experimental results. Frost heave model using rigid porosity assumption can not obtain frost shrink by the way of numerical calculation, because it assumes that soil porosity does not change any more during the whole process of soil freezing, only segregation ice is calculated in the formation of frost heave. Therefore, calculated frost heave using rigid porosity assumption can not be less than zero.
     Frost heave tests were carried out using saturated granular soils, the results showed that water uptake and frost heave diminished with the increasing of overburden pressure, and the mechanism of tests phenomenon was explained. Based on resistance variation of soils in the process of soil freezing, a new device of measuring frost depth was proposed. Frost depth results using new device agreed well with the thermal couple results. The evolving rules of segregation ice were studied by using visual equipments and binarization processing of images in frost heave tests. The average segregation rate of saturated silty clay and yellow clay were acquired, and fitting functions of average segregation rate with overburden pressure were obtained.
     The evolution rules of segregation ice were calculated by using frost heave model proposed in this paper, the results agreed well with experimental results. The calculated results showed that segregation ice thickness decreased exponentially with the increase of overburden in the process of soil freezing.
     This paper has 110 Figures, 21 Tables and 138 References.
引文
[1]周幼吾,郭东信,邱国庆等中国冻土[M]北京:科学出版社,2000
    [2]翁家杰井巷特殊施re[M]北京:煤炭工业出版社,1991
    [3]陈瑞杰,程国栋人工地层冻结应用研究进展和展望[J]岩土工程学报,2000,22(1):41-43
    [4]翁家杰,陈明雄冻结技术在城市地下工程中的应用[J]煤炭科学技术,1997,25(7):51-53
    [5]Harris J S State of the art:Tunnelling using artificially frozen ground[C].5th InternationalSymposium on Ground Freezing:245—253
    [6]王建平人工冻土冻胀融沉规律的研究[D]徐州:中国矿业大学,1999
    [7]崔托维奇张长庆等译冻土力学[M]北京,科学出版社,1985
    [8]吴剑隧道冻害机理及冻胀力计算方法的研究[D]成都:西南交通大学,2004
    [9]张照太深土冻土力学性能试验研究及工程应用[D]淮南:安徽理工大学,2006
    [10]匡亮室内单轴冻胀本构试验及冻土隧道冻胀力模型试验研究[D]成都:西南交通大学,2006
    [11]令锋,吴紫汪渗流对多年冻土地区路基温度场影响的数值模拟[J]冰川冻土,1999,21(2):115-119
    [12]廉乐明,史金艳寒冷地区路面体冻结过程中湿迁移对温度场影响的研究[J]冰川冻土,1993,15(3):198-505
    [13]李洪升,刘增利,梁承姬冻土水热力耦合作用的数学模型及数值模拟[J]力学学报,2001,33:621-629
    [14]李东庆,魏春玲,吴紫汪边坡渗流对冻土地区路基稳定性的影响分析[J]兰州大学学报(自然科学版),2000,36(3):175-179
    [15]汪仁和,李栋伟正冻土中水热耦合数学模型及有限元数值模拟[J]煤炭学报,2006,31(6):757-759
    [16]费里德曼徐学祖等译冻土温度状况计算方法[M]北京:科学出版社,1982
    [17]苏联科学院西伯利亚分院冻土研究所著,郭东信,刘铁良等译普通冻土学【M]北京:科学出版社,1988
    [18]侯芸季节性冰冻地区路基内温度场、湿度场耦合计算[J]同济大学学报,2002,30(3):296-301
    [19]崔璟,汪仁和人工冻结粘性土的冻胀特性研究[J]安徽理工大学学报(自然科学版),2004,24:44-47
    [20]Fukuda M Experimental studies of coupled heat and moisture transfer in soils during freezing[J],Contribution no 2528 from the Institute of Low Temperature Science,Hokkaido University,Sapporo,Japan,1982:35—91
    [21]徐学祖,王家澄,张立新冻土物理学[M]北京:科学出版社,2001
    [22] Everest D H. The thermodynamics of frost damage to porous solids[J]. Trans. Faraday Soc, 1961,57: 1541-1551.
    [23] Penner E. Fundamental aspects of frost action[R]. Int. Symp. on Frost action in soils, Sweden, 1977.
    [24] Williams P J. Properties and behavior of freezing soils[R]. Oslo: Norwegian Geotech. List, Publ.,1968.
    [25] Jones R H, Hurt K G. An osmotic method for determining rock and aggregate suction characteristicswith applications to frost heave studies [J]. Quarterly J. Eng. Geol., 1978, 11: 245-252.
    [26] Loch J P G, Miler R D. Tests of the concept of secondary frost heaving [J]. Soil Science, 1972, 393:1-11.
    [27] Miller R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record,1972,393: 1-11.
    [28] Miller R D. Lens initiation in secondary frost heaving[R]. Lit.Symp. on Frost action in soils,Sweden, 1977.
    [29] Konrad J M, Morgenstern N R. The segregation potential of a freezing soil[J]. CanadianGeotechmcal Journal, 1981, 18: 482-491.
    [30] Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. WaterResources Research, 1993, 29: 3109-3123.
    [31] Otto J. A new concept of frost heave characteristics of soils[J]. Cold Regions Science andTechnology, 1989, 16: 271-279.
    [32] Penner E. Aspects of ice lens growth in soils[J]. Cold Region Science and Technology, 1986, 13(1):91-100.
    [33] Satoshi A. Experimental study of frozen fringe characteristics^]. Cold Regions Science andTechnology, 1988, 15: 209-223.
    [34] Takeda K, Okamura A. Microstructure of freezing front in freezing soils[A]. Ground Freezing 97[C].Netherlands: Lulea University of Technology, 1997.
    [35] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water ResourceResearch, 1973, 9(5): 1314-1323.
    [36] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing [J].Canadian Geotechmcal Journal, 1978, 15: 548-555.
    [37] Sheppard M W, Key B, Loch J. Development and testing of a computer model for heat and massflow in freezing soils[C]. Proceedings of 3 International Conference on Permafrost, 1978, 1:76-81.
    [38] Jansson L, Halldin S. Model for the water and energy flow in a S.Holldin (ed.)Comparison of forestand energy exchange models, Society for Ecological Copenhagen, 1979: 145-163.
    [39] Fukuda M, Nakagawa S. Numerical analysis of frost heaving based upon the coupled heat and waterflow model[C]. Proceeding of 4 International Symposium on Ground Freezing, Sapporo, Japan,1985: 109-117.
    [40] Nixon J F. The role of convective heat transport in the thawing of frozen soils[J]. CanadianGeotechmcal Journal, 1975, 12: 425-429.
    [41] Jame Y W, Norum D I. Heat and mass transfer in a freezing unsaturated porous medium. WaterResources Research, 1980, 16(5): 918-930.
    [42] Newman G P, Wilson G W. Heat and mass transfer in unsaturated soils during freezing [J]. CanadianGeotechmcal Journal, 1997, 34: 63-70.
    [43] Kay B D, Sheppard M I, Loach J P G A preliminary comparison of simulate and observed waterredistribution in soils freezing under laboratory and field conditions, proc. Int. Symp. Frost Actionin soils, 1977, 1:42-53.
    [44]中国科学院兰州冰川冻土研究所冻土的温度水分应力及其相互作用[M]兰州:兰州大学出版社,1989
    [45]杨诗秀,雷志栋,朱强土壤冻结条件下水热耦合运移的数值模拟[J]清华大学学报,1988,23(1):112-120
    [46]尚松浩,雷志栋,杨诗秀冻结条件下水热耦合运移的数值模拟的改进[J]清华大学学报,1997,37(8):62-64
    [47] Outcalt S. A numerical model of ice lensing in freezing soils[C]. 2n conference on soil waterproblems in cold regions, Edmonton, Alta, 1976.
    [48] Konrad J M, Morgenstern N R. A mechanistic theory of ice lens formation in fine-grained soils[J].Canadian Geotechmcal Journal, 1980, 17: 473-486.
    [49] Konrad J M, Morgenstern N R. Effects of applied pressure on freezing soils[J]. CanadianGeotechmcal Journal, 1982, 19: 494-505.
    [50] Konrad J M, Morgenstern N R. Prediction of frost heave in the laboratory during transientfreezmg[J]. Canadian Geotechmcal Journal, 1981, 19: 250-259.
    [51] Konrad J M. Influence of over consolidation on the freezing characteristics of a clayey silts [J].Canadian Geotechnical Journal, 1989, 26: 9-21.
    [52] Konrad J M. Pore water pressure at an ice lens: its measurement and interpretation^]. Cold RegionsScience and Technology, 1989, 16: 63-74.
    [53] Konrad J M. Influence of cooling rate on the temperature of ice lens formation in clayey silts [J].Cold Regions Science and Technology, 1989, 16: 25-36.
    [54] Konrad J M. Sixteenth Canadian geotechnical colloquium: frost heave in soils: concepts andengineering [J]. Canadian Geotechnical Journal, 1993, 31: 223-245.
    [55] Konrad J M, Seto J T C. Frost heave characteristics of undisturbed sensitive Champlain sea clay[J].Canadian Geotechmcal Journal, 1994, 31: 285-298.
    [56] Konrad J M, Bergeron G, Roy M et al. Field observations of frost action in intact and weatheredChamplain sea clay[J]. Canadian Geotechnical Journal, 1995, 32: 689-700.
    [57] Konrad J M, Morgenstern N R. Frost heave prediction of chilled pipelines buried in unfrrozensoils[J]. Canadian Geotechnical Journal, 1984,21: 100-115.
    [58] Nixon J F. Field frost heave predictions using the segregation potential concept[J]. CanadianGeotechnical Journal, 1982, 19: 526-529.
    [59] Knutsson S, Domaschuk L, Chandler N. Analysis of large scale laboratory and in situ frost heavetests . 4 Intl. Symp. on Ground Freezing, Sapporo, Japan, 1985: 65-70.
    [60] Saarelainen S. Modelling frost heaving and frost penetration in soils at some abserbation sites inFinland. The SSR model[C]. Technical Research Centre of Finland, 1992.
    [61] Isizaki T, Nishio N. Experimental study of frost heaving of a saturated soil[C]. Proceedings of 5International Symposium on Ground Freezing, 1988: 65-72.
    [62] Nixon J F. Discrete ice lens theory for frost heave in soil[J], Canadian Geotechnical Journal, 1991,28: 843-859.
    [63] Shen Mu, Branko L. Modeling of coupled heat, moisture and stress field in freezing soil[J]. ColdRegions Science and Technology, 1987, 14: 237-246.
    [64] Kay B D, Groenevelt P H. On the interaction of water and heat transport in frosen and unfrozensoil[J]. Soil science, 1974, 38: 395-400.
    [65]何平,程国栋,俞祁浩等饱和正冻土中的水、热、力场耦合模型[J]冰川冻土,2000,22:135-138
    [66]许强,彭功生,李南生等土冻结过程中的水热力三场耦合数值分析[J].同济大学学报,2005,33(10):1281-1285
    [67] O'Neil K, Miller R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research,1985,21(3): 281-296.
    [68] O'Neill K, Miller R D. Numerical solutions for a rigid-ice model of secondary frost heave[R].CRREL Report, 1982: 82-83.
    [69] Hopke S W. Amodel for frost heave including overburden, Cold Reg. Sci. Tech. ,1980, 14: 13-22. [70] Gilpin R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water ResourcesResearch, 1980, 16:918-930.
    [71] Czurda K A. Freezing effects on soils: comprehensive summary of the ISGF 82[J]. Cold RegionsScience and Technology, 1983, 8: 93-107.
    [72] Mizusaki T, Hiroi M. Frost heave in He[J], Physica B, 1995, 210: 403-410.
    [73]曹宏章饱和颗粒土冻结过程中的多场耦合研究[D]北京:中国科学院,2006
    [74]周扬冻土冻胀理论模型及冻胀控制研究[D]徐州:中国矿业大学,2009
    [75]Duquennoi C,Fremond M,Levy M Modelling ofthermal soil behavior[J],VTT Symposium,1989:895—915
    [76]Fremond M,Mikkola M Thermodynamical modelling of freezing soil[C],Proceeding of 6thInternational Symposium on Ground Freezing,1991:17-24
    [77]李萍,徐学祖,陈峰峰冻结缘和冻胀模型的研究现状与进展[J]冰川冻土,2000,22(1):90-95
    [78]吴紫汪,沈忠言等土冻结时对基础的切向冻胀力实验研究[c]中国科学研究院兰州冰川冻土研究所集刊,1981:113-128
    [79]陈肖柏我国土冻胀研究进展[J]冰川冻土,1988,10(3):319-326
    [80]徐学祖,邓友生冻土中水分迁移的实验研究[M]北京:科学出版社,1991
    [81]XuXiao—zu,W3ng Jia—cheng,et al Mechanisms offrost heave and salit ezpansion of soil SciencePress,Beijing,New York,1999
    [82]徐学祖国外对冻胀中水分迁移课题的研究[J]冰川冻土,1995,375:14-21
    [83]Taber S Frost heaving Geo J 1929,37:428—461
    [84]Beskow G Soil freezing and frost heaving with special application to roads and railroads TheSwedish Geological society,service C,1935,375:14-21
    [85]木下诚一著王异、张志权译冻土物理学[M]吉林:吉林科学技术出版社,1985
    [86]O’Nell K,Miller R D Exploration of a rigid-ice model offrost heave[J],W3ter Resources Research,1985,21:281—296
    [87]徐学祖,王家澄,张立新等土体冻胀和盐胀机理[M]北京:科学出版社,1995
    [88]Radd F J,~ertle D H Experimental pressure studies of frost heave mechanisms and the growthfusion behavior[C]2th International Conference on permafrost Washington D c:NationalAcademy Press,1988:377—384
    [89]Watanable K,Mizoguchi M,Ishizake T Experimental study on Microstructure near freezing frontsoil freezing[J]Netherlands:A A Balkema,1997:187-192
    [90]Sugita A,Ishizaki L Fukuda M1 Characteristics ofthe soil structure offrozen soils[J]NetherlandsA.A.Balkema.1997:165-169
    [91]李萍,徐学祖,蒲毅彬等利用图象数字化技术分析冻结缘特征[J].冰川冻土,1999,21(2)
    [92]张立新,徐学祖电介质的介入对未冻水含量曲线形态的影响[c]第一届全国寒区环境与工程青年学术会议论文集,1 994:65-69
    [93]徐学祖、邓友生土冻融过程中未冻水含量和冻融温度及土水势的变化[c]第四届全国冻土学术会议论文集,1990:64-76
    [94]张立新,徐学祖,张招祥等冻土未冻水含量与压力关系的实验研究[J].冰川冻土,1998, 20(2): 124-127.
    [95] Anderson D M, Tice A C. Predicting unfrozen water contents in frozen soils from surface areameasurements [J]. Highway Research Record, 1972, 393: 12-18.
    [96] Kujala K. Factors Affecting Frost Susceptibility and Heaving Pressure in Soils [D]. Finland:University of Oulu, 1991.
    [97] Burt T P, Williams P J. Hydraulic conductivity in frozen soils[J]. Earth Surface Processes, 1976, 1:349-360.
    [98] Horiguchi K, Miller R D. Hydraulic conductivity functions of frozen materials[C]. 4 InternationalConference on Permafrost. Washington, D.C.: National Academy Press, 1983, 504-508.
    [99] Black P B, Miller R D. Hydraulic conductivity and unfrozen water content of air-free frozen silt [J].Wat. Resour. Res.,1990, 26: 323-329. nal. 1994, 31: 285-298.
    [100]沈忠言,刘永智,彭万巍等径向压裂法在冻土抗拉强度测定中的应用[J]冰川冻土,1994,16(3):224-231
    [101]沈忠言,彭万巍,刘永智径压法冻土抗拉强度测定中试样长度的影响[J]冰川冻土,1994,16(4):327-332
    [102]马芹勇人工冻土单轴抗拉、抗压强度的试验研究[J]岩土力学,1996,17(3):76-81
    [103]杨平深部原状和扰动冻粘土力学性能差异性研究[J]冰川冻土,1996,1 8(3):256-261
    [104]朱安龙粘性土抗拉强度试验研究及数值模拟[D]成都:四川大学,2005
    [105] Vialov S S, Gmoshinskii S E, Gorodetskii V G, et al. The Strength and Creep of Frozen Soil andCalculations for Ice-soil Relating Structure. CRREL Translation, USA Cold Regions Research andEngineering Laboratory, 1965,76: 1-301.
    [106] Haynes F D, Karahus J A, Kalafut J. Strain rate effect on the strength of frozen silt[R]. CRRELResearch Report, USA Cold Regions Research and Engineering Laboratory, 1975.
    [107] Lade P V, Jessberger H L, Diekmann N. Stress-strain and volumetric behavior of frozen soils[C].Second International Symposium on Ground Freezing, Trontheim, Norway, 1980: 48-64.
    [108] Bragg R A, Andersland O B. Strain rate, temperature and sample size effects on compression andtensile properties of frozen sand[C]. Proceedings of the second International Symposium on GroundFreezing, Trondheim, Norway, 1980: 34-47.
    [109] Zhu Y, Carbee D L. Strain rate effect on the tensile strength of frozen silt[C]. Proceedings of theFourth International Symposium on Ground Freezing, Sapporo, Japan, 1985: 153-157.
    [110] Haynes F D, Strength and deformation of frozen silt[C], Proceedings of the Third InternationalConference on Permafrost, Edmonton, Alberta, Canada, 1978, 1: 655-661.
    [111] Satoshi Akagawa, Kohei Nishisato. Tensile strength of frozen soil in the temperature range of thefrozen fringe. Cold Regions Science and Technology, 2009, 57: 13-22.
    [112]陈湘生,濮家骝,罗小刚等土壤冻胀离心模拟试验[J]煤炭学报,1999,24(6):615-619
    [113]邴慧,何平,杨成松等开放系统下硫酸钠盐对土体冻胀的影响[J]冰川冻土,2006,28(1):126-130
    [114]别小勇人工冻土冻胀控制研究[D]徐州:中国矿业大学,2002
    [115]商翔宇冻土冻胀与冻结模式关系的试验与数值模拟研究[D]徐州:中国矿业大学,2005
    [116]周金生,周国庆,马巍等间歇冻结控制人工冻土冻胀的试验研究[J]中国矿业大学学报,2006,35(6):708-712
    [117]张婷人工冻土冻胀融沉特性试验研究[D]南京:南京林业大学,2004
    [118]蔡瑛深土冻融特性试验及工程应用研究[D]淮南:安徽理工大学,2007
    [119]白冰,周健扫描电子显微镜测试技术在岩土工程中的应用与进展[J]电子显微学报,2001,20(2):154-156
    [120]别小勇高温多年冻土桩土界面及青藏铁路旱桥桩基稳定性研究[D]徐州:中国矿业大学,2005
    [121]Kunio Watanabe,Masaru Mizoguchi Ice configuration near a growing ice lens in a freezingporous medium consisting ofmicro glass particles[J]Journal ofCrystal Growth,2000:135—140
    [122]蒲毅彬,朱元林CT用于冻结土岩及冰的无损动态试验研究[J].自然科学进展,1998,8(2):251-253
    [123]Ershow E D Moisture~ansfer and cryogenic structures and dispersed rocks[J]MockowUniversity,1979
    [124]王家澄,徐学祖,张立新等土类对正冻土成冰及冷生组构影响的实验研究[J]冰川冻土,1995,17(1):16-22
    [125]张琦人工冻土分凝冰演化规律试验研究[D]徐州:中国矿业大学,2005
    [126]Ershow E D et al Experimental study on formation of cryogenic fabric in epigenetic andsyngenetic frozen ground,Collections of geocryological study Moscow-University Press,1987:141-150
    [127]王家澄,刘继民土冻结时的物理过程和冷生组构[c]:青藏冻土研究论文集北京:科学出版社,1989
    [128]王家澄,徐学祖,邓友生等.压力对冻土空隙特征的影"[J].冰川冻土,1993 15(1):160-165
    [129]李萍,徐学祖,王家澄等不连续分凝冰发育规律的研究[J]兰州大学学报(自然科学版),2000,36(5):126-133
    [130]李晓俊不同约束条件下细粒土一维冻胀力试验研究[D]徐州:中国矿业大学2010
    [131]Gilpin R R A model of the“liquid—like”layer between ice and a substrate with applications towire regelation and particle migration[J]J Colloid Interface Sci,1 979,68(2):235-251
    [132]Gilpin R R Theoretical studies of particle engulfment[J]J Colloid Interface Sci,1980,74(1):11844-63
    [133]Tarnawski V R,Wagner B On the prediction ofhydraulic conductivity offrozen soils[J]Canadian Geotechnical Journal,1996,31:176-180
    [134]黄文熙土的工程性质[M]北京:水利电力出版社,1983
    [135]孔详谦有限单元法在传热学中的应用[M]北京:科学出版社,1998
    [136]陶文铨数值传热学[M]西安:西安交通大学出版社,2001
    [137]王海丽.冻融土的水、热、盐迁移实验研究与水、热运动的数值模拟[D].呼和浩特:内蒙古农牧学院,1997.6
    [138]Harlan R L,Nixon J F Ground thermal regime[J]Geotechnical Engineering For Cold Regions,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700